alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,115 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _mannwhitneyu_h
|
34
|
+
#define _mannwhitneyu_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "normaldistr.h"
|
40
|
+
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Mann-Whitney U-test
|
44
|
+
|
45
|
+
This test checks hypotheses about whether X and Y are samples of two
|
46
|
+
continuous distributions of the same shape and same median or whether
|
47
|
+
their medians are different.
|
48
|
+
|
49
|
+
The following tests are performed:
|
50
|
+
* two-tailed test (null hypothesis - the medians are equal)
|
51
|
+
* left-tailed test (null hypothesis - the median of the first sample
|
52
|
+
is greater than or equal to the median of the second sample)
|
53
|
+
* right-tailed test (null hypothesis - the median of the first sample
|
54
|
+
is less than or equal to the median of the second sample).
|
55
|
+
|
56
|
+
Requirements:
|
57
|
+
* the samples are independent
|
58
|
+
* X and Y are continuous distributions (or discrete distributions well-
|
59
|
+
approximating continuous distributions)
|
60
|
+
* distributions of X and Y have the same shape. The only possible
|
61
|
+
difference is their position (i.e. the value of the median)
|
62
|
+
* the number of elements in each sample is not less than 5
|
63
|
+
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
64
|
+
the test could not be applied to nominal variables).
|
65
|
+
|
66
|
+
The test is non-parametric and doesn't require distributions to be normal.
|
67
|
+
|
68
|
+
Input parameters:
|
69
|
+
X - sample 1. Array whose index goes from 0 to N-1.
|
70
|
+
N - size of the sample. N>=5
|
71
|
+
Y - sample 2. Array whose index goes from 0 to M-1.
|
72
|
+
M - size of the sample. M>=5
|
73
|
+
|
74
|
+
Output parameters:
|
75
|
+
BothTails - p-value for two-tailed test.
|
76
|
+
If BothTails is less than the given significance level
|
77
|
+
the null hypothesis is rejected.
|
78
|
+
LeftTail - p-value for left-tailed test.
|
79
|
+
If LeftTail is less than the given significance level,
|
80
|
+
the null hypothesis is rejected.
|
81
|
+
RightTail - p-value for right-tailed test.
|
82
|
+
If RightTail is less than the given significance level
|
83
|
+
the null hypothesis is rejected.
|
84
|
+
|
85
|
+
To calculate p-values, special approximation is used. This method lets us
|
86
|
+
calculate p-values with satisfactory accuracy in interval [0.0001, 1].
|
87
|
+
There is no approximation outside the [0.0001, 1] interval. Therefore, if
|
88
|
+
the significance level outlies this interval, the test returns 0.0001.
|
89
|
+
|
90
|
+
Relative precision of approximation of p-value:
|
91
|
+
|
92
|
+
N M Max.err. Rms.err.
|
93
|
+
5..10 N..10 1.4e-02 6.0e-04
|
94
|
+
5..10 N..100 2.2e-02 5.3e-06
|
95
|
+
10..15 N..15 1.0e-02 3.2e-04
|
96
|
+
10..15 N..100 1.0e-02 2.2e-05
|
97
|
+
15..100 N..100 6.1e-03 2.7e-06
|
98
|
+
|
99
|
+
For N,M>100 accuracy checks weren't put into practice, but taking into
|
100
|
+
account characteristics of asymptotic approximation used, precision should
|
101
|
+
not be sharply different from the values for interval [5, 100].
|
102
|
+
|
103
|
+
-- ALGLIB --
|
104
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
105
|
+
*************************************************************************/
|
106
|
+
void mannwhitneyutest(const ap::real_1d_array& x,
|
107
|
+
int n,
|
108
|
+
const ap::real_1d_array& y,
|
109
|
+
int m,
|
110
|
+
double& bothtails,
|
111
|
+
double& lefttail,
|
112
|
+
double& righttail);
|
113
|
+
|
114
|
+
|
115
|
+
#endif
|
@@ -0,0 +1,918 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "minlm.h"
|
35
|
+
|
36
|
+
static const int lmmodefj = 0;
|
37
|
+
static const int lmmodefgj = 1;
|
38
|
+
static const int lmmodefgh = 2;
|
39
|
+
static const int lmflagnoprelbfgs = 1;
|
40
|
+
static const int lmflagnointlbfgs = 2;
|
41
|
+
static const int lmprelbfgsm = 5;
|
42
|
+
static const int lmintlbfgsits = 5;
|
43
|
+
static const int lbfgsnorealloc = 1;
|
44
|
+
|
45
|
+
static void lmprepare(int n, int m, bool havegrad, lmstate& state);
|
46
|
+
static void lmclearrequestfields(lmstate& state);
|
47
|
+
|
48
|
+
/*************************************************************************
|
49
|
+
LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
50
|
+
|
51
|
+
Optimization using function gradient and Hessian. Algorithm - Levenberg-
|
52
|
+
Marquardt modification with L-BFGS pre-optimization and internal
|
53
|
+
pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
54
|
+
|
55
|
+
Function F has general form (not "sum-of-squares"):
|
56
|
+
|
57
|
+
F = F(x[0], ..., x[n-1])
|
58
|
+
|
59
|
+
EXAMPLE
|
60
|
+
|
61
|
+
See HTML-documentation.
|
62
|
+
|
63
|
+
INPUT PARAMETERS:
|
64
|
+
N - dimension, N>1
|
65
|
+
X - initial solution, array[0..N-1]
|
66
|
+
EpsF - stopping criterion. Algorithm stops if
|
67
|
+
|F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
|
68
|
+
EpsX - stopping criterion. Algorithm stops if
|
69
|
+
|X(k+1)-X(k)| <= EpsX*(1+|X(k)|)
|
70
|
+
MaxIts - stopping criterion. Algorithm stops after MaxIts iterations.
|
71
|
+
MaxIts=0 means no stopping criterion.
|
72
|
+
|
73
|
+
�������� ���������:
|
74
|
+
State - structure which stores algorithm state between subsequent
|
75
|
+
calls of MinLMIteration. Used for reverse communication.
|
76
|
+
This structure should be passed to MinLMIteration subroutine.
|
77
|
+
|
78
|
+
See also MinLMIteration, MinLMResults.
|
79
|
+
|
80
|
+
NOTE
|
81
|
+
|
82
|
+
Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
|
83
|
+
stopping criterion selection (small EpsX).
|
84
|
+
|
85
|
+
-- ALGLIB --
|
86
|
+
Copyright 30.03.2009 by Bochkanov Sergey
|
87
|
+
*************************************************************************/
|
88
|
+
void minlmfgh(const int& n,
|
89
|
+
const ap::real_1d_array& x,
|
90
|
+
const double& epsf,
|
91
|
+
const double& epsx,
|
92
|
+
const int& maxits,
|
93
|
+
lmstate& state)
|
94
|
+
{
|
95
|
+
|
96
|
+
|
97
|
+
//
|
98
|
+
// Prepare RComm
|
99
|
+
//
|
100
|
+
state.rstate.ia.setbounds(0, 3);
|
101
|
+
state.rstate.ba.setbounds(0, 0);
|
102
|
+
state.rstate.ra.setbounds(0, 8);
|
103
|
+
state.rstate.stage = -1;
|
104
|
+
|
105
|
+
//
|
106
|
+
// prepare internal structures
|
107
|
+
//
|
108
|
+
lmprepare(n, 0, true, state);
|
109
|
+
|
110
|
+
//
|
111
|
+
// initialize, check parameters
|
112
|
+
//
|
113
|
+
state.xupdated = false;
|
114
|
+
state.n = n;
|
115
|
+
state.m = 0;
|
116
|
+
state.epsf = epsf;
|
117
|
+
state.epsx = epsx;
|
118
|
+
state.maxits = maxits;
|
119
|
+
state.flags = 0;
|
120
|
+
if( state.epsf==0&&state.epsx==0&&state.maxits==0 )
|
121
|
+
{
|
122
|
+
state.epsx = 1.0E-6;
|
123
|
+
}
|
124
|
+
state.usermode = lmmodefgh;
|
125
|
+
state.wrongparams = false;
|
126
|
+
if( n<1||epsf<0||epsx<0||maxits<0 )
|
127
|
+
{
|
128
|
+
state.wrongparams = true;
|
129
|
+
return;
|
130
|
+
}
|
131
|
+
ap::vmove(&state.x(0), &x(0), ap::vlen(0,n-1));
|
132
|
+
}
|
133
|
+
|
134
|
+
|
135
|
+
/*************************************************************************
|
136
|
+
LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
137
|
+
|
138
|
+
Optimization using function gradient and Jacobian. Algorithm - Levenberg-
|
139
|
+
Marquardt modification with L-BFGS pre-optimization and internal
|
140
|
+
pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
141
|
+
|
142
|
+
Function F is represented as sum of squares:
|
143
|
+
|
144
|
+
F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
145
|
+
|
146
|
+
EXAMPLE
|
147
|
+
|
148
|
+
See HTML-documentation.
|
149
|
+
|
150
|
+
INPUT PARAMETERS:
|
151
|
+
N - dimension, N>1
|
152
|
+
M - number of functions f[i]
|
153
|
+
X - initial solution, array[0..N-1]
|
154
|
+
EpsF - stopping criterion. Algorithm stops if
|
155
|
+
|F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
|
156
|
+
EpsX - stopping criterion. Algorithm stops if
|
157
|
+
|X(k+1)-X(k)| <= EpsX*(1+|X(k)|)
|
158
|
+
MaxIts - stopping criterion. Algorithm stops after MaxIts iterations.
|
159
|
+
MaxIts=0 means no stopping criterion.
|
160
|
+
|
161
|
+
�������� ���������:
|
162
|
+
State - structure which stores algorithm state between subsequent
|
163
|
+
calls of MinLMIteration. Used for reverse communication.
|
164
|
+
This structure should be passed to MinLMIteration subroutine.
|
165
|
+
|
166
|
+
See also MinLMIteration, MinLMResults.
|
167
|
+
|
168
|
+
NOTE
|
169
|
+
|
170
|
+
Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
|
171
|
+
stopping criterion selection (small EpsX).
|
172
|
+
|
173
|
+
-- ALGLIB --
|
174
|
+
Copyright 30.03.2009 by Bochkanov Sergey
|
175
|
+
*************************************************************************/
|
176
|
+
void minlmfgj(const int& n,
|
177
|
+
const int& m,
|
178
|
+
const ap::real_1d_array& x,
|
179
|
+
const double& epsf,
|
180
|
+
const double& epsx,
|
181
|
+
const int& maxits,
|
182
|
+
lmstate& state)
|
183
|
+
{
|
184
|
+
|
185
|
+
|
186
|
+
//
|
187
|
+
// Prepare RComm
|
188
|
+
//
|
189
|
+
state.rstate.ia.setbounds(0, 3);
|
190
|
+
state.rstate.ba.setbounds(0, 0);
|
191
|
+
state.rstate.ra.setbounds(0, 8);
|
192
|
+
state.rstate.stage = -1;
|
193
|
+
|
194
|
+
//
|
195
|
+
// prepare internal structures
|
196
|
+
//
|
197
|
+
lmprepare(n, m, true, state);
|
198
|
+
|
199
|
+
//
|
200
|
+
// initialize, check parameters
|
201
|
+
//
|
202
|
+
state.xupdated = false;
|
203
|
+
state.n = n;
|
204
|
+
state.m = m;
|
205
|
+
state.epsf = epsf;
|
206
|
+
state.epsx = epsx;
|
207
|
+
state.maxits = maxits;
|
208
|
+
state.flags = 0;
|
209
|
+
if( state.epsf==0&&state.epsx==0&&state.maxits==0 )
|
210
|
+
{
|
211
|
+
state.epsx = 1.0E-6;
|
212
|
+
}
|
213
|
+
state.usermode = lmmodefgj;
|
214
|
+
state.wrongparams = false;
|
215
|
+
if( n<1||m<1||epsf<0||epsx<0||maxits<0 )
|
216
|
+
{
|
217
|
+
state.wrongparams = true;
|
218
|
+
return;
|
219
|
+
}
|
220
|
+
ap::vmove(&state.x(0), &x(0), ap::vlen(0,n-1));
|
221
|
+
}
|
222
|
+
|
223
|
+
|
224
|
+
/*************************************************************************
|
225
|
+
CLASSIC LEVENBERG-MARQUARDT METHOD FOR NON-LINEAR OPTIMIZATION
|
226
|
+
|
227
|
+
Optimization using Jacobi matrix. Algorithm - classic Levenberg-Marquardt
|
228
|
+
method.
|
229
|
+
|
230
|
+
Function F is represented as sum of squares:
|
231
|
+
|
232
|
+
F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
233
|
+
|
234
|
+
EXAMPLE
|
235
|
+
|
236
|
+
See HTML-documentation.
|
237
|
+
|
238
|
+
INPUT PARAMETERS:
|
239
|
+
N - dimension, N>1
|
240
|
+
M - number of functions f[i]
|
241
|
+
X - initial solution, array[0..N-1]
|
242
|
+
EpsF - stopping criterion. Algorithm stops if
|
243
|
+
|F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
|
244
|
+
EpsX - stopping criterion. Algorithm stops if
|
245
|
+
|X(k+1)-X(k)| <= EpsX*(1+|X(k)|)
|
246
|
+
MaxIts - stopping criterion. Algorithm stops after MaxIts iterations.
|
247
|
+
MaxIts=0 means no stopping criterion.
|
248
|
+
|
249
|
+
�������� ���������:
|
250
|
+
State - structure which stores algorithm state between subsequent
|
251
|
+
calls of MinLMIteration. Used for reverse communication.
|
252
|
+
This structure should be passed to MinLMIteration subroutine.
|
253
|
+
|
254
|
+
See also MinLMIteration, MinLMResults.
|
255
|
+
|
256
|
+
NOTE
|
257
|
+
|
258
|
+
Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
|
259
|
+
stopping criterion selection (small EpsX).
|
260
|
+
|
261
|
+
-- ALGLIB --
|
262
|
+
Copyright 30.03.2009 by Bochkanov Sergey
|
263
|
+
*************************************************************************/
|
264
|
+
void minlmfj(const int& n,
|
265
|
+
const int& m,
|
266
|
+
const ap::real_1d_array& x,
|
267
|
+
const double& epsf,
|
268
|
+
const double& epsx,
|
269
|
+
const int& maxits,
|
270
|
+
lmstate& state)
|
271
|
+
{
|
272
|
+
|
273
|
+
|
274
|
+
//
|
275
|
+
// Prepare RComm
|
276
|
+
//
|
277
|
+
state.rstate.ia.setbounds(0, 3);
|
278
|
+
state.rstate.ba.setbounds(0, 0);
|
279
|
+
state.rstate.ra.setbounds(0, 8);
|
280
|
+
state.rstate.stage = -1;
|
281
|
+
|
282
|
+
//
|
283
|
+
// prepare internal structures
|
284
|
+
//
|
285
|
+
lmprepare(n, m, true, state);
|
286
|
+
|
287
|
+
//
|
288
|
+
// initialize, check parameters
|
289
|
+
//
|
290
|
+
state.xupdated = false;
|
291
|
+
state.n = n;
|
292
|
+
state.m = m;
|
293
|
+
state.epsf = epsf;
|
294
|
+
state.epsx = epsx;
|
295
|
+
state.maxits = maxits;
|
296
|
+
state.flags = 0;
|
297
|
+
if( state.epsf==0&&state.epsx==0&&state.maxits==0 )
|
298
|
+
{
|
299
|
+
state.epsx = 1.0E-6;
|
300
|
+
}
|
301
|
+
state.usermode = lmmodefj;
|
302
|
+
state.wrongparams = false;
|
303
|
+
if( n<1||m<1||epsf<0||epsx<0||maxits<0 )
|
304
|
+
{
|
305
|
+
state.wrongparams = true;
|
306
|
+
return;
|
307
|
+
}
|
308
|
+
ap::vmove(&state.x(0), &x(0), ap::vlen(0,n-1));
|
309
|
+
}
|
310
|
+
|
311
|
+
|
312
|
+
/*************************************************************************
|
313
|
+
One Levenberg-Marquardt iteration.
|
314
|
+
|
315
|
+
Called after inialization of State structure with MinLMXXX subroutine.
|
316
|
+
See HTML docs for examples.
|
317
|
+
|
318
|
+
Input parameters:
|
319
|
+
State - structure which stores algorithm state between subsequent
|
320
|
+
calls and which is used for reverse communication. Must be
|
321
|
+
initialized with MinLMXXX call first.
|
322
|
+
|
323
|
+
If subroutine returned False, iterative algorithm has converged.
|
324
|
+
|
325
|
+
If subroutine returned True, then:
|
326
|
+
* if State.NeedF=True, - function value F at State.X[0..N-1]
|
327
|
+
is required
|
328
|
+
* if State.NeedFG=True - function value F and gradient G
|
329
|
+
are required
|
330
|
+
* if State.NeedFiJ=True - function vector f[i] and Jacobi matrix J
|
331
|
+
are required
|
332
|
+
* if State.NeedFGH=True - function value F, gradient G and Hesian H
|
333
|
+
are required
|
334
|
+
|
335
|
+
One and only one of this fields can be set at time.
|
336
|
+
|
337
|
+
Results are stored:
|
338
|
+
* function value - in LMState.F
|
339
|
+
* gradient - in LMState.G[0..N-1]
|
340
|
+
* Jacobi matrix - in LMState.J[0..M-1,0..N-1]
|
341
|
+
* Hessian - in LMState.H[0..N-1,0..N-1]
|
342
|
+
|
343
|
+
-- ALGLIB --
|
344
|
+
Copyright 10.03.2009 by Bochkanov Sergey
|
345
|
+
*************************************************************************/
|
346
|
+
bool minlmiteration(lmstate& state)
|
347
|
+
{
|
348
|
+
bool result;
|
349
|
+
int n;
|
350
|
+
int m;
|
351
|
+
int i;
|
352
|
+
double xnorm;
|
353
|
+
double stepnorm;
|
354
|
+
bool spd;
|
355
|
+
double fbase;
|
356
|
+
double fnew;
|
357
|
+
double lambda;
|
358
|
+
double nu;
|
359
|
+
double lambdaup;
|
360
|
+
double lambdadown;
|
361
|
+
int lbfgsflags;
|
362
|
+
double v;
|
363
|
+
|
364
|
+
|
365
|
+
//
|
366
|
+
// Reverse communication preparations
|
367
|
+
// I know it looks ugly, but it works the same way
|
368
|
+
// anywhere from C++ to Python.
|
369
|
+
//
|
370
|
+
// This code initializes locals by:
|
371
|
+
// * random values determined during code
|
372
|
+
// generation - on first subroutine call
|
373
|
+
// * values from previous call - on subsequent calls
|
374
|
+
//
|
375
|
+
if( state.rstate.stage>=0 )
|
376
|
+
{
|
377
|
+
n = state.rstate.ia(0);
|
378
|
+
m = state.rstate.ia(1);
|
379
|
+
i = state.rstate.ia(2);
|
380
|
+
lbfgsflags = state.rstate.ia(3);
|
381
|
+
spd = state.rstate.ba(0);
|
382
|
+
xnorm = state.rstate.ra(0);
|
383
|
+
stepnorm = state.rstate.ra(1);
|
384
|
+
fbase = state.rstate.ra(2);
|
385
|
+
fnew = state.rstate.ra(3);
|
386
|
+
lambda = state.rstate.ra(4);
|
387
|
+
nu = state.rstate.ra(5);
|
388
|
+
lambdaup = state.rstate.ra(6);
|
389
|
+
lambdadown = state.rstate.ra(7);
|
390
|
+
v = state.rstate.ra(8);
|
391
|
+
}
|
392
|
+
else
|
393
|
+
{
|
394
|
+
n = -983;
|
395
|
+
m = -989;
|
396
|
+
i = -834;
|
397
|
+
lbfgsflags = 900;
|
398
|
+
spd = true;
|
399
|
+
xnorm = 364;
|
400
|
+
stepnorm = 214;
|
401
|
+
fbase = -338;
|
402
|
+
fnew = -686;
|
403
|
+
lambda = 912;
|
404
|
+
nu = 585;
|
405
|
+
lambdaup = 497;
|
406
|
+
lambdadown = -271;
|
407
|
+
v = -581;
|
408
|
+
}
|
409
|
+
if( state.rstate.stage==0 )
|
410
|
+
{
|
411
|
+
goto lbl_0;
|
412
|
+
}
|
413
|
+
if( state.rstate.stage==1 )
|
414
|
+
{
|
415
|
+
goto lbl_1;
|
416
|
+
}
|
417
|
+
if( state.rstate.stage==2 )
|
418
|
+
{
|
419
|
+
goto lbl_2;
|
420
|
+
}
|
421
|
+
if( state.rstate.stage==3 )
|
422
|
+
{
|
423
|
+
goto lbl_3;
|
424
|
+
}
|
425
|
+
if( state.rstate.stage==4 )
|
426
|
+
{
|
427
|
+
goto lbl_4;
|
428
|
+
}
|
429
|
+
if( state.rstate.stage==5 )
|
430
|
+
{
|
431
|
+
goto lbl_5;
|
432
|
+
}
|
433
|
+
if( state.rstate.stage==6 )
|
434
|
+
{
|
435
|
+
goto lbl_6;
|
436
|
+
}
|
437
|
+
|
438
|
+
//
|
439
|
+
// Routine body
|
440
|
+
//
|
441
|
+
ap::ap_error::make_assertion(state.usermode==lmmodefj||state.usermode==lmmodefgj||state.usermode==lmmodefgh, "LM: internal error");
|
442
|
+
if( state.wrongparams )
|
443
|
+
{
|
444
|
+
state.repterminationtype = -1;
|
445
|
+
result = false;
|
446
|
+
return result;
|
447
|
+
}
|
448
|
+
|
449
|
+
//
|
450
|
+
// prepare params
|
451
|
+
//
|
452
|
+
n = state.n;
|
453
|
+
m = state.m;
|
454
|
+
lambdaup = 10;
|
455
|
+
lambdadown = 0.3;
|
456
|
+
nu = 2;
|
457
|
+
lbfgsflags = 0;
|
458
|
+
|
459
|
+
//
|
460
|
+
// if we have F and G
|
461
|
+
//
|
462
|
+
if( !((state.usermode==lmmodefgj||state.usermode==lmmodefgh)&&state.flags/lmflagnoprelbfgs%2==0) )
|
463
|
+
{
|
464
|
+
goto lbl_7;
|
465
|
+
}
|
466
|
+
|
467
|
+
//
|
468
|
+
// First stage of the hybrid algorithm: LBFGS
|
469
|
+
//
|
470
|
+
minlbfgs(n, ap::minint(n, lmprelbfgsm), state.x, 0.0, 0.0, 0.0, ap::maxint(25, n), 0, state.internalstate);
|
471
|
+
lbl_9:
|
472
|
+
if( !minlbfgsiteration(state.internalstate) )
|
473
|
+
{
|
474
|
+
goto lbl_10;
|
475
|
+
}
|
476
|
+
|
477
|
+
//
|
478
|
+
// RComm
|
479
|
+
//
|
480
|
+
ap::vmove(&state.x(0), &state.internalstate.x(0), ap::vlen(0,n-1));
|
481
|
+
lmclearrequestfields(state);
|
482
|
+
state.needfg = true;
|
483
|
+
state.rstate.stage = 0;
|
484
|
+
goto lbl_rcomm;
|
485
|
+
lbl_0:
|
486
|
+
state.repnfunc = state.repnfunc+1;
|
487
|
+
state.repngrad = state.repngrad+1;
|
488
|
+
|
489
|
+
//
|
490
|
+
// Call LBFGS
|
491
|
+
//
|
492
|
+
state.internalstate.f = state.f;
|
493
|
+
ap::vmove(&state.internalstate.g(0), &state.g(0), ap::vlen(0,n-1));
|
494
|
+
goto lbl_9;
|
495
|
+
lbl_10:
|
496
|
+
minlbfgsresults(state.internalstate, state.x, state.internalrep);
|
497
|
+
lbl_7:
|
498
|
+
|
499
|
+
//
|
500
|
+
// Second stage of the hybrid algorithm: LM
|
501
|
+
// Initialize quadratic model.
|
502
|
+
//
|
503
|
+
if( state.usermode!=lmmodefgh )
|
504
|
+
{
|
505
|
+
goto lbl_11;
|
506
|
+
}
|
507
|
+
|
508
|
+
//
|
509
|
+
// RComm
|
510
|
+
//
|
511
|
+
lmclearrequestfields(state);
|
512
|
+
state.needfgh = true;
|
513
|
+
state.rstate.stage = 1;
|
514
|
+
goto lbl_rcomm;
|
515
|
+
lbl_1:
|
516
|
+
state.repnfunc = state.repnfunc+1;
|
517
|
+
state.repngrad = state.repngrad+1;
|
518
|
+
state.repnhess = state.repnhess+1;
|
519
|
+
|
520
|
+
//
|
521
|
+
// generate raw quadratic model
|
522
|
+
//
|
523
|
+
for(i = 0; i <= n-1; i++)
|
524
|
+
{
|
525
|
+
ap::vmove(&state.rawmodel(i, 0), &state.h(i, 0), ap::vlen(0,n-1));
|
526
|
+
}
|
527
|
+
ap::vmove(&state.gbase(0), &state.g(0), ap::vlen(0,n-1));
|
528
|
+
fbase = state.f;
|
529
|
+
lbl_11:
|
530
|
+
if( !(state.usermode==lmmodefgj||state.usermode==lmmodefj) )
|
531
|
+
{
|
532
|
+
goto lbl_13;
|
533
|
+
}
|
534
|
+
|
535
|
+
//
|
536
|
+
// RComm
|
537
|
+
//
|
538
|
+
lmclearrequestfields(state);
|
539
|
+
state.needfij = true;
|
540
|
+
state.rstate.stage = 2;
|
541
|
+
goto lbl_rcomm;
|
542
|
+
lbl_2:
|
543
|
+
state.repnfunc = state.repnfunc+1;
|
544
|
+
state.repnjac = state.repnjac+1;
|
545
|
+
|
546
|
+
//
|
547
|
+
// generate raw quadratic model
|
548
|
+
//
|
549
|
+
matrixmatrixmultiply(state.j, 0, m-1, 0, n-1, true, state.j, 0, m-1, 0, n-1, false, 1.0, state.rawmodel, 0, n-1, 0, n-1, 0.0, state.work);
|
550
|
+
matrixvectormultiply(state.j, 0, m-1, 0, n-1, true, state.fi, 0, m-1, 1.0, state.gbase, 0, n-1, 0.0);
|
551
|
+
fbase = ap::vdotproduct(&state.fi(0), &state.fi(0), ap::vlen(0,m-1));
|
552
|
+
lbl_13:
|
553
|
+
lambda = 0.001;
|
554
|
+
lbl_15:
|
555
|
+
if( false )
|
556
|
+
{
|
557
|
+
goto lbl_16;
|
558
|
+
}
|
559
|
+
|
560
|
+
//
|
561
|
+
// 1. Model = RawModel+lambda*I
|
562
|
+
// 2. Try to solve (RawModel+Lambda*I)*dx = -g.
|
563
|
+
// Increase lambda if left part is not positive definite.
|
564
|
+
//
|
565
|
+
for(i = 0; i <= n-1; i++)
|
566
|
+
{
|
567
|
+
ap::vmove(&state.model(i, 0), &state.rawmodel(i, 0), ap::vlen(0,n-1));
|
568
|
+
state.model(i,i) = state.model(i,i)+lambda;
|
569
|
+
}
|
570
|
+
spd = spdmatrixcholesky(state.model, n, true);
|
571
|
+
state.repncholesky = state.repncholesky+1;
|
572
|
+
if( !spd )
|
573
|
+
{
|
574
|
+
lambda = lambda*lambdaup*nu;
|
575
|
+
nu = nu*2;
|
576
|
+
goto lbl_15;
|
577
|
+
}
|
578
|
+
if( !spdmatrixcholeskysolve(state.model, state.gbase, n, true, state.xdir) )
|
579
|
+
{
|
580
|
+
lambda = lambda*lambdaup*nu;
|
581
|
+
nu = nu*2;
|
582
|
+
goto lbl_15;
|
583
|
+
}
|
584
|
+
ap::vmul(&state.xdir(0), ap::vlen(0,n-1), -1);
|
585
|
+
|
586
|
+
//
|
587
|
+
// Candidate lambda found.
|
588
|
+
// 1. Save old w in WBase
|
589
|
+
// 1. Test some stopping criterions
|
590
|
+
// 2. If error(w+wdir)>error(w), increase lambda
|
591
|
+
//
|
592
|
+
ap::vmove(&state.xbase(0), &state.x(0), ap::vlen(0,n-1));
|
593
|
+
ap::vadd(&state.x(0), &state.xdir(0), ap::vlen(0,n-1));
|
594
|
+
xnorm = ap::vdotproduct(&state.xbase(0), &state.xbase(0), ap::vlen(0,n-1));
|
595
|
+
stepnorm = ap::vdotproduct(&state.xdir(0), &state.xdir(0), ap::vlen(0,n-1));
|
596
|
+
xnorm = sqrt(xnorm);
|
597
|
+
stepnorm = sqrt(stepnorm);
|
598
|
+
if( stepnorm<=state.epsx*(1+xnorm) )
|
599
|
+
{
|
600
|
+
|
601
|
+
//
|
602
|
+
// step size if small enough
|
603
|
+
//
|
604
|
+
state.repterminationtype = 2;
|
605
|
+
goto lbl_16;
|
606
|
+
}
|
607
|
+
lmclearrequestfields(state);
|
608
|
+
state.needf = true;
|
609
|
+
state.rstate.stage = 3;
|
610
|
+
goto lbl_rcomm;
|
611
|
+
lbl_3:
|
612
|
+
state.repnfunc = state.repnfunc+1;
|
613
|
+
fnew = state.f;
|
614
|
+
if( fabs(fnew-fbase)<=state.epsf*ap::maxreal(double(1), ap::maxreal(fabs(fbase), fabs(fnew))) )
|
615
|
+
{
|
616
|
+
|
617
|
+
//
|
618
|
+
// function change is small enough
|
619
|
+
//
|
620
|
+
state.repterminationtype = 1;
|
621
|
+
goto lbl_16;
|
622
|
+
}
|
623
|
+
if( fnew>fbase )
|
624
|
+
{
|
625
|
+
|
626
|
+
//
|
627
|
+
// restore state and continue out search for lambda
|
628
|
+
//
|
629
|
+
ap::vmove(&state.x(0), &state.xbase(0), ap::vlen(0,n-1));
|
630
|
+
lambda = lambda*lambdaup*nu;
|
631
|
+
nu = nu*2;
|
632
|
+
goto lbl_15;
|
633
|
+
}
|
634
|
+
if( !((state.usermode==lmmodefgj||state.usermode==lmmodefgh)&&state.flags/lmflagnointlbfgs%2==0) )
|
635
|
+
{
|
636
|
+
goto lbl_17;
|
637
|
+
}
|
638
|
+
ap::ap_error::make_assertion(state.usermode==lmmodefgh, "");
|
639
|
+
|
640
|
+
//
|
641
|
+
// Optimize using inv(cholesky(H)) as preconditioner
|
642
|
+
//
|
643
|
+
if( !rmatrixtrinverse(state.model, n, true, false) )
|
644
|
+
{
|
645
|
+
goto lbl_19;
|
646
|
+
}
|
647
|
+
|
648
|
+
//
|
649
|
+
// if matrix can be inverted use it.
|
650
|
+
// just silently move to next iteration otherwise.
|
651
|
+
// (will be very, very rare, mostly for specially
|
652
|
+
// designed near-degenerate tasks)
|
653
|
+
//
|
654
|
+
ap::vmove(&state.xbase(0), &state.x(0), ap::vlen(0,n-1));
|
655
|
+
for(i = 0; i <= n-1; i++)
|
656
|
+
{
|
657
|
+
state.xprec(i) = 0;
|
658
|
+
}
|
659
|
+
minlbfgs(n, ap::minint(n, lmintlbfgsits), state.xprec, 0.0, 0.0, 0.0, lmintlbfgsits, lbfgsflags, state.internalstate);
|
660
|
+
lbl_21:
|
661
|
+
if( !minlbfgsiteration(state.internalstate) )
|
662
|
+
{
|
663
|
+
goto lbl_22;
|
664
|
+
}
|
665
|
+
|
666
|
+
//
|
667
|
+
// convert XPrec to unpreconditioned form, then call RComm.
|
668
|
+
//
|
669
|
+
for(i = 0; i <= n-1; i++)
|
670
|
+
{
|
671
|
+
v = ap::vdotproduct(&state.internalstate.x(i), &state.model(i, i), ap::vlen(i,n-1));
|
672
|
+
state.x(i) = state.xbase(i)+v;
|
673
|
+
}
|
674
|
+
lmclearrequestfields(state);
|
675
|
+
state.needfg = true;
|
676
|
+
state.rstate.stage = 4;
|
677
|
+
goto lbl_rcomm;
|
678
|
+
lbl_4:
|
679
|
+
state.repnfunc = state.repnfunc+1;
|
680
|
+
state.repngrad = state.repngrad+1;
|
681
|
+
|
682
|
+
//
|
683
|
+
// 1. pass State.F to State.InternalState.F
|
684
|
+
// 2. convert gradient back to preconditioned form
|
685
|
+
//
|
686
|
+
state.internalstate.f = state.f;
|
687
|
+
for(i = 0; i <= n-1; i++)
|
688
|
+
{
|
689
|
+
state.internalstate.g(i) = 0;
|
690
|
+
}
|
691
|
+
for(i = 0; i <= n-1; i++)
|
692
|
+
{
|
693
|
+
v = state.g(i);
|
694
|
+
ap::vadd(&state.internalstate.g(i), &state.model(i, i), ap::vlen(i,n-1), v);
|
695
|
+
}
|
696
|
+
|
697
|
+
//
|
698
|
+
// next iteration
|
699
|
+
//
|
700
|
+
goto lbl_21;
|
701
|
+
lbl_22:
|
702
|
+
|
703
|
+
//
|
704
|
+
// change LBFGS flags to NoRealloc.
|
705
|
+
// L-BFGS subroutine will use memory allocated from previous run.
|
706
|
+
// it is possible since all subsequent calls will be with same N/M.
|
707
|
+
//
|
708
|
+
lbfgsflags = lbfgsnorealloc;
|
709
|
+
|
710
|
+
//
|
711
|
+
// back to unpreconditioned X
|
712
|
+
//
|
713
|
+
minlbfgsresults(state.internalstate, state.xprec, state.internalrep);
|
714
|
+
for(i = 0; i <= n-1; i++)
|
715
|
+
{
|
716
|
+
v = ap::vdotproduct(&state.xprec(i), &state.model(i, i), ap::vlen(i,n-1));
|
717
|
+
state.x(i) = state.xbase(i)+v;
|
718
|
+
}
|
719
|
+
lbl_19:
|
720
|
+
lbl_17:
|
721
|
+
|
722
|
+
//
|
723
|
+
// Accept new position.
|
724
|
+
// Calculate Hessian
|
725
|
+
//
|
726
|
+
if( state.usermode!=lmmodefgh )
|
727
|
+
{
|
728
|
+
goto lbl_23;
|
729
|
+
}
|
730
|
+
|
731
|
+
//
|
732
|
+
// RComm
|
733
|
+
//
|
734
|
+
lmclearrequestfields(state);
|
735
|
+
state.needfgh = true;
|
736
|
+
state.rstate.stage = 5;
|
737
|
+
goto lbl_rcomm;
|
738
|
+
lbl_5:
|
739
|
+
state.repnfunc = state.repnfunc+1;
|
740
|
+
state.repngrad = state.repngrad+1;
|
741
|
+
state.repnhess = state.repnhess+1;
|
742
|
+
|
743
|
+
//
|
744
|
+
// Update raw quadratic model
|
745
|
+
//
|
746
|
+
for(i = 0; i <= n-1; i++)
|
747
|
+
{
|
748
|
+
ap::vmove(&state.rawmodel(i, 0), &state.h(i, 0), ap::vlen(0,n-1));
|
749
|
+
}
|
750
|
+
ap::vmove(&state.gbase(0), &state.g(0), ap::vlen(0,n-1));
|
751
|
+
fbase = state.f;
|
752
|
+
lbl_23:
|
753
|
+
if( !(state.usermode==lmmodefgj||state.usermode==lmmodefj) )
|
754
|
+
{
|
755
|
+
goto lbl_25;
|
756
|
+
}
|
757
|
+
|
758
|
+
//
|
759
|
+
// RComm
|
760
|
+
//
|
761
|
+
lmclearrequestfields(state);
|
762
|
+
state.needfij = true;
|
763
|
+
state.rstate.stage = 6;
|
764
|
+
goto lbl_rcomm;
|
765
|
+
lbl_6:
|
766
|
+
state.repnfunc = state.repnfunc+1;
|
767
|
+
state.repnjac = state.repnjac+1;
|
768
|
+
|
769
|
+
//
|
770
|
+
// generate raw quadratic model
|
771
|
+
//
|
772
|
+
matrixmatrixmultiply(state.j, 0, m-1, 0, n-1, true, state.j, 0, m-1, 0, n-1, false, 1.0, state.rawmodel, 0, n-1, 0, n-1, 0.0, state.work);
|
773
|
+
matrixvectormultiply(state.j, 0, m-1, 0, n-1, true, state.fi, 0, m-1, 1.0, state.gbase, 0, n-1, 0.0);
|
774
|
+
fbase = ap::vdotproduct(&state.fi(0), &state.fi(0), ap::vlen(0,m-1));
|
775
|
+
lbl_25:
|
776
|
+
state.repiterationscount = state.repiterationscount+1;
|
777
|
+
if( state.repiterationscount>=state.maxits&&state.maxits>0 )
|
778
|
+
{
|
779
|
+
state.repterminationtype = 5;
|
780
|
+
goto lbl_16;
|
781
|
+
}
|
782
|
+
|
783
|
+
//
|
784
|
+
// Update lambda
|
785
|
+
//
|
786
|
+
lambda = lambda*lambdadown;
|
787
|
+
nu = 2;
|
788
|
+
goto lbl_15;
|
789
|
+
lbl_16:
|
790
|
+
result = false;
|
791
|
+
return result;
|
792
|
+
|
793
|
+
//
|
794
|
+
// Saving state
|
795
|
+
//
|
796
|
+
lbl_rcomm:
|
797
|
+
result = true;
|
798
|
+
state.rstate.ia(0) = n;
|
799
|
+
state.rstate.ia(1) = m;
|
800
|
+
state.rstate.ia(2) = i;
|
801
|
+
state.rstate.ia(3) = lbfgsflags;
|
802
|
+
state.rstate.ba(0) = spd;
|
803
|
+
state.rstate.ra(0) = xnorm;
|
804
|
+
state.rstate.ra(1) = stepnorm;
|
805
|
+
state.rstate.ra(2) = fbase;
|
806
|
+
state.rstate.ra(3) = fnew;
|
807
|
+
state.rstate.ra(4) = lambda;
|
808
|
+
state.rstate.ra(5) = nu;
|
809
|
+
state.rstate.ra(6) = lambdaup;
|
810
|
+
state.rstate.ra(7) = lambdadown;
|
811
|
+
state.rstate.ra(8) = v;
|
812
|
+
return result;
|
813
|
+
}
|
814
|
+
|
815
|
+
|
816
|
+
/*************************************************************************
|
817
|
+
Levenberg-Marquardt algorithm results
|
818
|
+
|
819
|
+
Called after MinLMIteration returned False.
|
820
|
+
|
821
|
+
Input parameters:
|
822
|
+
State - algorithm state (used by MinLMIteration).
|
823
|
+
|
824
|
+
Output parameters:
|
825
|
+
X - array[0..N-1], solution
|
826
|
+
Rep - optimization report:
|
827
|
+
* Rep.TerminationType completetion code:
|
828
|
+
* -1 incorrect parameters were specified
|
829
|
+
* 1 relative function improvement is no more than
|
830
|
+
EpsF.
|
831
|
+
* 2 relative step is no more than EpsX.
|
832
|
+
* 4 gradient norm is no more than EpsG
|
833
|
+
* 5 MaxIts steps was taken
|
834
|
+
* Rep.IterationsCount contains iterations count
|
835
|
+
* Rep.NFunc - number of function calculations
|
836
|
+
* Rep.NJac - number of Jacobi matrix calculations
|
837
|
+
* Rep.NGrad - number of gradient calculations
|
838
|
+
* Rep.NHess - number of Hessian calculations
|
839
|
+
* Rep.NCholesky - number of Cholesky decomposition calculations
|
840
|
+
|
841
|
+
-- ALGLIB --
|
842
|
+
Copyright 10.03.2009 by Bochkanov Sergey
|
843
|
+
*************************************************************************/
|
844
|
+
void minlmresults(const lmstate& state, ap::real_1d_array& x, lmreport& rep)
|
845
|
+
{
|
846
|
+
|
847
|
+
x.setbounds(0, state.n-1);
|
848
|
+
ap::vmove(&x(0), &state.x(0), ap::vlen(0,state.n-1));
|
849
|
+
rep.iterationscount = state.repiterationscount;
|
850
|
+
rep.terminationtype = state.repterminationtype;
|
851
|
+
rep.nfunc = state.repnfunc;
|
852
|
+
rep.njac = state.repnjac;
|
853
|
+
rep.ngrad = state.repngrad;
|
854
|
+
rep.nhess = state.repnhess;
|
855
|
+
rep.ncholesky = state.repncholesky;
|
856
|
+
}
|
857
|
+
|
858
|
+
|
859
|
+
/*************************************************************************
|
860
|
+
Prepare internal structures (except for RComm).
|
861
|
+
|
862
|
+
Note: M must be zero for FGH mode, non-zero for FJ/FGJ mode.
|
863
|
+
*************************************************************************/
|
864
|
+
static void lmprepare(int n, int m, bool havegrad, lmstate& state)
|
865
|
+
{
|
866
|
+
|
867
|
+
state.repiterationscount = 0;
|
868
|
+
state.repterminationtype = 0;
|
869
|
+
state.repnfunc = 0;
|
870
|
+
state.repnjac = 0;
|
871
|
+
state.repngrad = 0;
|
872
|
+
state.repnhess = 0;
|
873
|
+
state.repncholesky = 0;
|
874
|
+
if( n<0||m<0 )
|
875
|
+
{
|
876
|
+
return;
|
877
|
+
}
|
878
|
+
if( havegrad )
|
879
|
+
{
|
880
|
+
state.g.setbounds(0, n-1);
|
881
|
+
}
|
882
|
+
if( m!=0 )
|
883
|
+
{
|
884
|
+
state.j.setbounds(0, m-1, 0, n-1);
|
885
|
+
state.fi.setbounds(0, m-1);
|
886
|
+
state.h.setbounds(0, 0, 0, 0);
|
887
|
+
}
|
888
|
+
else
|
889
|
+
{
|
890
|
+
state.j.setbounds(0, 0, 0, 0);
|
891
|
+
state.fi.setbounds(0, 0);
|
892
|
+
state.h.setbounds(0, n-1, 0, n-1);
|
893
|
+
}
|
894
|
+
state.x.setbounds(0, n-1);
|
895
|
+
state.rawmodel.setbounds(0, n-1, 0, n-1);
|
896
|
+
state.model.setbounds(0, n-1, 0, n-1);
|
897
|
+
state.xbase.setbounds(0, n-1);
|
898
|
+
state.xprec.setbounds(0, n-1);
|
899
|
+
state.gbase.setbounds(0, n-1);
|
900
|
+
state.xdir.setbounds(0, n-1);
|
901
|
+
state.work.setbounds(1, ap::maxint(n, m));
|
902
|
+
}
|
903
|
+
|
904
|
+
|
905
|
+
/*************************************************************************
|
906
|
+
Clears request fileds (to be sure that we don't forgot to clear something)
|
907
|
+
*************************************************************************/
|
908
|
+
static void lmclearrequestfields(lmstate& state)
|
909
|
+
{
|
910
|
+
|
911
|
+
state.needf = false;
|
912
|
+
state.needfg = false;
|
913
|
+
state.needfgh = false;
|
914
|
+
state.needfij = false;
|
915
|
+
}
|
916
|
+
|
917
|
+
|
918
|
+
|