alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,1328 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include "bidiagonal.h"
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Reduction of a rectangular matrix to bidiagonal form
|
44
|
+
|
45
|
+
The algorithm reduces the rectangular matrix A to bidiagonal form by
|
46
|
+
orthogonal transformations P and Q: A = Q*B*P.
|
47
|
+
|
48
|
+
Input parameters:
|
49
|
+
A - source matrix. array[0..M-1, 0..N-1]
|
50
|
+
M - number of rows in matrix A.
|
51
|
+
N - number of columns in matrix A.
|
52
|
+
|
53
|
+
Output parameters:
|
54
|
+
A - matrices Q, B, P in compact form (see below).
|
55
|
+
TauQ - scalar factors which are used to form matrix Q.
|
56
|
+
TauP - scalar factors which are used to form matrix P.
|
57
|
+
|
58
|
+
The main diagonal and one of the secondary diagonals of matrix A are
|
59
|
+
replaced with bidiagonal matrix B. Other elements contain elementary
|
60
|
+
reflections which form MxM matrix Q and NxN matrix P, respectively.
|
61
|
+
|
62
|
+
If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
|
63
|
+
corresponding elements of matrix A. Matrix Q is represented as a
|
64
|
+
product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
|
65
|
+
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
|
66
|
+
vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
|
67
|
+
stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
|
68
|
+
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
|
69
|
+
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
|
70
|
+
|
71
|
+
If M<N, B is the lower bidiagonal MxN matrix and is stored in the
|
72
|
+
corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
|
73
|
+
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
|
74
|
+
is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
|
75
|
+
G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
|
76
|
+
is stored in A(i,i+1:n-1).
|
77
|
+
|
78
|
+
EXAMPLE:
|
79
|
+
|
80
|
+
m=6, n=5 (m > n): m=5, n=6 (m < n):
|
81
|
+
|
82
|
+
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
83
|
+
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
84
|
+
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
85
|
+
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
86
|
+
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
87
|
+
( v1 v2 v3 v4 v5 )
|
88
|
+
|
89
|
+
Here vi and ui are vectors which form H(i) and G(i), and d and e -
|
90
|
+
are the diagonal and off-diagonal elements of matrix B.
|
91
|
+
*************************************************************************/
|
92
|
+
void rmatrixbd(ap::real_2d_array& a,
|
93
|
+
int m,
|
94
|
+
int n,
|
95
|
+
ap::real_1d_array& tauq,
|
96
|
+
ap::real_1d_array& taup)
|
97
|
+
{
|
98
|
+
ap::real_1d_array work;
|
99
|
+
ap::real_1d_array t;
|
100
|
+
int minmn;
|
101
|
+
int maxmn;
|
102
|
+
int i;
|
103
|
+
int j;
|
104
|
+
double ltau;
|
105
|
+
|
106
|
+
|
107
|
+
//
|
108
|
+
// Prepare
|
109
|
+
//
|
110
|
+
if( n<=0||m<=0 )
|
111
|
+
{
|
112
|
+
return;
|
113
|
+
}
|
114
|
+
minmn = ap::minint(m, n);
|
115
|
+
maxmn = ap::maxint(m, n);
|
116
|
+
work.setbounds(0, maxmn);
|
117
|
+
t.setbounds(0, maxmn);
|
118
|
+
if( m>=n )
|
119
|
+
{
|
120
|
+
tauq.setbounds(0, n-1);
|
121
|
+
taup.setbounds(0, n-1);
|
122
|
+
}
|
123
|
+
else
|
124
|
+
{
|
125
|
+
tauq.setbounds(0, m-1);
|
126
|
+
taup.setbounds(0, m-1);
|
127
|
+
}
|
128
|
+
if( m>=n )
|
129
|
+
{
|
130
|
+
|
131
|
+
//
|
132
|
+
// Reduce to upper bidiagonal form
|
133
|
+
//
|
134
|
+
for(i = 0; i <= n-1; i++)
|
135
|
+
{
|
136
|
+
|
137
|
+
//
|
138
|
+
// Generate elementary reflector H(i) to annihilate A(i+1:m-1,i)
|
139
|
+
//
|
140
|
+
ap::vmove(t.getvector(1, m-i), a.getcolumn(i, i, m-1));
|
141
|
+
generatereflection(t, m-i, ltau);
|
142
|
+
tauq(i) = ltau;
|
143
|
+
ap::vmove(a.getcolumn(i, i, m-1), t.getvector(1, m-i));
|
144
|
+
t(1) = 1;
|
145
|
+
|
146
|
+
//
|
147
|
+
// Apply H(i) to A(i:m-1,i+1:n-1) from the left
|
148
|
+
//
|
149
|
+
applyreflectionfromtheleft(a, ltau, t, i, m-1, i+1, n-1, work);
|
150
|
+
if( i<n-1 )
|
151
|
+
{
|
152
|
+
|
153
|
+
//
|
154
|
+
// Generate elementary reflector G(i) to annihilate
|
155
|
+
// A(i,i+2:n-1)
|
156
|
+
//
|
157
|
+
ap::vmove(&t(1), &a(i, i+1), ap::vlen(1,n-i-1));
|
158
|
+
generatereflection(t, n-1-i, ltau);
|
159
|
+
taup(i) = ltau;
|
160
|
+
ap::vmove(&a(i, i+1), &t(1), ap::vlen(i+1,n-1));
|
161
|
+
t(1) = 1;
|
162
|
+
|
163
|
+
//
|
164
|
+
// Apply G(i) to A(i+1:m-1,i+1:n-1) from the right
|
165
|
+
//
|
166
|
+
applyreflectionfromtheright(a, ltau, t, i+1, m-1, i+1, n-1, work);
|
167
|
+
}
|
168
|
+
else
|
169
|
+
{
|
170
|
+
taup(i) = 0;
|
171
|
+
}
|
172
|
+
}
|
173
|
+
}
|
174
|
+
else
|
175
|
+
{
|
176
|
+
|
177
|
+
//
|
178
|
+
// Reduce to lower bidiagonal form
|
179
|
+
//
|
180
|
+
for(i = 0; i <= m-1; i++)
|
181
|
+
{
|
182
|
+
|
183
|
+
//
|
184
|
+
// Generate elementary reflector G(i) to annihilate A(i,i+1:n-1)
|
185
|
+
//
|
186
|
+
ap::vmove(&t(1), &a(i, i), ap::vlen(1,n-i));
|
187
|
+
generatereflection(t, n-i, ltau);
|
188
|
+
taup(i) = ltau;
|
189
|
+
ap::vmove(&a(i, i), &t(1), ap::vlen(i,n-1));
|
190
|
+
t(1) = 1;
|
191
|
+
|
192
|
+
//
|
193
|
+
// Apply G(i) to A(i+1:m-1,i:n-1) from the right
|
194
|
+
//
|
195
|
+
applyreflectionfromtheright(a, ltau, t, i+1, m-1, i, n-1, work);
|
196
|
+
if( i<m-1 )
|
197
|
+
{
|
198
|
+
|
199
|
+
//
|
200
|
+
// Generate elementary reflector H(i) to annihilate
|
201
|
+
// A(i+2:m-1,i)
|
202
|
+
//
|
203
|
+
ap::vmove(t.getvector(1, m-1-i), a.getcolumn(i, i+1, m-1));
|
204
|
+
generatereflection(t, m-1-i, ltau);
|
205
|
+
tauq(i) = ltau;
|
206
|
+
ap::vmove(a.getcolumn(i, i+1, m-1), t.getvector(1, m-1-i));
|
207
|
+
t(1) = 1;
|
208
|
+
|
209
|
+
//
|
210
|
+
// Apply H(i) to A(i+1:m-1,i+1:n-1) from the left
|
211
|
+
//
|
212
|
+
applyreflectionfromtheleft(a, ltau, t, i+1, m-1, i+1, n-1, work);
|
213
|
+
}
|
214
|
+
else
|
215
|
+
{
|
216
|
+
tauq(i) = 0;
|
217
|
+
}
|
218
|
+
}
|
219
|
+
}
|
220
|
+
}
|
221
|
+
|
222
|
+
|
223
|
+
/*************************************************************************
|
224
|
+
Unpacking matrix Q which reduces a matrix to bidiagonal form.
|
225
|
+
|
226
|
+
Input parameters:
|
227
|
+
QP - matrices Q and P in compact form.
|
228
|
+
Output of ToBidiagonal subroutine.
|
229
|
+
M - number of rows in matrix A.
|
230
|
+
N - number of columns in matrix A.
|
231
|
+
TAUQ - scalar factors which are used to form Q.
|
232
|
+
Output of ToBidiagonal subroutine.
|
233
|
+
QColumns - required number of columns in matrix Q.
|
234
|
+
M>=QColumns>=0.
|
235
|
+
|
236
|
+
Output parameters:
|
237
|
+
Q - first QColumns columns of matrix Q.
|
238
|
+
Array[0..M-1, 0..QColumns-1]
|
239
|
+
If QColumns=0, the array is not modified.
|
240
|
+
|
241
|
+
-- ALGLIB --
|
242
|
+
Copyright 2005 by Bochkanov Sergey
|
243
|
+
*************************************************************************/
|
244
|
+
void rmatrixbdunpackq(const ap::real_2d_array& qp,
|
245
|
+
int m,
|
246
|
+
int n,
|
247
|
+
const ap::real_1d_array& tauq,
|
248
|
+
int qcolumns,
|
249
|
+
ap::real_2d_array& q)
|
250
|
+
{
|
251
|
+
int i;
|
252
|
+
int j;
|
253
|
+
|
254
|
+
ap::ap_error::make_assertion(qcolumns<=m, "RMatrixBDUnpackQ: QColumns>M!");
|
255
|
+
ap::ap_error::make_assertion(qcolumns>=0, "RMatrixBDUnpackQ: QColumns<0!");
|
256
|
+
if( m==0||n==0||qcolumns==0 )
|
257
|
+
{
|
258
|
+
return;
|
259
|
+
}
|
260
|
+
|
261
|
+
//
|
262
|
+
// prepare Q
|
263
|
+
//
|
264
|
+
q.setbounds(0, m-1, 0, qcolumns-1);
|
265
|
+
for(i = 0; i <= m-1; i++)
|
266
|
+
{
|
267
|
+
for(j = 0; j <= qcolumns-1; j++)
|
268
|
+
{
|
269
|
+
if( i==j )
|
270
|
+
{
|
271
|
+
q(i,j) = 1;
|
272
|
+
}
|
273
|
+
else
|
274
|
+
{
|
275
|
+
q(i,j) = 0;
|
276
|
+
}
|
277
|
+
}
|
278
|
+
}
|
279
|
+
|
280
|
+
//
|
281
|
+
// Calculate
|
282
|
+
//
|
283
|
+
rmatrixbdmultiplybyq(qp, m, n, tauq, q, m, qcolumns, false, false);
|
284
|
+
}
|
285
|
+
|
286
|
+
|
287
|
+
/*************************************************************************
|
288
|
+
Multiplication by matrix Q which reduces matrix A to bidiagonal form.
|
289
|
+
|
290
|
+
The algorithm allows pre- or post-multiply by Q or Q'.
|
291
|
+
|
292
|
+
Input parameters:
|
293
|
+
QP - matrices Q and P in compact form.
|
294
|
+
Output of ToBidiagonal subroutine.
|
295
|
+
M - number of rows in matrix A.
|
296
|
+
N - number of columns in matrix A.
|
297
|
+
TAUQ - scalar factors which are used to form Q.
|
298
|
+
Output of ToBidiagonal subroutine.
|
299
|
+
Z - multiplied matrix.
|
300
|
+
array[0..ZRows-1,0..ZColumns-1]
|
301
|
+
ZRows - number of rows in matrix Z. If FromTheRight=False,
|
302
|
+
ZRows=M, otherwise ZRows can be arbitrary.
|
303
|
+
ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
304
|
+
ZColumns=M, otherwise ZColumns can be arbitrary.
|
305
|
+
FromTheRight - pre- or post-multiply.
|
306
|
+
DoTranspose - multiply by Q or Q'.
|
307
|
+
|
308
|
+
Output parameters:
|
309
|
+
Z - product of Z and Q.
|
310
|
+
Array[0..ZRows-1,0..ZColumns-1]
|
311
|
+
If ZRows=0 or ZColumns=0, the array is not modified.
|
312
|
+
|
313
|
+
-- ALGLIB --
|
314
|
+
Copyright 2005 by Bochkanov Sergey
|
315
|
+
*************************************************************************/
|
316
|
+
void rmatrixbdmultiplybyq(const ap::real_2d_array& qp,
|
317
|
+
int m,
|
318
|
+
int n,
|
319
|
+
const ap::real_1d_array& tauq,
|
320
|
+
ap::real_2d_array& z,
|
321
|
+
int zrows,
|
322
|
+
int zcolumns,
|
323
|
+
bool fromtheright,
|
324
|
+
bool dotranspose)
|
325
|
+
{
|
326
|
+
int i;
|
327
|
+
int i1;
|
328
|
+
int i2;
|
329
|
+
int istep;
|
330
|
+
ap::real_1d_array v;
|
331
|
+
ap::real_1d_array work;
|
332
|
+
int mx;
|
333
|
+
|
334
|
+
if( m<=0||n<=0||zrows<=0||zcolumns<=0 )
|
335
|
+
{
|
336
|
+
return;
|
337
|
+
}
|
338
|
+
ap::ap_error::make_assertion(fromtheright&&zcolumns==m||!fromtheright&&zrows==m, "RMatrixBDMultiplyByQ: incorrect Z size!");
|
339
|
+
|
340
|
+
//
|
341
|
+
// init
|
342
|
+
//
|
343
|
+
mx = ap::maxint(m, n);
|
344
|
+
mx = ap::maxint(mx, zrows);
|
345
|
+
mx = ap::maxint(mx, zcolumns);
|
346
|
+
v.setbounds(0, mx);
|
347
|
+
work.setbounds(0, mx);
|
348
|
+
if( m>=n )
|
349
|
+
{
|
350
|
+
|
351
|
+
//
|
352
|
+
// setup
|
353
|
+
//
|
354
|
+
if( fromtheright )
|
355
|
+
{
|
356
|
+
i1 = 0;
|
357
|
+
i2 = n-1;
|
358
|
+
istep = +1;
|
359
|
+
}
|
360
|
+
else
|
361
|
+
{
|
362
|
+
i1 = n-1;
|
363
|
+
i2 = 0;
|
364
|
+
istep = -1;
|
365
|
+
}
|
366
|
+
if( dotranspose )
|
367
|
+
{
|
368
|
+
i = i1;
|
369
|
+
i1 = i2;
|
370
|
+
i2 = i;
|
371
|
+
istep = -istep;
|
372
|
+
}
|
373
|
+
|
374
|
+
//
|
375
|
+
// Process
|
376
|
+
//
|
377
|
+
i = i1;
|
378
|
+
do
|
379
|
+
{
|
380
|
+
ap::vmove(v.getvector(1, m-i), qp.getcolumn(i, i, m-1));
|
381
|
+
v(1) = 1;
|
382
|
+
if( fromtheright )
|
383
|
+
{
|
384
|
+
applyreflectionfromtheright(z, tauq(i), v, 0, zrows-1, i, m-1, work);
|
385
|
+
}
|
386
|
+
else
|
387
|
+
{
|
388
|
+
applyreflectionfromtheleft(z, tauq(i), v, i, m-1, 0, zcolumns-1, work);
|
389
|
+
}
|
390
|
+
i = i+istep;
|
391
|
+
}
|
392
|
+
while(i!=i2+istep);
|
393
|
+
}
|
394
|
+
else
|
395
|
+
{
|
396
|
+
|
397
|
+
//
|
398
|
+
// setup
|
399
|
+
//
|
400
|
+
if( fromtheright )
|
401
|
+
{
|
402
|
+
i1 = 0;
|
403
|
+
i2 = m-2;
|
404
|
+
istep = +1;
|
405
|
+
}
|
406
|
+
else
|
407
|
+
{
|
408
|
+
i1 = m-2;
|
409
|
+
i2 = 0;
|
410
|
+
istep = -1;
|
411
|
+
}
|
412
|
+
if( dotranspose )
|
413
|
+
{
|
414
|
+
i = i1;
|
415
|
+
i1 = i2;
|
416
|
+
i2 = i;
|
417
|
+
istep = -istep;
|
418
|
+
}
|
419
|
+
|
420
|
+
//
|
421
|
+
// Process
|
422
|
+
//
|
423
|
+
if( m-1>0 )
|
424
|
+
{
|
425
|
+
i = i1;
|
426
|
+
do
|
427
|
+
{
|
428
|
+
ap::vmove(v.getvector(1, m-i-1), qp.getcolumn(i, i+1, m-1));
|
429
|
+
v(1) = 1;
|
430
|
+
if( fromtheright )
|
431
|
+
{
|
432
|
+
applyreflectionfromtheright(z, tauq(i), v, 0, zrows-1, i+1, m-1, work);
|
433
|
+
}
|
434
|
+
else
|
435
|
+
{
|
436
|
+
applyreflectionfromtheleft(z, tauq(i), v, i+1, m-1, 0, zcolumns-1, work);
|
437
|
+
}
|
438
|
+
i = i+istep;
|
439
|
+
}
|
440
|
+
while(i!=i2+istep);
|
441
|
+
}
|
442
|
+
}
|
443
|
+
}
|
444
|
+
|
445
|
+
|
446
|
+
/*************************************************************************
|
447
|
+
Unpacking matrix P which reduces matrix A to bidiagonal form.
|
448
|
+
The subroutine returns transposed matrix P.
|
449
|
+
|
450
|
+
Input parameters:
|
451
|
+
QP - matrices Q and P in compact form.
|
452
|
+
Output of ToBidiagonal subroutine.
|
453
|
+
M - number of rows in matrix A.
|
454
|
+
N - number of columns in matrix A.
|
455
|
+
TAUP - scalar factors which are used to form P.
|
456
|
+
Output of ToBidiagonal subroutine.
|
457
|
+
PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
|
458
|
+
|
459
|
+
Output parameters:
|
460
|
+
PT - first PTRows columns of matrix P^T
|
461
|
+
Array[0..PTRows-1, 0..N-1]
|
462
|
+
If PTRows=0, the array is not modified.
|
463
|
+
|
464
|
+
-- ALGLIB --
|
465
|
+
Copyright 2005-2007 by Bochkanov Sergey
|
466
|
+
*************************************************************************/
|
467
|
+
void rmatrixbdunpackpt(const ap::real_2d_array& qp,
|
468
|
+
int m,
|
469
|
+
int n,
|
470
|
+
const ap::real_1d_array& taup,
|
471
|
+
int ptrows,
|
472
|
+
ap::real_2d_array& pt)
|
473
|
+
{
|
474
|
+
int i;
|
475
|
+
int j;
|
476
|
+
|
477
|
+
ap::ap_error::make_assertion(ptrows<=n, "RMatrixBDUnpackPT: PTRows>N!");
|
478
|
+
ap::ap_error::make_assertion(ptrows>=0, "RMatrixBDUnpackPT: PTRows<0!");
|
479
|
+
if( m==0||n==0||ptrows==0 )
|
480
|
+
{
|
481
|
+
return;
|
482
|
+
}
|
483
|
+
|
484
|
+
//
|
485
|
+
// prepare PT
|
486
|
+
//
|
487
|
+
pt.setbounds(0, ptrows-1, 0, n-1);
|
488
|
+
for(i = 0; i <= ptrows-1; i++)
|
489
|
+
{
|
490
|
+
for(j = 0; j <= n-1; j++)
|
491
|
+
{
|
492
|
+
if( i==j )
|
493
|
+
{
|
494
|
+
pt(i,j) = 1;
|
495
|
+
}
|
496
|
+
else
|
497
|
+
{
|
498
|
+
pt(i,j) = 0;
|
499
|
+
}
|
500
|
+
}
|
501
|
+
}
|
502
|
+
|
503
|
+
//
|
504
|
+
// Calculate
|
505
|
+
//
|
506
|
+
rmatrixbdmultiplybyp(qp, m, n, taup, pt, ptrows, n, true, true);
|
507
|
+
}
|
508
|
+
|
509
|
+
|
510
|
+
/*************************************************************************
|
511
|
+
Multiplication by matrix P which reduces matrix A to bidiagonal form.
|
512
|
+
|
513
|
+
The algorithm allows pre- or post-multiply by P or P'.
|
514
|
+
|
515
|
+
Input parameters:
|
516
|
+
QP - matrices Q and P in compact form.
|
517
|
+
Output of RMatrixBD subroutine.
|
518
|
+
M - number of rows in matrix A.
|
519
|
+
N - number of columns in matrix A.
|
520
|
+
TAUP - scalar factors which are used to form P.
|
521
|
+
Output of RMatrixBD subroutine.
|
522
|
+
Z - multiplied matrix.
|
523
|
+
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
524
|
+
ZRows - number of rows in matrix Z. If FromTheRight=False,
|
525
|
+
ZRows=N, otherwise ZRows can be arbitrary.
|
526
|
+
ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
527
|
+
ZColumns=N, otherwise ZColumns can be arbitrary.
|
528
|
+
FromTheRight - pre- or post-multiply.
|
529
|
+
DoTranspose - multiply by P or P'.
|
530
|
+
|
531
|
+
Output parameters:
|
532
|
+
Z - product of Z and P.
|
533
|
+
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
534
|
+
If ZRows=0 or ZColumns=0, the array is not modified.
|
535
|
+
|
536
|
+
-- ALGLIB --
|
537
|
+
Copyright 2005-2007 by Bochkanov Sergey
|
538
|
+
*************************************************************************/
|
539
|
+
void rmatrixbdmultiplybyp(const ap::real_2d_array& qp,
|
540
|
+
int m,
|
541
|
+
int n,
|
542
|
+
const ap::real_1d_array& taup,
|
543
|
+
ap::real_2d_array& z,
|
544
|
+
int zrows,
|
545
|
+
int zcolumns,
|
546
|
+
bool fromtheright,
|
547
|
+
bool dotranspose)
|
548
|
+
{
|
549
|
+
int i;
|
550
|
+
ap::real_1d_array v;
|
551
|
+
ap::real_1d_array work;
|
552
|
+
int mx;
|
553
|
+
int i1;
|
554
|
+
int i2;
|
555
|
+
int istep;
|
556
|
+
|
557
|
+
if( m<=0||n<=0||zrows<=0||zcolumns<=0 )
|
558
|
+
{
|
559
|
+
return;
|
560
|
+
}
|
561
|
+
ap::ap_error::make_assertion(fromtheright&&zcolumns==n||!fromtheright&&zrows==n, "RMatrixBDMultiplyByP: incorrect Z size!");
|
562
|
+
|
563
|
+
//
|
564
|
+
// init
|
565
|
+
//
|
566
|
+
mx = ap::maxint(m, n);
|
567
|
+
mx = ap::maxint(mx, zrows);
|
568
|
+
mx = ap::maxint(mx, zcolumns);
|
569
|
+
v.setbounds(0, mx);
|
570
|
+
work.setbounds(0, mx);
|
571
|
+
v.setbounds(0, mx);
|
572
|
+
work.setbounds(0, mx);
|
573
|
+
if( m>=n )
|
574
|
+
{
|
575
|
+
|
576
|
+
//
|
577
|
+
// setup
|
578
|
+
//
|
579
|
+
if( fromtheright )
|
580
|
+
{
|
581
|
+
i1 = n-2;
|
582
|
+
i2 = 0;
|
583
|
+
istep = -1;
|
584
|
+
}
|
585
|
+
else
|
586
|
+
{
|
587
|
+
i1 = 0;
|
588
|
+
i2 = n-2;
|
589
|
+
istep = +1;
|
590
|
+
}
|
591
|
+
if( !dotranspose )
|
592
|
+
{
|
593
|
+
i = i1;
|
594
|
+
i1 = i2;
|
595
|
+
i2 = i;
|
596
|
+
istep = -istep;
|
597
|
+
}
|
598
|
+
|
599
|
+
//
|
600
|
+
// Process
|
601
|
+
//
|
602
|
+
if( n-1>0 )
|
603
|
+
{
|
604
|
+
i = i1;
|
605
|
+
do
|
606
|
+
{
|
607
|
+
ap::vmove(&v(1), &qp(i, i+1), ap::vlen(1,n-1-i));
|
608
|
+
v(1) = 1;
|
609
|
+
if( fromtheright )
|
610
|
+
{
|
611
|
+
applyreflectionfromtheright(z, taup(i), v, 0, zrows-1, i+1, n-1, work);
|
612
|
+
}
|
613
|
+
else
|
614
|
+
{
|
615
|
+
applyreflectionfromtheleft(z, taup(i), v, i+1, n-1, 0, zcolumns-1, work);
|
616
|
+
}
|
617
|
+
i = i+istep;
|
618
|
+
}
|
619
|
+
while(i!=i2+istep);
|
620
|
+
}
|
621
|
+
}
|
622
|
+
else
|
623
|
+
{
|
624
|
+
|
625
|
+
//
|
626
|
+
// setup
|
627
|
+
//
|
628
|
+
if( fromtheright )
|
629
|
+
{
|
630
|
+
i1 = m-1;
|
631
|
+
i2 = 0;
|
632
|
+
istep = -1;
|
633
|
+
}
|
634
|
+
else
|
635
|
+
{
|
636
|
+
i1 = 0;
|
637
|
+
i2 = m-1;
|
638
|
+
istep = +1;
|
639
|
+
}
|
640
|
+
if( !dotranspose )
|
641
|
+
{
|
642
|
+
i = i1;
|
643
|
+
i1 = i2;
|
644
|
+
i2 = i;
|
645
|
+
istep = -istep;
|
646
|
+
}
|
647
|
+
|
648
|
+
//
|
649
|
+
// Process
|
650
|
+
//
|
651
|
+
i = i1;
|
652
|
+
do
|
653
|
+
{
|
654
|
+
ap::vmove(&v(1), &qp(i, i), ap::vlen(1,n-i));
|
655
|
+
v(1) = 1;
|
656
|
+
if( fromtheright )
|
657
|
+
{
|
658
|
+
applyreflectionfromtheright(z, taup(i), v, 0, zrows-1, i, n-1, work);
|
659
|
+
}
|
660
|
+
else
|
661
|
+
{
|
662
|
+
applyreflectionfromtheleft(z, taup(i), v, i, n-1, 0, zcolumns-1, work);
|
663
|
+
}
|
664
|
+
i = i+istep;
|
665
|
+
}
|
666
|
+
while(i!=i2+istep);
|
667
|
+
}
|
668
|
+
}
|
669
|
+
|
670
|
+
|
671
|
+
/*************************************************************************
|
672
|
+
Unpacking of the main and secondary diagonals of bidiagonal decomposition
|
673
|
+
of matrix A.
|
674
|
+
|
675
|
+
Input parameters:
|
676
|
+
B - output of RMatrixBD subroutine.
|
677
|
+
M - number of rows in matrix B.
|
678
|
+
N - number of columns in matrix B.
|
679
|
+
|
680
|
+
Output parameters:
|
681
|
+
IsUpper - True, if the matrix is upper bidiagonal.
|
682
|
+
otherwise IsUpper is False.
|
683
|
+
D - the main diagonal.
|
684
|
+
Array whose index ranges within [0..Min(M,N)-1].
|
685
|
+
E - the secondary diagonal (upper or lower, depending on
|
686
|
+
the value of IsUpper).
|
687
|
+
Array index ranges within [0..Min(M,N)-1], the last
|
688
|
+
element is not used.
|
689
|
+
|
690
|
+
-- ALGLIB --
|
691
|
+
Copyright 2005-2007 by Bochkanov Sergey
|
692
|
+
*************************************************************************/
|
693
|
+
void rmatrixbdunpackdiagonals(const ap::real_2d_array& b,
|
694
|
+
int m,
|
695
|
+
int n,
|
696
|
+
bool& isupper,
|
697
|
+
ap::real_1d_array& d,
|
698
|
+
ap::real_1d_array& e)
|
699
|
+
{
|
700
|
+
int i;
|
701
|
+
|
702
|
+
isupper = m>=n;
|
703
|
+
if( m<=0||n<=0 )
|
704
|
+
{
|
705
|
+
return;
|
706
|
+
}
|
707
|
+
if( isupper )
|
708
|
+
{
|
709
|
+
d.setbounds(0, n-1);
|
710
|
+
e.setbounds(0, n-1);
|
711
|
+
for(i = 0; i <= n-2; i++)
|
712
|
+
{
|
713
|
+
d(i) = b(i,i);
|
714
|
+
e(i) = b(i,i+1);
|
715
|
+
}
|
716
|
+
d(n-1) = b(n-1,n-1);
|
717
|
+
}
|
718
|
+
else
|
719
|
+
{
|
720
|
+
d.setbounds(0, m-1);
|
721
|
+
e.setbounds(0, m-1);
|
722
|
+
for(i = 0; i <= m-2; i++)
|
723
|
+
{
|
724
|
+
d(i) = b(i,i);
|
725
|
+
e(i) = b(i+1,i);
|
726
|
+
}
|
727
|
+
d(m-1) = b(m-1,m-1);
|
728
|
+
}
|
729
|
+
}
|
730
|
+
|
731
|
+
|
732
|
+
/*************************************************************************
|
733
|
+
Obsolete 1-based subroutine.
|
734
|
+
See RMatrixBD for 0-based replacement.
|
735
|
+
*************************************************************************/
|
736
|
+
void tobidiagonal(ap::real_2d_array& a,
|
737
|
+
int m,
|
738
|
+
int n,
|
739
|
+
ap::real_1d_array& tauq,
|
740
|
+
ap::real_1d_array& taup)
|
741
|
+
{
|
742
|
+
ap::real_1d_array work;
|
743
|
+
ap::real_1d_array t;
|
744
|
+
int minmn;
|
745
|
+
int maxmn;
|
746
|
+
int i;
|
747
|
+
double ltau;
|
748
|
+
int mmip1;
|
749
|
+
int nmi;
|
750
|
+
int ip1;
|
751
|
+
int nmip1;
|
752
|
+
int mmi;
|
753
|
+
|
754
|
+
minmn = ap::minint(m, n);
|
755
|
+
maxmn = ap::maxint(m, n);
|
756
|
+
work.setbounds(1, maxmn);
|
757
|
+
t.setbounds(1, maxmn);
|
758
|
+
taup.setbounds(1, minmn);
|
759
|
+
tauq.setbounds(1, minmn);
|
760
|
+
if( m>=n )
|
761
|
+
{
|
762
|
+
|
763
|
+
//
|
764
|
+
// Reduce to upper bidiagonal form
|
765
|
+
//
|
766
|
+
for(i = 1; i <= n; i++)
|
767
|
+
{
|
768
|
+
|
769
|
+
//
|
770
|
+
// Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
771
|
+
//
|
772
|
+
mmip1 = m-i+1;
|
773
|
+
ap::vmove(t.getvector(1, mmip1), a.getcolumn(i, i, m));
|
774
|
+
generatereflection(t, mmip1, ltau);
|
775
|
+
tauq(i) = ltau;
|
776
|
+
ap::vmove(a.getcolumn(i, i, m), t.getvector(1, mmip1));
|
777
|
+
t(1) = 1;
|
778
|
+
|
779
|
+
//
|
780
|
+
// Apply H(i) to A(i:m,i+1:n) from the left
|
781
|
+
//
|
782
|
+
applyreflectionfromtheleft(a, ltau, t, i, m, i+1, n, work);
|
783
|
+
if( i<n )
|
784
|
+
{
|
785
|
+
|
786
|
+
//
|
787
|
+
// Generate elementary reflector G(i) to annihilate
|
788
|
+
// A(i,i+2:n)
|
789
|
+
//
|
790
|
+
nmi = n-i;
|
791
|
+
ip1 = i+1;
|
792
|
+
ap::vmove(&t(1), &a(i, ip1), ap::vlen(1,nmi));
|
793
|
+
generatereflection(t, nmi, ltau);
|
794
|
+
taup(i) = ltau;
|
795
|
+
ap::vmove(&a(i, ip1), &t(1), ap::vlen(ip1,n));
|
796
|
+
t(1) = 1;
|
797
|
+
|
798
|
+
//
|
799
|
+
// Apply G(i) to A(i+1:m,i+1:n) from the right
|
800
|
+
//
|
801
|
+
applyreflectionfromtheright(a, ltau, t, i+1, m, i+1, n, work);
|
802
|
+
}
|
803
|
+
else
|
804
|
+
{
|
805
|
+
taup(i) = 0;
|
806
|
+
}
|
807
|
+
}
|
808
|
+
}
|
809
|
+
else
|
810
|
+
{
|
811
|
+
|
812
|
+
//
|
813
|
+
// Reduce to lower bidiagonal form
|
814
|
+
//
|
815
|
+
for(i = 1; i <= m; i++)
|
816
|
+
{
|
817
|
+
|
818
|
+
//
|
819
|
+
// Generate elementary reflector G(i) to annihilate A(i,i+1:n)
|
820
|
+
//
|
821
|
+
nmip1 = n-i+1;
|
822
|
+
ap::vmove(&t(1), &a(i, i), ap::vlen(1,nmip1));
|
823
|
+
generatereflection(t, nmip1, ltau);
|
824
|
+
taup(i) = ltau;
|
825
|
+
ap::vmove(&a(i, i), &t(1), ap::vlen(i,n));
|
826
|
+
t(1) = 1;
|
827
|
+
|
828
|
+
//
|
829
|
+
// Apply G(i) to A(i+1:m,i:n) from the right
|
830
|
+
//
|
831
|
+
applyreflectionfromtheright(a, ltau, t, i+1, m, i, n, work);
|
832
|
+
if( i<m )
|
833
|
+
{
|
834
|
+
|
835
|
+
//
|
836
|
+
// Generate elementary reflector H(i) to annihilate
|
837
|
+
// A(i+2:m,i)
|
838
|
+
//
|
839
|
+
mmi = m-i;
|
840
|
+
ip1 = i+1;
|
841
|
+
ap::vmove(t.getvector(1, mmi), a.getcolumn(i, ip1, m));
|
842
|
+
generatereflection(t, mmi, ltau);
|
843
|
+
tauq(i) = ltau;
|
844
|
+
ap::vmove(a.getcolumn(i, ip1, m), t.getvector(1, mmi));
|
845
|
+
t(1) = 1;
|
846
|
+
|
847
|
+
//
|
848
|
+
// Apply H(i) to A(i+1:m,i+1:n) from the left
|
849
|
+
//
|
850
|
+
applyreflectionfromtheleft(a, ltau, t, i+1, m, i+1, n, work);
|
851
|
+
}
|
852
|
+
else
|
853
|
+
{
|
854
|
+
tauq(i) = 0;
|
855
|
+
}
|
856
|
+
}
|
857
|
+
}
|
858
|
+
}
|
859
|
+
|
860
|
+
|
861
|
+
/*************************************************************************
|
862
|
+
Obsolete 1-based subroutine.
|
863
|
+
See RMatrixBDUnpackQ for 0-based replacement.
|
864
|
+
*************************************************************************/
|
865
|
+
void unpackqfrombidiagonal(const ap::real_2d_array& qp,
|
866
|
+
int m,
|
867
|
+
int n,
|
868
|
+
const ap::real_1d_array& tauq,
|
869
|
+
int qcolumns,
|
870
|
+
ap::real_2d_array& q)
|
871
|
+
{
|
872
|
+
int i;
|
873
|
+
int j;
|
874
|
+
int ip1;
|
875
|
+
ap::real_1d_array v;
|
876
|
+
ap::real_1d_array work;
|
877
|
+
int vm;
|
878
|
+
|
879
|
+
ap::ap_error::make_assertion(qcolumns<=m, "UnpackQFromBidiagonal: QColumns>M!");
|
880
|
+
if( m==0||n==0||qcolumns==0 )
|
881
|
+
{
|
882
|
+
return;
|
883
|
+
}
|
884
|
+
|
885
|
+
//
|
886
|
+
// init
|
887
|
+
//
|
888
|
+
q.setbounds(1, m, 1, qcolumns);
|
889
|
+
v.setbounds(1, m);
|
890
|
+
work.setbounds(1, qcolumns);
|
891
|
+
|
892
|
+
//
|
893
|
+
// prepare Q
|
894
|
+
//
|
895
|
+
for(i = 1; i <= m; i++)
|
896
|
+
{
|
897
|
+
for(j = 1; j <= qcolumns; j++)
|
898
|
+
{
|
899
|
+
if( i==j )
|
900
|
+
{
|
901
|
+
q(i,j) = 1;
|
902
|
+
}
|
903
|
+
else
|
904
|
+
{
|
905
|
+
q(i,j) = 0;
|
906
|
+
}
|
907
|
+
}
|
908
|
+
}
|
909
|
+
if( m>=n )
|
910
|
+
{
|
911
|
+
for(i = ap::minint(n, qcolumns); i >= 1; i--)
|
912
|
+
{
|
913
|
+
vm = m-i+1;
|
914
|
+
ap::vmove(v.getvector(1, vm), qp.getcolumn(i, i, m));
|
915
|
+
v(1) = 1;
|
916
|
+
applyreflectionfromtheleft(q, tauq(i), v, i, m, 1, qcolumns, work);
|
917
|
+
}
|
918
|
+
}
|
919
|
+
else
|
920
|
+
{
|
921
|
+
for(i = ap::minint(m-1, qcolumns-1); i >= 1; i--)
|
922
|
+
{
|
923
|
+
vm = m-i;
|
924
|
+
ip1 = i+1;
|
925
|
+
ap::vmove(v.getvector(1, vm), qp.getcolumn(i, ip1, m));
|
926
|
+
v(1) = 1;
|
927
|
+
applyreflectionfromtheleft(q, tauq(i), v, i+1, m, 1, qcolumns, work);
|
928
|
+
}
|
929
|
+
}
|
930
|
+
}
|
931
|
+
|
932
|
+
|
933
|
+
/*************************************************************************
|
934
|
+
Obsolete 1-based subroutine.
|
935
|
+
See RMatrixBDMultiplyByQ for 0-based replacement.
|
936
|
+
*************************************************************************/
|
937
|
+
void multiplybyqfrombidiagonal(const ap::real_2d_array& qp,
|
938
|
+
int m,
|
939
|
+
int n,
|
940
|
+
const ap::real_1d_array& tauq,
|
941
|
+
ap::real_2d_array& z,
|
942
|
+
int zrows,
|
943
|
+
int zcolumns,
|
944
|
+
bool fromtheright,
|
945
|
+
bool dotranspose)
|
946
|
+
{
|
947
|
+
int i;
|
948
|
+
int ip1;
|
949
|
+
int i1;
|
950
|
+
int i2;
|
951
|
+
int istep;
|
952
|
+
ap::real_1d_array v;
|
953
|
+
ap::real_1d_array work;
|
954
|
+
int vm;
|
955
|
+
int mx;
|
956
|
+
|
957
|
+
if( m<=0||n<=0||zrows<=0||zcolumns<=0 )
|
958
|
+
{
|
959
|
+
return;
|
960
|
+
}
|
961
|
+
ap::ap_error::make_assertion(fromtheright&&zcolumns==m||!fromtheright&&zrows==m, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
962
|
+
|
963
|
+
//
|
964
|
+
// init
|
965
|
+
//
|
966
|
+
mx = ap::maxint(m, n);
|
967
|
+
mx = ap::maxint(mx, zrows);
|
968
|
+
mx = ap::maxint(mx, zcolumns);
|
969
|
+
v.setbounds(1, mx);
|
970
|
+
work.setbounds(1, mx);
|
971
|
+
if( m>=n )
|
972
|
+
{
|
973
|
+
|
974
|
+
//
|
975
|
+
// setup
|
976
|
+
//
|
977
|
+
if( fromtheright )
|
978
|
+
{
|
979
|
+
i1 = 1;
|
980
|
+
i2 = n;
|
981
|
+
istep = +1;
|
982
|
+
}
|
983
|
+
else
|
984
|
+
{
|
985
|
+
i1 = n;
|
986
|
+
i2 = 1;
|
987
|
+
istep = -1;
|
988
|
+
}
|
989
|
+
if( dotranspose )
|
990
|
+
{
|
991
|
+
i = i1;
|
992
|
+
i1 = i2;
|
993
|
+
i2 = i;
|
994
|
+
istep = -istep;
|
995
|
+
}
|
996
|
+
|
997
|
+
//
|
998
|
+
// Process
|
999
|
+
//
|
1000
|
+
i = i1;
|
1001
|
+
do
|
1002
|
+
{
|
1003
|
+
vm = m-i+1;
|
1004
|
+
ap::vmove(v.getvector(1, vm), qp.getcolumn(i, i, m));
|
1005
|
+
v(1) = 1;
|
1006
|
+
if( fromtheright )
|
1007
|
+
{
|
1008
|
+
applyreflectionfromtheright(z, tauq(i), v, 1, zrows, i, m, work);
|
1009
|
+
}
|
1010
|
+
else
|
1011
|
+
{
|
1012
|
+
applyreflectionfromtheleft(z, tauq(i), v, i, m, 1, zcolumns, work);
|
1013
|
+
}
|
1014
|
+
i = i+istep;
|
1015
|
+
}
|
1016
|
+
while(i!=i2+istep);
|
1017
|
+
}
|
1018
|
+
else
|
1019
|
+
{
|
1020
|
+
|
1021
|
+
//
|
1022
|
+
// setup
|
1023
|
+
//
|
1024
|
+
if( fromtheright )
|
1025
|
+
{
|
1026
|
+
i1 = 1;
|
1027
|
+
i2 = m-1;
|
1028
|
+
istep = +1;
|
1029
|
+
}
|
1030
|
+
else
|
1031
|
+
{
|
1032
|
+
i1 = m-1;
|
1033
|
+
i2 = 1;
|
1034
|
+
istep = -1;
|
1035
|
+
}
|
1036
|
+
if( dotranspose )
|
1037
|
+
{
|
1038
|
+
i = i1;
|
1039
|
+
i1 = i2;
|
1040
|
+
i2 = i;
|
1041
|
+
istep = -istep;
|
1042
|
+
}
|
1043
|
+
|
1044
|
+
//
|
1045
|
+
// Process
|
1046
|
+
//
|
1047
|
+
if( m-1>0 )
|
1048
|
+
{
|
1049
|
+
i = i1;
|
1050
|
+
do
|
1051
|
+
{
|
1052
|
+
vm = m-i;
|
1053
|
+
ip1 = i+1;
|
1054
|
+
ap::vmove(v.getvector(1, vm), qp.getcolumn(i, ip1, m));
|
1055
|
+
v(1) = 1;
|
1056
|
+
if( fromtheright )
|
1057
|
+
{
|
1058
|
+
applyreflectionfromtheright(z, tauq(i), v, 1, zrows, i+1, m, work);
|
1059
|
+
}
|
1060
|
+
else
|
1061
|
+
{
|
1062
|
+
applyreflectionfromtheleft(z, tauq(i), v, i+1, m, 1, zcolumns, work);
|
1063
|
+
}
|
1064
|
+
i = i+istep;
|
1065
|
+
}
|
1066
|
+
while(i!=i2+istep);
|
1067
|
+
}
|
1068
|
+
}
|
1069
|
+
}
|
1070
|
+
|
1071
|
+
|
1072
|
+
/*************************************************************************
|
1073
|
+
Obsolete 1-based subroutine.
|
1074
|
+
See RMatrixBDUnpackPT for 0-based replacement.
|
1075
|
+
*************************************************************************/
|
1076
|
+
void unpackptfrombidiagonal(const ap::real_2d_array& qp,
|
1077
|
+
int m,
|
1078
|
+
int n,
|
1079
|
+
const ap::real_1d_array& taup,
|
1080
|
+
int ptrows,
|
1081
|
+
ap::real_2d_array& pt)
|
1082
|
+
{
|
1083
|
+
int i;
|
1084
|
+
int j;
|
1085
|
+
int ip1;
|
1086
|
+
ap::real_1d_array v;
|
1087
|
+
ap::real_1d_array work;
|
1088
|
+
int vm;
|
1089
|
+
|
1090
|
+
ap::ap_error::make_assertion(ptrows<=n, "UnpackPTFromBidiagonal: PTRows>N!");
|
1091
|
+
if( m==0||n==0||ptrows==0 )
|
1092
|
+
{
|
1093
|
+
return;
|
1094
|
+
}
|
1095
|
+
|
1096
|
+
//
|
1097
|
+
// init
|
1098
|
+
//
|
1099
|
+
pt.setbounds(1, ptrows, 1, n);
|
1100
|
+
v.setbounds(1, n);
|
1101
|
+
work.setbounds(1, ptrows);
|
1102
|
+
|
1103
|
+
//
|
1104
|
+
// prepare PT
|
1105
|
+
//
|
1106
|
+
for(i = 1; i <= ptrows; i++)
|
1107
|
+
{
|
1108
|
+
for(j = 1; j <= n; j++)
|
1109
|
+
{
|
1110
|
+
if( i==j )
|
1111
|
+
{
|
1112
|
+
pt(i,j) = 1;
|
1113
|
+
}
|
1114
|
+
else
|
1115
|
+
{
|
1116
|
+
pt(i,j) = 0;
|
1117
|
+
}
|
1118
|
+
}
|
1119
|
+
}
|
1120
|
+
if( m>=n )
|
1121
|
+
{
|
1122
|
+
for(i = ap::minint(n-1, ptrows-1); i >= 1; i--)
|
1123
|
+
{
|
1124
|
+
vm = n-i;
|
1125
|
+
ip1 = i+1;
|
1126
|
+
ap::vmove(&v(1), &qp(i, ip1), ap::vlen(1,vm));
|
1127
|
+
v(1) = 1;
|
1128
|
+
applyreflectionfromtheright(pt, taup(i), v, 1, ptrows, i+1, n, work);
|
1129
|
+
}
|
1130
|
+
}
|
1131
|
+
else
|
1132
|
+
{
|
1133
|
+
for(i = ap::minint(m, ptrows); i >= 1; i--)
|
1134
|
+
{
|
1135
|
+
vm = n-i+1;
|
1136
|
+
ap::vmove(&v(1), &qp(i, i), ap::vlen(1,vm));
|
1137
|
+
v(1) = 1;
|
1138
|
+
applyreflectionfromtheright(pt, taup(i), v, 1, ptrows, i, n, work);
|
1139
|
+
}
|
1140
|
+
}
|
1141
|
+
}
|
1142
|
+
|
1143
|
+
|
1144
|
+
/*************************************************************************
|
1145
|
+
Obsolete 1-based subroutine.
|
1146
|
+
See RMatrixBDMultiplyByP for 0-based replacement.
|
1147
|
+
*************************************************************************/
|
1148
|
+
void multiplybypfrombidiagonal(const ap::real_2d_array& qp,
|
1149
|
+
int m,
|
1150
|
+
int n,
|
1151
|
+
const ap::real_1d_array& taup,
|
1152
|
+
ap::real_2d_array& z,
|
1153
|
+
int zrows,
|
1154
|
+
int zcolumns,
|
1155
|
+
bool fromtheright,
|
1156
|
+
bool dotranspose)
|
1157
|
+
{
|
1158
|
+
int i;
|
1159
|
+
int ip1;
|
1160
|
+
ap::real_1d_array v;
|
1161
|
+
ap::real_1d_array work;
|
1162
|
+
int vm;
|
1163
|
+
int mx;
|
1164
|
+
int i1;
|
1165
|
+
int i2;
|
1166
|
+
int istep;
|
1167
|
+
|
1168
|
+
if( m<=0||n<=0||zrows<=0||zcolumns<=0 )
|
1169
|
+
{
|
1170
|
+
return;
|
1171
|
+
}
|
1172
|
+
ap::ap_error::make_assertion(fromtheright&&zcolumns==n||!fromtheright&&zrows==n, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
1173
|
+
|
1174
|
+
//
|
1175
|
+
// init
|
1176
|
+
//
|
1177
|
+
mx = ap::maxint(m, n);
|
1178
|
+
mx = ap::maxint(mx, zrows);
|
1179
|
+
mx = ap::maxint(mx, zcolumns);
|
1180
|
+
v.setbounds(1, mx);
|
1181
|
+
work.setbounds(1, mx);
|
1182
|
+
v.setbounds(1, mx);
|
1183
|
+
work.setbounds(1, mx);
|
1184
|
+
if( m>=n )
|
1185
|
+
{
|
1186
|
+
|
1187
|
+
//
|
1188
|
+
// setup
|
1189
|
+
//
|
1190
|
+
if( fromtheright )
|
1191
|
+
{
|
1192
|
+
i1 = n-1;
|
1193
|
+
i2 = 1;
|
1194
|
+
istep = -1;
|
1195
|
+
}
|
1196
|
+
else
|
1197
|
+
{
|
1198
|
+
i1 = 1;
|
1199
|
+
i2 = n-1;
|
1200
|
+
istep = +1;
|
1201
|
+
}
|
1202
|
+
if( !dotranspose )
|
1203
|
+
{
|
1204
|
+
i = i1;
|
1205
|
+
i1 = i2;
|
1206
|
+
i2 = i;
|
1207
|
+
istep = -istep;
|
1208
|
+
}
|
1209
|
+
|
1210
|
+
//
|
1211
|
+
// Process
|
1212
|
+
//
|
1213
|
+
if( n-1>0 )
|
1214
|
+
{
|
1215
|
+
i = i1;
|
1216
|
+
do
|
1217
|
+
{
|
1218
|
+
vm = n-i;
|
1219
|
+
ip1 = i+1;
|
1220
|
+
ap::vmove(&v(1), &qp(i, ip1), ap::vlen(1,vm));
|
1221
|
+
v(1) = 1;
|
1222
|
+
if( fromtheright )
|
1223
|
+
{
|
1224
|
+
applyreflectionfromtheright(z, taup(i), v, 1, zrows, i+1, n, work);
|
1225
|
+
}
|
1226
|
+
else
|
1227
|
+
{
|
1228
|
+
applyreflectionfromtheleft(z, taup(i), v, i+1, n, 1, zcolumns, work);
|
1229
|
+
}
|
1230
|
+
i = i+istep;
|
1231
|
+
}
|
1232
|
+
while(i!=i2+istep);
|
1233
|
+
}
|
1234
|
+
}
|
1235
|
+
else
|
1236
|
+
{
|
1237
|
+
|
1238
|
+
//
|
1239
|
+
// setup
|
1240
|
+
//
|
1241
|
+
if( fromtheright )
|
1242
|
+
{
|
1243
|
+
i1 = m;
|
1244
|
+
i2 = 1;
|
1245
|
+
istep = -1;
|
1246
|
+
}
|
1247
|
+
else
|
1248
|
+
{
|
1249
|
+
i1 = 1;
|
1250
|
+
i2 = m;
|
1251
|
+
istep = +1;
|
1252
|
+
}
|
1253
|
+
if( !dotranspose )
|
1254
|
+
{
|
1255
|
+
i = i1;
|
1256
|
+
i1 = i2;
|
1257
|
+
i2 = i;
|
1258
|
+
istep = -istep;
|
1259
|
+
}
|
1260
|
+
|
1261
|
+
//
|
1262
|
+
// Process
|
1263
|
+
//
|
1264
|
+
i = i1;
|
1265
|
+
do
|
1266
|
+
{
|
1267
|
+
vm = n-i+1;
|
1268
|
+
ap::vmove(&v(1), &qp(i, i), ap::vlen(1,vm));
|
1269
|
+
v(1) = 1;
|
1270
|
+
if( fromtheright )
|
1271
|
+
{
|
1272
|
+
applyreflectionfromtheright(z, taup(i), v, 1, zrows, i, n, work);
|
1273
|
+
}
|
1274
|
+
else
|
1275
|
+
{
|
1276
|
+
applyreflectionfromtheleft(z, taup(i), v, i, n, 1, zcolumns, work);
|
1277
|
+
}
|
1278
|
+
i = i+istep;
|
1279
|
+
}
|
1280
|
+
while(i!=i2+istep);
|
1281
|
+
}
|
1282
|
+
}
|
1283
|
+
|
1284
|
+
|
1285
|
+
/*************************************************************************
|
1286
|
+
Obsolete 1-based subroutine.
|
1287
|
+
See RMatrixBDUnpackDiagonals for 0-based replacement.
|
1288
|
+
*************************************************************************/
|
1289
|
+
void unpackdiagonalsfrombidiagonal(const ap::real_2d_array& b,
|
1290
|
+
int m,
|
1291
|
+
int n,
|
1292
|
+
bool& isupper,
|
1293
|
+
ap::real_1d_array& d,
|
1294
|
+
ap::real_1d_array& e)
|
1295
|
+
{
|
1296
|
+
int i;
|
1297
|
+
|
1298
|
+
isupper = m>=n;
|
1299
|
+
if( m==0||n==0 )
|
1300
|
+
{
|
1301
|
+
return;
|
1302
|
+
}
|
1303
|
+
if( isupper )
|
1304
|
+
{
|
1305
|
+
d.setbounds(1, n);
|
1306
|
+
e.setbounds(1, n);
|
1307
|
+
for(i = 1; i <= n-1; i++)
|
1308
|
+
{
|
1309
|
+
d(i) = b(i,i);
|
1310
|
+
e(i) = b(i,i+1);
|
1311
|
+
}
|
1312
|
+
d(n) = b(n,n);
|
1313
|
+
}
|
1314
|
+
else
|
1315
|
+
{
|
1316
|
+
d.setbounds(1, m);
|
1317
|
+
e.setbounds(1, m);
|
1318
|
+
for(i = 1; i <= m-1; i++)
|
1319
|
+
{
|
1320
|
+
d(i) = b(i,i);
|
1321
|
+
e(i) = b(i+1,i);
|
1322
|
+
}
|
1323
|
+
d(m) = b(m,m);
|
1324
|
+
}
|
1325
|
+
}
|
1326
|
+
|
1327
|
+
|
1328
|
+
|