alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/ldlt.h
ADDED
@@ -0,0 +1,124 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _ldlt_h
|
40
|
+
#define _ldlt_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
/*************************************************************************
|
46
|
+
LDLTDecomposition of a symmetric matrix
|
47
|
+
|
48
|
+
The algorithm represents a symmetric matrix (which is not necessarily
|
49
|
+
positive definite) as A=L*D*L' or A = U*D*U', where D is a block-diagonal
|
50
|
+
matrix with blocks 1x1 or 2x2, matrix L (matrix U) is a product of lower
|
51
|
+
(upper) triangular matrices with unit diagonal and permutation matrices.
|
52
|
+
|
53
|
+
Input parameters:
|
54
|
+
A - factorized matrix, array with elements [0..N-1, 0..N-1].
|
55
|
+
If IsUpper � True, then the upper triangle contains
|
56
|
+
elements of symmetric matrix A, and the lower triangle is
|
57
|
+
not used.
|
58
|
+
The same applies if IsUpper = False.
|
59
|
+
N - size of factorized matrix.
|
60
|
+
IsUpper - parameter which shows a method of matrix definition (lower
|
61
|
+
or upper triangle).
|
62
|
+
|
63
|
+
Output parameters:
|
64
|
+
A - matrices D and U, if IsUpper = True, or L, if IsUpper = False,
|
65
|
+
in compact form, replacing the upper (lower) triangle of
|
66
|
+
matrix A. In that case, the elements under (over) the main
|
67
|
+
diagonal are not used nor modified.
|
68
|
+
Pivots - tables of performed permutations (see below).
|
69
|
+
|
70
|
+
If IsUpper = True, then A = U*D*U', U = P(n)*U(n)*...*P(k)*U(k), where
|
71
|
+
P(k) is the permutation matrix, U(k) - upper triangular matrix with its
|
72
|
+
unit main diagonal and k decreases from n with step s which is equal to
|
73
|
+
1 or 2 (according to the size of the blocks of matrix D).
|
74
|
+
|
75
|
+
( I v 0 ) k-s+1
|
76
|
+
U(k) = ( 0 I 0 ) s
|
77
|
+
( 0 0 I ) n-k-1
|
78
|
+
k-s+1 s n-k-1
|
79
|
+
|
80
|
+
If Pivots[k]>=0, then s=1, P(k) - permutation of rows k and Pivots[k], the
|
81
|
+
vectorv forming matrix U(k) is stored in elements A(0:k-1,k), D(k) replaces
|
82
|
+
A(k,k). If Pivots[k]=Pivots[k-1]<0 then s=2, P(k) - permutation of rows k-1
|
83
|
+
and N+Pivots[k-1], the vector v forming matrix U(k) is stored in elements
|
84
|
+
A(0:k-1,k:k+1), the upper triangle of block D(k) is stored in A(k,k),
|
85
|
+
A(k,k+1) and A(k+1,k+1).
|
86
|
+
|
87
|
+
If IsUpper = False, then A = L*D*L', L=P(0)*L(0)*...*P(k)*L(k), where P(k)
|
88
|
+
is the permutation matrix, L(k) � lower triangular matrix with unit main
|
89
|
+
diagonal and k decreases from 1 with step s which is equal to 1 or 2
|
90
|
+
(according to the size of the blocks of matrix D).
|
91
|
+
|
92
|
+
( I 0 0 ) k-1
|
93
|
+
L(k) = ( 0 I 0 ) s
|
94
|
+
( 0 v I ) n-k-s+1
|
95
|
+
k-1 s n-k-s+1
|
96
|
+
|
97
|
+
If Pivots[k]>=0 then s=1, P(k) � permutation of rows k and Pivots[k], the
|
98
|
+
vector v forming matrix L(k) is stored in elements A(k+1:n-1,k), D(k)
|
99
|
+
replaces A(k,k). If Pivots[k]=Pivots[k+1]<0 then s=2, P(k) - permutation
|
100
|
+
of rows k+1 and N+Pivots[k+1], the vector v forming matrix L(k) is stored
|
101
|
+
in elements A(k+2:n-1,k:k+1), the lower triangle of block D(k) is stored in
|
102
|
+
A(k,k), A(k+1,k) and A(k+1,k+1).
|
103
|
+
|
104
|
+
-- LAPACK routine (version 3.0) --
|
105
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
106
|
+
Courant Institute, Argonne National Lab, and Rice University
|
107
|
+
June 30, 1999
|
108
|
+
*************************************************************************/
|
109
|
+
void smatrixldlt(ap::real_2d_array& a,
|
110
|
+
int n,
|
111
|
+
bool isupper,
|
112
|
+
ap::integer_1d_array& pivots);
|
113
|
+
|
114
|
+
|
115
|
+
/*************************************************************************
|
116
|
+
Obsolete subroutine.
|
117
|
+
*************************************************************************/
|
118
|
+
void ldltdecomposition(ap::real_2d_array& a,
|
119
|
+
int n,
|
120
|
+
bool isupper,
|
121
|
+
ap::integer_1d_array& pivots);
|
122
|
+
|
123
|
+
|
124
|
+
#endif
|
@@ -0,0 +1,1252 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2006-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "leastsquares.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Weighted approximation by arbitrary function basis in a space of arbitrary
|
38
|
+
dimension using linear least squares method.
|
39
|
+
|
40
|
+
Input parameters:
|
41
|
+
Y - array[0..N-1]
|
42
|
+
It contains a set of function values in N points. Space
|
43
|
+
dimension and points don't matter. Procedure works with
|
44
|
+
function values in these points and values of basis functions
|
45
|
+
only.
|
46
|
+
|
47
|
+
W - array[0..N-1]
|
48
|
+
It contains weights corresponding to function values. Each
|
49
|
+
summand in square sum of approximation deviations from given
|
50
|
+
values is multiplied by the square of corresponding weight.
|
51
|
+
|
52
|
+
FMatrix-a table of basis functions values, array[0..N-1, 0..M-1].
|
53
|
+
FMatrix[I, J] - value of J-th basis function in I-th point.
|
54
|
+
|
55
|
+
N - number of points used. N>=1.
|
56
|
+
M - number of basis functions, M>=1.
|
57
|
+
|
58
|
+
Output parameters:
|
59
|
+
C - decomposition coefficients.
|
60
|
+
Array of real numbers whose index goes from 0 to M-1.
|
61
|
+
C[j] - j-th basis function coefficient.
|
62
|
+
|
63
|
+
-- ALGLIB --
|
64
|
+
Copyright by Bochkanov Sergey
|
65
|
+
*************************************************************************/
|
66
|
+
void buildgeneralleastsquares(const ap::real_1d_array& y,
|
67
|
+
const ap::real_1d_array& w,
|
68
|
+
const ap::real_2d_array& fmatrix,
|
69
|
+
int n,
|
70
|
+
int m,
|
71
|
+
ap::real_1d_array& c)
|
72
|
+
{
|
73
|
+
int i;
|
74
|
+
int j;
|
75
|
+
ap::real_2d_array a;
|
76
|
+
ap::real_2d_array q;
|
77
|
+
ap::real_2d_array vt;
|
78
|
+
ap::real_1d_array b;
|
79
|
+
ap::real_1d_array tau;
|
80
|
+
ap::real_2d_array b2;
|
81
|
+
ap::real_1d_array tauq;
|
82
|
+
ap::real_1d_array taup;
|
83
|
+
ap::real_1d_array d;
|
84
|
+
ap::real_1d_array e;
|
85
|
+
bool isuppera;
|
86
|
+
int mi;
|
87
|
+
int ni;
|
88
|
+
double v;
|
89
|
+
|
90
|
+
mi = n;
|
91
|
+
ni = m;
|
92
|
+
c.setbounds(0, ni-1);
|
93
|
+
|
94
|
+
//
|
95
|
+
// Initialize design matrix.
|
96
|
+
// Here we are making MI>=NI.
|
97
|
+
//
|
98
|
+
a.setbounds(1, ni, 1, ap::maxint(mi, ni));
|
99
|
+
b.setbounds(1, ap::maxint(mi, ni));
|
100
|
+
for(i = 1; i <= mi; i++)
|
101
|
+
{
|
102
|
+
b(i) = w(i-1)*y(i-1);
|
103
|
+
}
|
104
|
+
for(i = mi+1; i <= ni; i++)
|
105
|
+
{
|
106
|
+
b(i) = 0;
|
107
|
+
}
|
108
|
+
for(j = 1; j <= ni; j++)
|
109
|
+
{
|
110
|
+
ap::vmove(a.getrow(j, 1, mi), fmatrix.getcolumn(j-1, 0, mi-1));
|
111
|
+
}
|
112
|
+
for(j = 1; j <= ni; j++)
|
113
|
+
{
|
114
|
+
for(i = mi+1; i <= ni; i++)
|
115
|
+
{
|
116
|
+
a(j,i) = 0;
|
117
|
+
}
|
118
|
+
}
|
119
|
+
for(j = 1; j <= ni; j++)
|
120
|
+
{
|
121
|
+
for(i = 1; i <= mi; i++)
|
122
|
+
{
|
123
|
+
a(j,i) = a(j,i)*w(i-1);
|
124
|
+
}
|
125
|
+
}
|
126
|
+
mi = ap::maxint(mi, ni);
|
127
|
+
|
128
|
+
//
|
129
|
+
// LQ-decomposition of A'
|
130
|
+
// B2 := Q*B
|
131
|
+
//
|
132
|
+
lqdecomposition(a, ni, mi, tau);
|
133
|
+
unpackqfromlq(a, ni, mi, tau, ni, q);
|
134
|
+
b2.setbounds(1, 1, 1, ni);
|
135
|
+
for(j = 1; j <= ni; j++)
|
136
|
+
{
|
137
|
+
b2(1,j) = 0;
|
138
|
+
}
|
139
|
+
for(i = 1; i <= ni; i++)
|
140
|
+
{
|
141
|
+
v = ap::vdotproduct(&b(1), &q(i, 1), ap::vlen(1,mi));
|
142
|
+
b2(1,i) = v;
|
143
|
+
}
|
144
|
+
|
145
|
+
//
|
146
|
+
// Back from A' to A
|
147
|
+
// Making cols(A)=rows(A)
|
148
|
+
//
|
149
|
+
for(i = 1; i <= ni-1; i++)
|
150
|
+
{
|
151
|
+
ap::vmove(a.getrow(i, i+1, ni), a.getcolumn(i, i+1, ni));
|
152
|
+
}
|
153
|
+
for(i = 2; i <= ni; i++)
|
154
|
+
{
|
155
|
+
for(j = 1; j <= i-1; j++)
|
156
|
+
{
|
157
|
+
a(i,j) = 0;
|
158
|
+
}
|
159
|
+
}
|
160
|
+
|
161
|
+
//
|
162
|
+
// Bidiagonal decomposition of A
|
163
|
+
// A = Q * d2 * P'
|
164
|
+
// B2 := (Q'*B2')'
|
165
|
+
//
|
166
|
+
tobidiagonal(a, ni, ni, tauq, taup);
|
167
|
+
multiplybyqfrombidiagonal(a, ni, ni, tauq, b2, 1, ni, true, false);
|
168
|
+
unpackptfrombidiagonal(a, ni, ni, taup, ni, vt);
|
169
|
+
unpackdiagonalsfrombidiagonal(a, ni, ni, isuppera, d, e);
|
170
|
+
|
171
|
+
//
|
172
|
+
// Singular value decomposition of A
|
173
|
+
// A = U * d * V'
|
174
|
+
// B2 := (U'*B2')'
|
175
|
+
//
|
176
|
+
if( !bidiagonalsvddecomposition(d, e, ni, isuppera, false, b2, 1, q, 0, vt, ni) )
|
177
|
+
{
|
178
|
+
for(i = 0; i <= ni-1; i++)
|
179
|
+
{
|
180
|
+
c(i) = 0;
|
181
|
+
}
|
182
|
+
return;
|
183
|
+
}
|
184
|
+
|
185
|
+
//
|
186
|
+
// B2 := (d^(-1) * B2')'
|
187
|
+
//
|
188
|
+
if( d(1)!=0 )
|
189
|
+
{
|
190
|
+
for(i = 1; i <= ni; i++)
|
191
|
+
{
|
192
|
+
if( d(i)>ap::machineepsilon*10*sqrt(double(ni))*d(1) )
|
193
|
+
{
|
194
|
+
b2(1,i) = b2(1,i)/d(i);
|
195
|
+
}
|
196
|
+
else
|
197
|
+
{
|
198
|
+
b2(1,i) = 0;
|
199
|
+
}
|
200
|
+
}
|
201
|
+
}
|
202
|
+
|
203
|
+
//
|
204
|
+
// B := (V * B2')'
|
205
|
+
//
|
206
|
+
for(i = 1; i <= ni; i++)
|
207
|
+
{
|
208
|
+
b(i) = 0;
|
209
|
+
}
|
210
|
+
for(i = 1; i <= ni; i++)
|
211
|
+
{
|
212
|
+
v = b2(1,i);
|
213
|
+
ap::vadd(&b(1), &vt(i, 1), ap::vlen(1,ni), v);
|
214
|
+
}
|
215
|
+
|
216
|
+
//
|
217
|
+
// Out
|
218
|
+
//
|
219
|
+
for(i = 1; i <= ni; i++)
|
220
|
+
{
|
221
|
+
c(i-1) = b(i);
|
222
|
+
}
|
223
|
+
}
|
224
|
+
|
225
|
+
|
226
|
+
/*************************************************************************
|
227
|
+
Linear approximation using least squares method
|
228
|
+
|
229
|
+
The subroutine calculates coefficients of the line approximating given
|
230
|
+
function.
|
231
|
+
|
232
|
+
Input parameters:
|
233
|
+
X - array[0..N-1], it contains a set of abscissas.
|
234
|
+
Y - array[0..N-1], function values.
|
235
|
+
N - number of points, N>=1
|
236
|
+
|
237
|
+
Output parameters:
|
238
|
+
a, b- coefficients of linear approximation a+b*t
|
239
|
+
|
240
|
+
-- ALGLIB --
|
241
|
+
Copyright by Bochkanov Sergey
|
242
|
+
*************************************************************************/
|
243
|
+
void buildlinearleastsquares(const ap::real_1d_array& x,
|
244
|
+
const ap::real_1d_array& y,
|
245
|
+
int n,
|
246
|
+
double& a,
|
247
|
+
double& b)
|
248
|
+
{
|
249
|
+
double pp;
|
250
|
+
double qq;
|
251
|
+
double pq;
|
252
|
+
double b1;
|
253
|
+
double b2;
|
254
|
+
double d1;
|
255
|
+
double d2;
|
256
|
+
double t1;
|
257
|
+
double t2;
|
258
|
+
double phi;
|
259
|
+
double c;
|
260
|
+
double s;
|
261
|
+
double m;
|
262
|
+
int i;
|
263
|
+
|
264
|
+
pp = n;
|
265
|
+
qq = 0;
|
266
|
+
pq = 0;
|
267
|
+
b1 = 0;
|
268
|
+
b2 = 0;
|
269
|
+
for(i = 0; i <= n-1; i++)
|
270
|
+
{
|
271
|
+
pq = pq+x(i);
|
272
|
+
qq = qq+ap::sqr(x(i));
|
273
|
+
b1 = b1+y(i);
|
274
|
+
b2 = b2+x(i)*y(i);
|
275
|
+
}
|
276
|
+
phi = atan2(2*pq, qq-pp)/2;
|
277
|
+
c = cos(phi);
|
278
|
+
s = sin(phi);
|
279
|
+
d1 = ap::sqr(c)*pp+ap::sqr(s)*qq-2*s*c*pq;
|
280
|
+
d2 = ap::sqr(s)*pp+ap::sqr(c)*qq+2*s*c*pq;
|
281
|
+
if( fabs(d1)>fabs(d2) )
|
282
|
+
{
|
283
|
+
m = fabs(d1);
|
284
|
+
}
|
285
|
+
else
|
286
|
+
{
|
287
|
+
m = fabs(d2);
|
288
|
+
}
|
289
|
+
t1 = c*b1-s*b2;
|
290
|
+
t2 = s*b1+c*b2;
|
291
|
+
if( fabs(d1)>m*ap::machineepsilon*1000 )
|
292
|
+
{
|
293
|
+
t1 = t1/d1;
|
294
|
+
}
|
295
|
+
else
|
296
|
+
{
|
297
|
+
t1 = 0;
|
298
|
+
}
|
299
|
+
if( fabs(d2)>m*ap::machineepsilon*1000 )
|
300
|
+
{
|
301
|
+
t2 = t2/d2;
|
302
|
+
}
|
303
|
+
else
|
304
|
+
{
|
305
|
+
t2 = 0;
|
306
|
+
}
|
307
|
+
a = c*t1+s*t2;
|
308
|
+
b = -s*t1+c*t2;
|
309
|
+
}
|
310
|
+
|
311
|
+
|
312
|
+
/*************************************************************************
|
313
|
+
Weighted cubic spline approximation using linear least squares
|
314
|
+
|
315
|
+
Input parameters:
|
316
|
+
X - array[0..N-1], abscissas
|
317
|
+
Y - array[0..N-1], function values
|
318
|
+
W - array[0..N-1], weights.
|
319
|
+
A, B- interval to build splines in.
|
320
|
+
N - number of points used. N>=1.
|
321
|
+
M - number of basic splines, M>=2.
|
322
|
+
|
323
|
+
Output parameters:
|
324
|
+
CTbl- coefficients table to be used by SplineInterpolation function.
|
325
|
+
-- ALGLIB --
|
326
|
+
Copyright by Bochkanov Sergey
|
327
|
+
*************************************************************************/
|
328
|
+
void buildsplineleastsquares(const ap::real_1d_array& x,
|
329
|
+
const ap::real_1d_array& y,
|
330
|
+
const ap::real_1d_array& w,
|
331
|
+
double a,
|
332
|
+
double b,
|
333
|
+
int n,
|
334
|
+
int m,
|
335
|
+
ap::real_1d_array& ctbl)
|
336
|
+
{
|
337
|
+
int i;
|
338
|
+
int j;
|
339
|
+
ap::real_2d_array ma;
|
340
|
+
ap::real_2d_array q;
|
341
|
+
ap::real_2d_array vt;
|
342
|
+
ap::real_1d_array mb;
|
343
|
+
ap::real_1d_array tau;
|
344
|
+
ap::real_2d_array b2;
|
345
|
+
ap::real_1d_array tauq;
|
346
|
+
ap::real_1d_array taup;
|
347
|
+
ap::real_1d_array d;
|
348
|
+
ap::real_1d_array e;
|
349
|
+
bool isuppera;
|
350
|
+
int mi;
|
351
|
+
int ni;
|
352
|
+
double v;
|
353
|
+
ap::real_1d_array sx;
|
354
|
+
ap::real_1d_array sy;
|
355
|
+
|
356
|
+
ap::ap_error::make_assertion(m>=2, "BuildSplineLeastSquares: M is too small!");
|
357
|
+
mi = n;
|
358
|
+
ni = m;
|
359
|
+
sx.setbounds(0, ni-1);
|
360
|
+
sy.setbounds(0, ni-1);
|
361
|
+
|
362
|
+
//
|
363
|
+
// Initializing design matrix
|
364
|
+
// Here we are making MI>=NI
|
365
|
+
//
|
366
|
+
ma.setbounds(1, ni, 1, ap::maxint(mi, ni));
|
367
|
+
mb.setbounds(1, ap::maxint(mi, ni));
|
368
|
+
for(j = 0; j <= ni-1; j++)
|
369
|
+
{
|
370
|
+
sx(j) = a+(b-a)*j/(ni-1);
|
371
|
+
}
|
372
|
+
for(j = 0; j <= ni-1; j++)
|
373
|
+
{
|
374
|
+
for(i = 0; i <= ni-1; i++)
|
375
|
+
{
|
376
|
+
sy(i) = 0;
|
377
|
+
}
|
378
|
+
sy(j) = 1;
|
379
|
+
buildcubicspline(sx, sy, ni, 0, 0.0, 0, 0.0, ctbl);
|
380
|
+
for(i = 0; i <= mi-1; i++)
|
381
|
+
{
|
382
|
+
ma(j+1,i+1) = w(i)*splineinterpolation(ctbl, x(i));
|
383
|
+
}
|
384
|
+
}
|
385
|
+
for(j = 1; j <= ni; j++)
|
386
|
+
{
|
387
|
+
for(i = mi+1; i <= ni; i++)
|
388
|
+
{
|
389
|
+
ma(j,i) = 0;
|
390
|
+
}
|
391
|
+
}
|
392
|
+
|
393
|
+
//
|
394
|
+
// Initializing right part
|
395
|
+
//
|
396
|
+
for(i = 0; i <= mi-1; i++)
|
397
|
+
{
|
398
|
+
mb(i+1) = w(i)*y(i);
|
399
|
+
}
|
400
|
+
for(i = mi+1; i <= ni; i++)
|
401
|
+
{
|
402
|
+
mb(i) = 0;
|
403
|
+
}
|
404
|
+
mi = ap::maxint(mi, ni);
|
405
|
+
|
406
|
+
//
|
407
|
+
// LQ-decomposition of A'
|
408
|
+
// B2 := Q*B
|
409
|
+
//
|
410
|
+
lqdecomposition(ma, ni, mi, tau);
|
411
|
+
unpackqfromlq(ma, ni, mi, tau, ni, q);
|
412
|
+
b2.setbounds(1, 1, 1, ni);
|
413
|
+
for(j = 1; j <= ni; j++)
|
414
|
+
{
|
415
|
+
b2(1,j) = 0;
|
416
|
+
}
|
417
|
+
for(i = 1; i <= ni; i++)
|
418
|
+
{
|
419
|
+
v = ap::vdotproduct(&mb(1), &q(i, 1), ap::vlen(1,mi));
|
420
|
+
b2(1,i) = v;
|
421
|
+
}
|
422
|
+
|
423
|
+
//
|
424
|
+
// Back from A' to A
|
425
|
+
// Making cols(A)=rows(A)
|
426
|
+
//
|
427
|
+
for(i = 1; i <= ni-1; i++)
|
428
|
+
{
|
429
|
+
ap::vmove(ma.getrow(i, i+1, ni), ma.getcolumn(i, i+1, ni));
|
430
|
+
}
|
431
|
+
for(i = 2; i <= ni; i++)
|
432
|
+
{
|
433
|
+
for(j = 1; j <= i-1; j++)
|
434
|
+
{
|
435
|
+
ma(i,j) = 0;
|
436
|
+
}
|
437
|
+
}
|
438
|
+
|
439
|
+
//
|
440
|
+
// Bidiagonal decomposition of A
|
441
|
+
// A = Q * d2 * P'
|
442
|
+
// B2 := (Q'*B2')'
|
443
|
+
//
|
444
|
+
tobidiagonal(ma, ni, ni, tauq, taup);
|
445
|
+
multiplybyqfrombidiagonal(ma, ni, ni, tauq, b2, 1, ni, true, false);
|
446
|
+
unpackptfrombidiagonal(ma, ni, ni, taup, ni, vt);
|
447
|
+
unpackdiagonalsfrombidiagonal(ma, ni, ni, isuppera, d, e);
|
448
|
+
|
449
|
+
//
|
450
|
+
// Singular value decomposition of A
|
451
|
+
// A = U * d * V'
|
452
|
+
// B2 := (U'*B2')'
|
453
|
+
//
|
454
|
+
if( !bidiagonalsvddecomposition(d, e, ni, isuppera, false, b2, 1, q, 0, vt, ni) )
|
455
|
+
{
|
456
|
+
for(i = 1; i <= ni; i++)
|
457
|
+
{
|
458
|
+
d(i) = 0;
|
459
|
+
b2(1,i) = 0;
|
460
|
+
for(j = 1; j <= ni; j++)
|
461
|
+
{
|
462
|
+
if( i==j )
|
463
|
+
{
|
464
|
+
vt(i,j) = 1;
|
465
|
+
}
|
466
|
+
else
|
467
|
+
{
|
468
|
+
vt(i,j) = 0;
|
469
|
+
}
|
470
|
+
}
|
471
|
+
}
|
472
|
+
b2(1,1) = 1;
|
473
|
+
}
|
474
|
+
|
475
|
+
//
|
476
|
+
// B2 := (d^(-1) * B2')'
|
477
|
+
//
|
478
|
+
for(i = 1; i <= ni; i++)
|
479
|
+
{
|
480
|
+
if( d(i)>ap::machineepsilon*10*sqrt(double(ni))*d(1) )
|
481
|
+
{
|
482
|
+
b2(1,i) = b2(1,i)/d(i);
|
483
|
+
}
|
484
|
+
else
|
485
|
+
{
|
486
|
+
b2(1,i) = 0;
|
487
|
+
}
|
488
|
+
}
|
489
|
+
|
490
|
+
//
|
491
|
+
// B := (V * B2')'
|
492
|
+
//
|
493
|
+
for(i = 1; i <= ni; i++)
|
494
|
+
{
|
495
|
+
mb(i) = 0;
|
496
|
+
}
|
497
|
+
for(i = 1; i <= ni; i++)
|
498
|
+
{
|
499
|
+
v = b2(1,i);
|
500
|
+
ap::vadd(&mb(1), &vt(i, 1), ap::vlen(1,ni), v);
|
501
|
+
}
|
502
|
+
|
503
|
+
//
|
504
|
+
// Forming result spline
|
505
|
+
//
|
506
|
+
for(i = 0; i <= ni-1; i++)
|
507
|
+
{
|
508
|
+
sy(i) = mb(i+1);
|
509
|
+
}
|
510
|
+
buildcubicspline(sx, sy, ni, 0, 0.0, 0, 0.0, ctbl);
|
511
|
+
}
|
512
|
+
|
513
|
+
|
514
|
+
/*************************************************************************
|
515
|
+
Polynomial approximation using least squares method
|
516
|
+
|
517
|
+
The subroutine calculates coefficients of the polynomial approximating
|
518
|
+
given function. It is recommended to use this function only if you need to
|
519
|
+
obtain coefficients of approximation polynomial. If you have to build and
|
520
|
+
calculate polynomial approximation (NOT coefficients), it's better to use
|
521
|
+
BuildChebyshevLeastSquares subroutine in combination with
|
522
|
+
CalculateChebyshevLeastSquares subroutine. The result of Chebyshev
|
523
|
+
polynomial approximation is equivalent to the result obtained using powers
|
524
|
+
of X, but has higher accuracy due to better numerical properties of
|
525
|
+
Chebyshev polynomials.
|
526
|
+
|
527
|
+
Input parameters:
|
528
|
+
X - array[0..N-1], abscissas
|
529
|
+
Y - array[0..N-1], function values
|
530
|
+
N - number of points, N>=1
|
531
|
+
M - order of polynomial required, M>=0
|
532
|
+
|
533
|
+
Output parameters:
|
534
|
+
C - approximating polynomial coefficients, array[0..M],
|
535
|
+
C[i] - coefficient at X^i.
|
536
|
+
|
537
|
+
-- ALGLIB --
|
538
|
+
Copyright by Bochkanov Sergey
|
539
|
+
*************************************************************************/
|
540
|
+
void buildpolynomialleastsquares(const ap::real_1d_array& x,
|
541
|
+
const ap::real_1d_array& y,
|
542
|
+
int n,
|
543
|
+
int m,
|
544
|
+
ap::real_1d_array& c)
|
545
|
+
{
|
546
|
+
ap::real_1d_array ctbl;
|
547
|
+
ap::real_1d_array w;
|
548
|
+
ap::real_1d_array c1;
|
549
|
+
double maxx;
|
550
|
+
double minx;
|
551
|
+
int i;
|
552
|
+
int j;
|
553
|
+
int k;
|
554
|
+
double e;
|
555
|
+
double d;
|
556
|
+
double l1;
|
557
|
+
double l2;
|
558
|
+
ap::real_1d_array z2;
|
559
|
+
ap::real_1d_array z1;
|
560
|
+
|
561
|
+
|
562
|
+
//
|
563
|
+
// Initialize
|
564
|
+
//
|
565
|
+
maxx = x(0);
|
566
|
+
minx = x(0);
|
567
|
+
for(i = 1; i <= n-1; i++)
|
568
|
+
{
|
569
|
+
if( x(i)>maxx )
|
570
|
+
{
|
571
|
+
maxx = x(i);
|
572
|
+
}
|
573
|
+
if( x(i)<minx )
|
574
|
+
{
|
575
|
+
minx = x(i);
|
576
|
+
}
|
577
|
+
}
|
578
|
+
if( minx==maxx )
|
579
|
+
{
|
580
|
+
minx = minx-0.5;
|
581
|
+
maxx = maxx+0.5;
|
582
|
+
}
|
583
|
+
w.setbounds(0, n-1);
|
584
|
+
for(i = 0; i <= n-1; i++)
|
585
|
+
{
|
586
|
+
w(i) = 1;
|
587
|
+
}
|
588
|
+
|
589
|
+
//
|
590
|
+
// Build Chebyshev approximation
|
591
|
+
//
|
592
|
+
buildchebyshevleastsquares(x, y, w, minx, maxx, n, m, ctbl);
|
593
|
+
|
594
|
+
//
|
595
|
+
// From Chebyshev to powers of X
|
596
|
+
//
|
597
|
+
c1.setbounds(0, m);
|
598
|
+
for(i = 0; i <= m; i++)
|
599
|
+
{
|
600
|
+
c1(i) = 0;
|
601
|
+
}
|
602
|
+
d = 0;
|
603
|
+
for(i = 0; i <= m; i++)
|
604
|
+
{
|
605
|
+
for(k = i; k <= m; k++)
|
606
|
+
{
|
607
|
+
e = c1(k);
|
608
|
+
c1(k) = 0;
|
609
|
+
if( i<=1&&k==i )
|
610
|
+
{
|
611
|
+
c1(k) = 1;
|
612
|
+
}
|
613
|
+
else
|
614
|
+
{
|
615
|
+
if( i!=0 )
|
616
|
+
{
|
617
|
+
c1(k) = 2*d;
|
618
|
+
}
|
619
|
+
if( k>i+1 )
|
620
|
+
{
|
621
|
+
c1(k) = c1(k)-c1(k-2);
|
622
|
+
}
|
623
|
+
}
|
624
|
+
d = e;
|
625
|
+
}
|
626
|
+
d = c1(i);
|
627
|
+
e = 0;
|
628
|
+
k = i;
|
629
|
+
while(k<=m)
|
630
|
+
{
|
631
|
+
e = e+c1(k)*ctbl(k);
|
632
|
+
k = k+2;
|
633
|
+
}
|
634
|
+
c1(i) = e;
|
635
|
+
}
|
636
|
+
|
637
|
+
//
|
638
|
+
// Linear translation
|
639
|
+
//
|
640
|
+
l1 = 2/(ctbl(m+2)-ctbl(m+1));
|
641
|
+
l2 = -2*ctbl(m+1)/(ctbl(m+2)-ctbl(m+1))-1;
|
642
|
+
c.setbounds(0, m);
|
643
|
+
z2.setbounds(0, m);
|
644
|
+
z1.setbounds(0, m);
|
645
|
+
c(0) = c1(0);
|
646
|
+
z1(0) = 1;
|
647
|
+
z2(0) = 1;
|
648
|
+
for(i = 1; i <= m; i++)
|
649
|
+
{
|
650
|
+
z2(i) = 1;
|
651
|
+
z1(i) = l2*z1(i-1);
|
652
|
+
c(0) = c(0)+c1(i)*z1(i);
|
653
|
+
}
|
654
|
+
for(j = 1; j <= m; j++)
|
655
|
+
{
|
656
|
+
z2(0) = l1*z2(0);
|
657
|
+
c(j) = c1(j)*z2(0);
|
658
|
+
for(i = j+1; i <= m; i++)
|
659
|
+
{
|
660
|
+
k = i-j;
|
661
|
+
z2(k) = l1*z2(k)+z2(k-1);
|
662
|
+
c(j) = c(j)+c1(i)*z2(k)*z1(k);
|
663
|
+
}
|
664
|
+
}
|
665
|
+
}
|
666
|
+
|
667
|
+
|
668
|
+
/*************************************************************************
|
669
|
+
Chebyshev polynomial approximation using least squares method.
|
670
|
+
|
671
|
+
The algorithm reduces interval [A, B] to the interval [-1,1], then builds
|
672
|
+
least squares approximation using Chebyshev polynomials.
|
673
|
+
|
674
|
+
Input parameters:
|
675
|
+
X - array[0..N-1], abscissas
|
676
|
+
Y - array[0..N-1], function values
|
677
|
+
W - array[0..N-1], weights
|
678
|
+
A, B- interval to build approximating polynomials in.
|
679
|
+
N - number of points used. N>=1.
|
680
|
+
M - order of polynomial, M>=0. This parameter is passed into
|
681
|
+
CalculateChebyshevLeastSquares function.
|
682
|
+
|
683
|
+
Output parameters:
|
684
|
+
CTbl - coefficient table. This parameter is passed into
|
685
|
+
CalculateChebyshevLeastSquares function.
|
686
|
+
-- ALGLIB --
|
687
|
+
Copyright by Bochkanov Sergey
|
688
|
+
*************************************************************************/
|
689
|
+
void buildchebyshevleastsquares(const ap::real_1d_array& x,
|
690
|
+
const ap::real_1d_array& y,
|
691
|
+
const ap::real_1d_array& w,
|
692
|
+
double a,
|
693
|
+
double b,
|
694
|
+
int n,
|
695
|
+
int m,
|
696
|
+
ap::real_1d_array& ctbl)
|
697
|
+
{
|
698
|
+
int i;
|
699
|
+
int j;
|
700
|
+
ap::real_2d_array ma;
|
701
|
+
ap::real_2d_array q;
|
702
|
+
ap::real_2d_array vt;
|
703
|
+
ap::real_1d_array mb;
|
704
|
+
ap::real_1d_array tau;
|
705
|
+
ap::real_2d_array b2;
|
706
|
+
ap::real_1d_array tauq;
|
707
|
+
ap::real_1d_array taup;
|
708
|
+
ap::real_1d_array d;
|
709
|
+
ap::real_1d_array e;
|
710
|
+
bool isuppera;
|
711
|
+
int mi;
|
712
|
+
int ni;
|
713
|
+
double v;
|
714
|
+
|
715
|
+
mi = n;
|
716
|
+
ni = m+1;
|
717
|
+
|
718
|
+
//
|
719
|
+
// Initializing design matrix
|
720
|
+
// Here we are making MI>=NI
|
721
|
+
//
|
722
|
+
ma.setbounds(1, ni, 1, ap::maxint(mi, ni));
|
723
|
+
mb.setbounds(1, ap::maxint(mi, ni));
|
724
|
+
for(j = 1; j <= ni; j++)
|
725
|
+
{
|
726
|
+
for(i = 1; i <= mi; i++)
|
727
|
+
{
|
728
|
+
v = 2*(x(i-1)-a)/(b-a)-1;
|
729
|
+
if( j==1 )
|
730
|
+
{
|
731
|
+
ma(j,i) = 1.0;
|
732
|
+
}
|
733
|
+
if( j==2 )
|
734
|
+
{
|
735
|
+
ma(j,i) = v;
|
736
|
+
}
|
737
|
+
if( j>2 )
|
738
|
+
{
|
739
|
+
ma(j,i) = 2.0*v*ma(j-1,i)-ma(j-2,i);
|
740
|
+
}
|
741
|
+
}
|
742
|
+
}
|
743
|
+
for(j = 1; j <= ni; j++)
|
744
|
+
{
|
745
|
+
for(i = 1; i <= mi; i++)
|
746
|
+
{
|
747
|
+
ma(j,i) = w(i-1)*ma(j,i);
|
748
|
+
}
|
749
|
+
}
|
750
|
+
for(j = 1; j <= ni; j++)
|
751
|
+
{
|
752
|
+
for(i = mi+1; i <= ni; i++)
|
753
|
+
{
|
754
|
+
ma(j,i) = 0;
|
755
|
+
}
|
756
|
+
}
|
757
|
+
|
758
|
+
//
|
759
|
+
// Initializing right part
|
760
|
+
//
|
761
|
+
for(i = 0; i <= mi-1; i++)
|
762
|
+
{
|
763
|
+
mb(i+1) = w(i)*y(i);
|
764
|
+
}
|
765
|
+
for(i = mi+1; i <= ni; i++)
|
766
|
+
{
|
767
|
+
mb(i) = 0;
|
768
|
+
}
|
769
|
+
mi = ap::maxint(mi, ni);
|
770
|
+
|
771
|
+
//
|
772
|
+
// LQ-decomposition of A'
|
773
|
+
// B2 := Q*B
|
774
|
+
//
|
775
|
+
lqdecomposition(ma, ni, mi, tau);
|
776
|
+
unpackqfromlq(ma, ni, mi, tau, ni, q);
|
777
|
+
b2.setbounds(1, 1, 1, ni);
|
778
|
+
for(j = 1; j <= ni; j++)
|
779
|
+
{
|
780
|
+
b2(1,j) = 0;
|
781
|
+
}
|
782
|
+
for(i = 1; i <= ni; i++)
|
783
|
+
{
|
784
|
+
v = ap::vdotproduct(&mb(1), &q(i, 1), ap::vlen(1,mi));
|
785
|
+
b2(1,i) = v;
|
786
|
+
}
|
787
|
+
|
788
|
+
//
|
789
|
+
// Back from A' to A
|
790
|
+
// Making cols(A)=rows(A)
|
791
|
+
//
|
792
|
+
for(i = 1; i <= ni-1; i++)
|
793
|
+
{
|
794
|
+
ap::vmove(ma.getrow(i, i+1, ni), ma.getcolumn(i, i+1, ni));
|
795
|
+
}
|
796
|
+
for(i = 2; i <= ni; i++)
|
797
|
+
{
|
798
|
+
for(j = 1; j <= i-1; j++)
|
799
|
+
{
|
800
|
+
ma(i,j) = 0;
|
801
|
+
}
|
802
|
+
}
|
803
|
+
|
804
|
+
//
|
805
|
+
// Bidiagonal decomposition of A
|
806
|
+
// A = Q * d2 * P'
|
807
|
+
// B2 := (Q'*B2')'
|
808
|
+
//
|
809
|
+
tobidiagonal(ma, ni, ni, tauq, taup);
|
810
|
+
multiplybyqfrombidiagonal(ma, ni, ni, tauq, b2, 1, ni, true, false);
|
811
|
+
unpackptfrombidiagonal(ma, ni, ni, taup, ni, vt);
|
812
|
+
unpackdiagonalsfrombidiagonal(ma, ni, ni, isuppera, d, e);
|
813
|
+
|
814
|
+
//
|
815
|
+
// Singular value decomposition of A
|
816
|
+
// A = U * d * V'
|
817
|
+
// B2 := (U'*B2')'
|
818
|
+
//
|
819
|
+
if( !bidiagonalsvddecomposition(d, e, ni, isuppera, false, b2, 1, q, 0, vt, ni) )
|
820
|
+
{
|
821
|
+
for(i = 1; i <= ni; i++)
|
822
|
+
{
|
823
|
+
d(i) = 0;
|
824
|
+
b2(1,i) = 0;
|
825
|
+
for(j = 1; j <= ni; j++)
|
826
|
+
{
|
827
|
+
if( i==j )
|
828
|
+
{
|
829
|
+
vt(i,j) = 1;
|
830
|
+
}
|
831
|
+
else
|
832
|
+
{
|
833
|
+
vt(i,j) = 0;
|
834
|
+
}
|
835
|
+
}
|
836
|
+
}
|
837
|
+
b2(1,1) = 1;
|
838
|
+
}
|
839
|
+
|
840
|
+
//
|
841
|
+
// B2 := (d^(-1) * B2')'
|
842
|
+
//
|
843
|
+
for(i = 1; i <= ni; i++)
|
844
|
+
{
|
845
|
+
if( d(i)>ap::machineepsilon*10*sqrt(double(ni))*d(1) )
|
846
|
+
{
|
847
|
+
b2(1,i) = b2(1,i)/d(i);
|
848
|
+
}
|
849
|
+
else
|
850
|
+
{
|
851
|
+
b2(1,i) = 0;
|
852
|
+
}
|
853
|
+
}
|
854
|
+
|
855
|
+
//
|
856
|
+
// B := (V * B2')'
|
857
|
+
//
|
858
|
+
for(i = 1; i <= ni; i++)
|
859
|
+
{
|
860
|
+
mb(i) = 0;
|
861
|
+
}
|
862
|
+
for(i = 1; i <= ni; i++)
|
863
|
+
{
|
864
|
+
v = b2(1,i);
|
865
|
+
ap::vadd(&mb(1), &vt(i, 1), ap::vlen(1,ni), v);
|
866
|
+
}
|
867
|
+
|
868
|
+
//
|
869
|
+
// Forming result
|
870
|
+
//
|
871
|
+
ctbl.setbounds(0, ni+1);
|
872
|
+
for(i = 1; i <= ni; i++)
|
873
|
+
{
|
874
|
+
ctbl(i-1) = mb(i);
|
875
|
+
}
|
876
|
+
ctbl(ni) = a;
|
877
|
+
ctbl(ni+1) = b;
|
878
|
+
}
|
879
|
+
|
880
|
+
|
881
|
+
/*************************************************************************
|
882
|
+
Weighted Chebyshev polynomial constrained least squares approximation.
|
883
|
+
|
884
|
+
The algorithm reduces [A,B] to [-1,1] and builds the Chebyshev polynomials
|
885
|
+
series by approximating a given function using the least squares method.
|
886
|
+
|
887
|
+
Input parameters:
|
888
|
+
X - abscissas, array[0..N-1]
|
889
|
+
Y - function values, array[0..N-1]
|
890
|
+
W - weights, array[0..N-1]. Each item in the squared sum of
|
891
|
+
deviations from given values is multiplied by a square of
|
892
|
+
corresponding weight.
|
893
|
+
A, B- interval in which the approximating polynomials are built.
|
894
|
+
N - number of points, N>0.
|
895
|
+
XC, YC, DC-
|
896
|
+
constraints (see description below)., array[0..NC-1]
|
897
|
+
NC - number of constraints. 0 <= NC < M+1.
|
898
|
+
M - degree of polynomial, M>=0. This parameter is passed into the
|
899
|
+
CalculateChebyshevLeastSquares subroutine.
|
900
|
+
|
901
|
+
Output parameters:
|
902
|
+
CTbl- coefficient table. This parameter is passed into the
|
903
|
+
CalculateChebyshevLeastSquares subroutine.
|
904
|
+
|
905
|
+
Result:
|
906
|
+
True, if the algorithm succeeded.
|
907
|
+
False, if the internal singular value decomposition subroutine hasn't
|
908
|
+
converged or the given constraints could not be met simultaneously (e.g.
|
909
|
+
P(0)=0 � P(0)=1).
|
910
|
+
|
911
|
+
Specifying constraints:
|
912
|
+
This subroutine can solve the problem having constrained function
|
913
|
+
values or its derivatives in several points. NC specifies the number of
|
914
|
+
constraints, DC - the type of constraints, XC and YC - constraints as such.
|
915
|
+
Thus, for each i from 0 to NC-1 the following constraint is given:
|
916
|
+
P(xc[i]) = yc[i], if DC[i]=0
|
917
|
+
or
|
918
|
+
d/dx(P(xc[i])) = yc[i], if DC[i]=1
|
919
|
+
(here P(x) is approximating polynomial).
|
920
|
+
This version of the subroutine supports only either polynomial or its
|
921
|
+
derivative value constraints. If DC[i] is not equal to 0 and 1, the
|
922
|
+
subroutine will be aborted. The number of constraints should be less than
|
923
|
+
the number of degrees of freedom of approximating polynomial - M+1 (at
|
924
|
+
that, it could be equal to 0).
|
925
|
+
|
926
|
+
-- ALGLIB --
|
927
|
+
Copyright by Bochkanov Sergey
|
928
|
+
*************************************************************************/
|
929
|
+
bool buildchebyshevleastsquaresconstrained(const ap::real_1d_array& x,
|
930
|
+
const ap::real_1d_array& y,
|
931
|
+
const ap::real_1d_array& w,
|
932
|
+
double a,
|
933
|
+
double b,
|
934
|
+
int n,
|
935
|
+
const ap::real_1d_array& xc,
|
936
|
+
const ap::real_1d_array& yc,
|
937
|
+
const ap::integer_1d_array& dc,
|
938
|
+
int nc,
|
939
|
+
int m,
|
940
|
+
ap::real_1d_array& ctbl)
|
941
|
+
{
|
942
|
+
bool result;
|
943
|
+
int i;
|
944
|
+
int j;
|
945
|
+
int reducedsize;
|
946
|
+
ap::real_2d_array designmatrix;
|
947
|
+
ap::real_1d_array rightpart;
|
948
|
+
ap::real_2d_array cmatrix;
|
949
|
+
ap::real_2d_array c;
|
950
|
+
ap::real_2d_array u;
|
951
|
+
ap::real_2d_array vt;
|
952
|
+
ap::real_1d_array d;
|
953
|
+
ap::real_1d_array cr;
|
954
|
+
ap::real_1d_array ws;
|
955
|
+
ap::real_1d_array tj;
|
956
|
+
ap::real_1d_array uj;
|
957
|
+
ap::real_1d_array dtj;
|
958
|
+
ap::real_1d_array tmp;
|
959
|
+
ap::real_1d_array tmp2;
|
960
|
+
ap::real_2d_array tmpmatrix;
|
961
|
+
double v;
|
962
|
+
|
963
|
+
ap::ap_error::make_assertion(n>0, "");
|
964
|
+
ap::ap_error::make_assertion(m>=0, "");
|
965
|
+
ap::ap_error::make_assertion(nc>=0&&nc<m+1, "");
|
966
|
+
result = true;
|
967
|
+
|
968
|
+
//
|
969
|
+
// Initialize design matrix and right part.
|
970
|
+
// Add fictional rows if needed to ensure that N>=M+1.
|
971
|
+
//
|
972
|
+
designmatrix.setbounds(1, ap::maxint(n, m+1), 1, m+1);
|
973
|
+
rightpart.setbounds(1, ap::maxint(n, m+1));
|
974
|
+
for(i = 1; i <= n; i++)
|
975
|
+
{
|
976
|
+
for(j = 1; j <= m+1; j++)
|
977
|
+
{
|
978
|
+
v = 2*(x(i-1)-a)/(b-a)-1;
|
979
|
+
if( j==1 )
|
980
|
+
{
|
981
|
+
designmatrix(i,j) = 1.0;
|
982
|
+
}
|
983
|
+
if( j==2 )
|
984
|
+
{
|
985
|
+
designmatrix(i,j) = v;
|
986
|
+
}
|
987
|
+
if( j>2 )
|
988
|
+
{
|
989
|
+
designmatrix(i,j) = 2.0*v*designmatrix(i,j-1)-designmatrix(i,j-2);
|
990
|
+
}
|
991
|
+
}
|
992
|
+
}
|
993
|
+
for(i = 1; i <= n; i++)
|
994
|
+
{
|
995
|
+
for(j = 1; j <= m+1; j++)
|
996
|
+
{
|
997
|
+
designmatrix(i,j) = w(i-1)*designmatrix(i,j);
|
998
|
+
}
|
999
|
+
}
|
1000
|
+
for(i = n+1; i <= m+1; i++)
|
1001
|
+
{
|
1002
|
+
for(j = 1; j <= m+1; j++)
|
1003
|
+
{
|
1004
|
+
designmatrix(i,j) = 0;
|
1005
|
+
}
|
1006
|
+
}
|
1007
|
+
for(i = 0; i <= n-1; i++)
|
1008
|
+
{
|
1009
|
+
rightpart(i+1) = w(i)*y(i);
|
1010
|
+
}
|
1011
|
+
for(i = n+1; i <= m+1; i++)
|
1012
|
+
{
|
1013
|
+
rightpart(i) = 0;
|
1014
|
+
}
|
1015
|
+
n = ap::maxint(n, m+1);
|
1016
|
+
|
1017
|
+
//
|
1018
|
+
// Now N>=M+1 and we are ready to the next stage.
|
1019
|
+
// Handle constraints.
|
1020
|
+
// Represent feasible set of coefficients as x = C*t + d
|
1021
|
+
//
|
1022
|
+
c.setbounds(1, m+1, 1, m+1);
|
1023
|
+
d.setbounds(1, m+1);
|
1024
|
+
if( nc==0 )
|
1025
|
+
{
|
1026
|
+
|
1027
|
+
//
|
1028
|
+
// No constraints
|
1029
|
+
//
|
1030
|
+
for(i = 1; i <= m+1; i++)
|
1031
|
+
{
|
1032
|
+
for(j = 1; j <= m+1; j++)
|
1033
|
+
{
|
1034
|
+
c(i,j) = 0;
|
1035
|
+
}
|
1036
|
+
d(i) = 0;
|
1037
|
+
}
|
1038
|
+
for(i = 1; i <= m+1; i++)
|
1039
|
+
{
|
1040
|
+
c(i,i) = 1;
|
1041
|
+
}
|
1042
|
+
reducedsize = m+1;
|
1043
|
+
}
|
1044
|
+
else
|
1045
|
+
{
|
1046
|
+
|
1047
|
+
//
|
1048
|
+
// Constraints are present.
|
1049
|
+
// Fill constraints matrix CMatrix and solve CMatrix*x = cr.
|
1050
|
+
//
|
1051
|
+
cmatrix.setbounds(1, nc, 1, m+1);
|
1052
|
+
cr.setbounds(1, nc);
|
1053
|
+
tj.setbounds(0, m);
|
1054
|
+
uj.setbounds(0, m);
|
1055
|
+
dtj.setbounds(0, m);
|
1056
|
+
for(i = 0; i <= nc-1; i++)
|
1057
|
+
{
|
1058
|
+
v = 2*(xc(i)-a)/(b-a)-1;
|
1059
|
+
for(j = 0; j <= m; j++)
|
1060
|
+
{
|
1061
|
+
if( j==0 )
|
1062
|
+
{
|
1063
|
+
tj(j) = 1;
|
1064
|
+
uj(j) = 1;
|
1065
|
+
dtj(j) = 0;
|
1066
|
+
}
|
1067
|
+
if( j==1 )
|
1068
|
+
{
|
1069
|
+
tj(j) = v;
|
1070
|
+
uj(j) = 2*v;
|
1071
|
+
dtj(j) = 1;
|
1072
|
+
}
|
1073
|
+
if( j>1 )
|
1074
|
+
{
|
1075
|
+
tj(j) = 2*v*tj(j-1)-tj(j-2);
|
1076
|
+
uj(j) = 2*v*uj(j-1)-uj(j-2);
|
1077
|
+
dtj(j) = j*uj(j-1);
|
1078
|
+
}
|
1079
|
+
ap::ap_error::make_assertion(dc(i)==0||dc(i)==1, "");
|
1080
|
+
if( dc(i)==0 )
|
1081
|
+
{
|
1082
|
+
cmatrix(i+1,j+1) = tj(j);
|
1083
|
+
}
|
1084
|
+
if( dc(i)==1 )
|
1085
|
+
{
|
1086
|
+
cmatrix(i+1,j+1) = dtj(j);
|
1087
|
+
}
|
1088
|
+
}
|
1089
|
+
cr(i+1) = yc(i);
|
1090
|
+
}
|
1091
|
+
|
1092
|
+
//
|
1093
|
+
// Solve CMatrix*x = cr.
|
1094
|
+
// Fill C and d:
|
1095
|
+
// 1. SVD: CMatrix = U * WS * V^T
|
1096
|
+
// 2. C := V[1:M+1,NC+1:M+1]
|
1097
|
+
// 3. tmp := WS^-1 * U^T * cr
|
1098
|
+
// 4. d := V[1:M+1,1:NC] * tmp
|
1099
|
+
//
|
1100
|
+
if( !svddecomposition(cmatrix, nc, m+1, 2, 2, 2, ws, u, vt) )
|
1101
|
+
{
|
1102
|
+
result = false;
|
1103
|
+
return result;
|
1104
|
+
}
|
1105
|
+
if( ws(1)==0||ws(nc)<=ap::machineepsilon*10*sqrt(double(nc))*ws(1) )
|
1106
|
+
{
|
1107
|
+
result = false;
|
1108
|
+
return result;
|
1109
|
+
}
|
1110
|
+
c.setbounds(1, m+1, 1, m+1-nc);
|
1111
|
+
d.setbounds(1, m+1);
|
1112
|
+
for(i = 1; i <= m+1-nc; i++)
|
1113
|
+
{
|
1114
|
+
ap::vmove(c.getcolumn(i, 1, m+1), vt.getrow(nc+i, 1, m+1));
|
1115
|
+
}
|
1116
|
+
tmp.setbounds(1, nc);
|
1117
|
+
for(i = 1; i <= nc; i++)
|
1118
|
+
{
|
1119
|
+
v = ap::vdotproduct(u.getcolumn(i, 1, nc), cr.getvector(1, nc));
|
1120
|
+
tmp(i) = v/ws(i);
|
1121
|
+
}
|
1122
|
+
for(i = 1; i <= m+1; i++)
|
1123
|
+
{
|
1124
|
+
d(i) = 0;
|
1125
|
+
}
|
1126
|
+
for(i = 1; i <= nc; i++)
|
1127
|
+
{
|
1128
|
+
v = tmp(i);
|
1129
|
+
ap::vadd(&d(1), &vt(i, 1), ap::vlen(1,m+1), v);
|
1130
|
+
}
|
1131
|
+
|
1132
|
+
//
|
1133
|
+
// Reduce problem:
|
1134
|
+
// 1. RightPart := RightPart - DesignMatrix*d
|
1135
|
+
// 2. DesignMatrix := DesignMatrix*C
|
1136
|
+
//
|
1137
|
+
for(i = 1; i <= n; i++)
|
1138
|
+
{
|
1139
|
+
v = ap::vdotproduct(&designmatrix(i, 1), &d(1), ap::vlen(1,m+1));
|
1140
|
+
rightpart(i) = rightpart(i)-v;
|
1141
|
+
}
|
1142
|
+
reducedsize = m+1-nc;
|
1143
|
+
tmpmatrix.setbounds(1, n, 1, reducedsize);
|
1144
|
+
tmp.setbounds(1, n);
|
1145
|
+
matrixmatrixmultiply(designmatrix, 1, n, 1, m+1, false, c, 1, m+1, 1, reducedsize, false, 1.0, tmpmatrix, 1, n, 1, reducedsize, 0.0, tmp);
|
1146
|
+
copymatrix(tmpmatrix, 1, n, 1, reducedsize, designmatrix, 1, n, 1, reducedsize);
|
1147
|
+
}
|
1148
|
+
|
1149
|
+
//
|
1150
|
+
// Solve reduced problem DesignMatrix*t = RightPart.
|
1151
|
+
//
|
1152
|
+
if( !svddecomposition(designmatrix, n, reducedsize, 1, 1, 2, ws, u, vt) )
|
1153
|
+
{
|
1154
|
+
result = false;
|
1155
|
+
return result;
|
1156
|
+
}
|
1157
|
+
tmp.setbounds(1, reducedsize);
|
1158
|
+
tmp2.setbounds(1, reducedsize);
|
1159
|
+
for(i = 1; i <= reducedsize; i++)
|
1160
|
+
{
|
1161
|
+
tmp(i) = 0;
|
1162
|
+
}
|
1163
|
+
for(i = 1; i <= n; i++)
|
1164
|
+
{
|
1165
|
+
v = rightpart(i);
|
1166
|
+
ap::vadd(&tmp(1), &u(i, 1), ap::vlen(1,reducedsize), v);
|
1167
|
+
}
|
1168
|
+
for(i = 1; i <= reducedsize; i++)
|
1169
|
+
{
|
1170
|
+
if( ws(i)!=0&&ws(i)>ap::machineepsilon*10*sqrt(double(nc))*ws(1) )
|
1171
|
+
{
|
1172
|
+
tmp(i) = tmp(i)/ws(i);
|
1173
|
+
}
|
1174
|
+
else
|
1175
|
+
{
|
1176
|
+
tmp(i) = 0;
|
1177
|
+
}
|
1178
|
+
}
|
1179
|
+
for(i = 1; i <= reducedsize; i++)
|
1180
|
+
{
|
1181
|
+
tmp2(i) = 0;
|
1182
|
+
}
|
1183
|
+
for(i = 1; i <= reducedsize; i++)
|
1184
|
+
{
|
1185
|
+
v = tmp(i);
|
1186
|
+
ap::vadd(&tmp2(1), &vt(i, 1), ap::vlen(1,reducedsize), v);
|
1187
|
+
}
|
1188
|
+
|
1189
|
+
//
|
1190
|
+
// Solution is in the tmp2.
|
1191
|
+
// Transform it from t to x.
|
1192
|
+
//
|
1193
|
+
ctbl.setbounds(0, m+2);
|
1194
|
+
for(i = 1; i <= m+1; i++)
|
1195
|
+
{
|
1196
|
+
v = ap::vdotproduct(&c(i, 1), &tmp2(1), ap::vlen(1,reducedsize));
|
1197
|
+
ctbl(i-1) = v+d(i);
|
1198
|
+
}
|
1199
|
+
ctbl(m+1) = a;
|
1200
|
+
ctbl(m+2) = b;
|
1201
|
+
return result;
|
1202
|
+
}
|
1203
|
+
|
1204
|
+
|
1205
|
+
/*************************************************************************
|
1206
|
+
Calculation of a Chebyshev polynomial obtained during least squares
|
1207
|
+
approximaion at the given point.
|
1208
|
+
|
1209
|
+
Input parameters:
|
1210
|
+
M - order of polynomial (parameter of the
|
1211
|
+
BuildChebyshevLeastSquares function).
|
1212
|
+
A - coefficient table.
|
1213
|
+
A[0..M] contains coefficients of the i-th Chebyshev polynomial.
|
1214
|
+
A[M+1] contains left boundary of approximation interval.
|
1215
|
+
A[M+2] contains right boundary of approximation interval.
|
1216
|
+
X - point to perform calculations in.
|
1217
|
+
|
1218
|
+
The result is the value at the given point.
|
1219
|
+
|
1220
|
+
It should be noted that array A contains coefficients of the Chebyshev
|
1221
|
+
polynomials defined on interval [-1,1]. Argument is reduced to this
|
1222
|
+
interval before calculating polynomial value.
|
1223
|
+
-- ALGLIB --
|
1224
|
+
Copyright by Bochkanov Sergey
|
1225
|
+
*************************************************************************/
|
1226
|
+
double calculatechebyshevleastsquares(const int& m,
|
1227
|
+
const ap::real_1d_array& a,
|
1228
|
+
double x)
|
1229
|
+
{
|
1230
|
+
double result;
|
1231
|
+
double b1;
|
1232
|
+
double b2;
|
1233
|
+
int i;
|
1234
|
+
|
1235
|
+
x = 2*(x-a(m+1))/(a(m+2)-a(m+1))-1;
|
1236
|
+
b1 = 0;
|
1237
|
+
b2 = 0;
|
1238
|
+
i = m;
|
1239
|
+
do
|
1240
|
+
{
|
1241
|
+
result = 2*x*b1-b2+a(i);
|
1242
|
+
b2 = b1;
|
1243
|
+
b1 = result;
|
1244
|
+
i = i-1;
|
1245
|
+
}
|
1246
|
+
while(i>=0);
|
1247
|
+
result = result-x*b2;
|
1248
|
+
return result;
|
1249
|
+
}
|
1250
|
+
|
1251
|
+
|
1252
|
+
|