alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/srcond.h
ADDED
@@ -0,0 +1,127 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _srcond_h
|
40
|
+
#define _srcond_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
#include "ldlt.h"
|
46
|
+
#include "ssolve.h"
|
47
|
+
#include "estnorm.h"
|
48
|
+
|
49
|
+
|
50
|
+
/*************************************************************************
|
51
|
+
Condition number estimate of a symmetric matrix
|
52
|
+
|
53
|
+
The algorithm calculates a lower bound of the condition number. In this
|
54
|
+
case, the algorithm does not return a lower bound of the condition number,
|
55
|
+
but an inverse number (to avoid an overflow in case of a singular matrix).
|
56
|
+
|
57
|
+
It should be noted that 1-norm and inf-norm condition numbers of symmetric
|
58
|
+
matrices are equal, so the algorithm doesn't take into account the
|
59
|
+
differences between these types of norms.
|
60
|
+
|
61
|
+
Input parameters:
|
62
|
+
A - symmetric definite matrix which is given by its upper or
|
63
|
+
lower triangle depending on IsUpper.
|
64
|
+
Array with elements [0..N-1, 0..N-1].
|
65
|
+
N - size of matrix A.
|
66
|
+
IsUpper - storage format.
|
67
|
+
|
68
|
+
Result:
|
69
|
+
1/LowerBound(cond(A))
|
70
|
+
*************************************************************************/
|
71
|
+
double smatrixrcond(const ap::real_2d_array& a, int n, bool isupper);
|
72
|
+
|
73
|
+
|
74
|
+
/*************************************************************************
|
75
|
+
Condition number estimate of a matrix given by LDLT-decomposition
|
76
|
+
|
77
|
+
The algorithm calculates a lower bound of the condition number. In this
|
78
|
+
case, the algorithm does not return a lower bound of the condition number,
|
79
|
+
but an inverse number (to avoid an overflow in case of a singular matrix).
|
80
|
+
|
81
|
+
It should be noted that 1-norm and inf-norm condition numbers of symmetric
|
82
|
+
matrices are equal, so the algorithm doesn't take into account the
|
83
|
+
differences between these types of norms.
|
84
|
+
|
85
|
+
Input parameters:
|
86
|
+
L - LDLT-decomposition of matrix A given by the upper or lower
|
87
|
+
triangle depending on IsUpper.
|
88
|
+
Output of SMatrixLDLT subroutine.
|
89
|
+
Pivots - table of permutations which were made during LDLT-decomposition,
|
90
|
+
Output of SMatrixLDLT subroutine.
|
91
|
+
N - size of matrix A.
|
92
|
+
IsUpper - storage format.
|
93
|
+
|
94
|
+
Result:
|
95
|
+
1/LowerBound(cond(A))
|
96
|
+
*************************************************************************/
|
97
|
+
double smatrixldltrcond(const ap::real_2d_array& l,
|
98
|
+
const ap::integer_1d_array& pivots,
|
99
|
+
int n,
|
100
|
+
bool isupper);
|
101
|
+
|
102
|
+
|
103
|
+
/*************************************************************************
|
104
|
+
Obsolete 1-based subroutine
|
105
|
+
*************************************************************************/
|
106
|
+
double rcondsymmetric(ap::real_2d_array a, int n, bool isupper);
|
107
|
+
|
108
|
+
|
109
|
+
/*************************************************************************
|
110
|
+
Obsolete 1-based subroutine
|
111
|
+
*************************************************************************/
|
112
|
+
double rcondldlt(const ap::real_2d_array& l,
|
113
|
+
const ap::integer_1d_array& pivots,
|
114
|
+
int n,
|
115
|
+
bool isupper);
|
116
|
+
|
117
|
+
|
118
|
+
void internalldltrcond(const ap::real_2d_array& l,
|
119
|
+
const ap::integer_1d_array& pivots,
|
120
|
+
int n,
|
121
|
+
bool isupper,
|
122
|
+
bool isnormprovided,
|
123
|
+
double anorm,
|
124
|
+
double& rcond);
|
125
|
+
|
126
|
+
|
127
|
+
#endif
|
@@ -0,0 +1,895 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include "ssolve.h"
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Solving a system of linear equations with a system matrix given by its
|
44
|
+
LDLT decomposition
|
45
|
+
|
46
|
+
The algorithm solves systems with a square matrix only.
|
47
|
+
|
48
|
+
Input parameters:
|
49
|
+
A - LDLT decomposition of the matrix (the result of the
|
50
|
+
SMatrixLDLT subroutine).
|
51
|
+
Pivots - row permutation table (the result of the SMatrixLDLT subroutine).
|
52
|
+
B - right side of a system.
|
53
|
+
Array whose index ranges within [0..N-1].
|
54
|
+
N - size of matrix A.
|
55
|
+
IsUpper - points to the triangle of matrix A in which the LDLT
|
56
|
+
decomposition is stored.
|
57
|
+
If IsUpper=True, the decomposition has the form of U*D*U',
|
58
|
+
matrix U is stored in the upper triangle of matrix A (in
|
59
|
+
that case, the lower triangle isn't used and isn't changed
|
60
|
+
by the subroutine).
|
61
|
+
Similarly, if IsUpper=False, the decomposition has the form
|
62
|
+
of L*D*L' and the lower triangle stores matrix L.
|
63
|
+
|
64
|
+
Output parameters:
|
65
|
+
X - solution of a system.
|
66
|
+
Array whose index ranges within [0..N-1].
|
67
|
+
|
68
|
+
Result:
|
69
|
+
True, if the matrix is not singular. X contains the solution.
|
70
|
+
False, if the matrix is singular (the determinant of matrix D is equal
|
71
|
+
to 0). In this case, X doesn't contain a solution.
|
72
|
+
*************************************************************************/
|
73
|
+
bool smatrixldltsolve(const ap::real_2d_array& a,
|
74
|
+
const ap::integer_1d_array& pivots,
|
75
|
+
ap::real_1d_array b,
|
76
|
+
int n,
|
77
|
+
bool isupper,
|
78
|
+
ap::real_1d_array& x)
|
79
|
+
{
|
80
|
+
bool result;
|
81
|
+
int i;
|
82
|
+
int j;
|
83
|
+
int k;
|
84
|
+
int kp;
|
85
|
+
double ak;
|
86
|
+
double akm1;
|
87
|
+
double akm1k;
|
88
|
+
double bk;
|
89
|
+
double bkm1;
|
90
|
+
double denom;
|
91
|
+
double v;
|
92
|
+
|
93
|
+
|
94
|
+
//
|
95
|
+
// Quick return if possible
|
96
|
+
//
|
97
|
+
result = true;
|
98
|
+
if( n==0 )
|
99
|
+
{
|
100
|
+
return result;
|
101
|
+
}
|
102
|
+
|
103
|
+
//
|
104
|
+
// Check that the diagonal matrix D is nonsingular
|
105
|
+
//
|
106
|
+
if( isupper )
|
107
|
+
{
|
108
|
+
|
109
|
+
//
|
110
|
+
// Upper triangular storage: examine D from bottom to top
|
111
|
+
//
|
112
|
+
for(i = n-1; i >= 0; i--)
|
113
|
+
{
|
114
|
+
if( pivots(i)>=0&&a(i,i)==0 )
|
115
|
+
{
|
116
|
+
result = false;
|
117
|
+
return result;
|
118
|
+
}
|
119
|
+
}
|
120
|
+
}
|
121
|
+
else
|
122
|
+
{
|
123
|
+
|
124
|
+
//
|
125
|
+
// Lower triangular storage: examine D from top to bottom.
|
126
|
+
//
|
127
|
+
for(i = 0; i <= n-1; i++)
|
128
|
+
{
|
129
|
+
if( pivots(i)>=0&&a(i,i)==0 )
|
130
|
+
{
|
131
|
+
result = false;
|
132
|
+
return result;
|
133
|
+
}
|
134
|
+
}
|
135
|
+
}
|
136
|
+
|
137
|
+
//
|
138
|
+
// Solve Ax = b
|
139
|
+
//
|
140
|
+
if( isupper )
|
141
|
+
{
|
142
|
+
|
143
|
+
//
|
144
|
+
// Solve A*X = B, where A = U*D*U'.
|
145
|
+
//
|
146
|
+
// First solve U*D*X = B, overwriting B with X.
|
147
|
+
//
|
148
|
+
// K+1 is the main loop index, decreasing from N to 1 in steps of
|
149
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
150
|
+
//
|
151
|
+
k = n-1;
|
152
|
+
while(k>=0)
|
153
|
+
{
|
154
|
+
if( pivots(k)>=0 )
|
155
|
+
{
|
156
|
+
|
157
|
+
//
|
158
|
+
// 1 x 1 diagonal block
|
159
|
+
//
|
160
|
+
// Interchange rows K+1 and IPIV(K+1).
|
161
|
+
//
|
162
|
+
kp = pivots(k);
|
163
|
+
if( kp!=k )
|
164
|
+
{
|
165
|
+
v = b(k);
|
166
|
+
b(k) = b(kp);
|
167
|
+
b(kp) = v;
|
168
|
+
}
|
169
|
+
|
170
|
+
//
|
171
|
+
// Multiply by inv(U(K+1)), where U(K+1) is the transformation
|
172
|
+
// stored in column K+1 of A.
|
173
|
+
//
|
174
|
+
v = b(k);
|
175
|
+
ap::vsub(b.getvector(0, k-1), a.getcolumn(k, 0, k-1), v);
|
176
|
+
|
177
|
+
//
|
178
|
+
// Multiply by the inverse of the diagonal block.
|
179
|
+
//
|
180
|
+
b(k) = b(k)/a(k,k);
|
181
|
+
k = k-1;
|
182
|
+
}
|
183
|
+
else
|
184
|
+
{
|
185
|
+
|
186
|
+
//
|
187
|
+
// 2 x 2 diagonal block
|
188
|
+
//
|
189
|
+
// Interchange rows K+1-1 and -IPIV(K+1).
|
190
|
+
//
|
191
|
+
kp = pivots(k)+n;
|
192
|
+
if( kp!=k-1 )
|
193
|
+
{
|
194
|
+
v = b(k-1);
|
195
|
+
b(k-1) = b(kp);
|
196
|
+
b(kp) = v;
|
197
|
+
}
|
198
|
+
|
199
|
+
//
|
200
|
+
// Multiply by inv(U(K+1)), where U(K+1) is the transformation
|
201
|
+
// stored in columns K+1-1 and K+1 of A.
|
202
|
+
//
|
203
|
+
v = b(k);
|
204
|
+
ap::vsub(b.getvector(0, k-2), a.getcolumn(k, 0, k-2), v);
|
205
|
+
v = b(k-1);
|
206
|
+
ap::vsub(b.getvector(0, k-2), a.getcolumn(k-1, 0, k-2), v);
|
207
|
+
|
208
|
+
//
|
209
|
+
// Multiply by the inverse of the diagonal block.
|
210
|
+
//
|
211
|
+
akm1k = a(k-1,k);
|
212
|
+
akm1 = a(k-1,k-1)/akm1k;
|
213
|
+
ak = a(k,k)/akm1k;
|
214
|
+
denom = akm1*ak-1;
|
215
|
+
bkm1 = b(k-1)/akm1k;
|
216
|
+
bk = b(k)/akm1k;
|
217
|
+
b(k-1) = (ak*bkm1-bk)/denom;
|
218
|
+
b(k) = (akm1*bk-bkm1)/denom;
|
219
|
+
k = k-2;
|
220
|
+
}
|
221
|
+
}
|
222
|
+
|
223
|
+
//
|
224
|
+
// Next solve U'*X = B, overwriting B with X.
|
225
|
+
//
|
226
|
+
// K+1 is the main loop index, increasing from 1 to N in steps of
|
227
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
228
|
+
//
|
229
|
+
k = 0;
|
230
|
+
while(k<=n-1)
|
231
|
+
{
|
232
|
+
if( pivots(k)>=0 )
|
233
|
+
{
|
234
|
+
|
235
|
+
//
|
236
|
+
// 1 x 1 diagonal block
|
237
|
+
//
|
238
|
+
// Multiply by inv(U'(K+1)), where U(K+1) is the transformation
|
239
|
+
// stored in column K+1 of A.
|
240
|
+
//
|
241
|
+
v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k, 0, k-1));
|
242
|
+
b(k) = b(k)-v;
|
243
|
+
|
244
|
+
//
|
245
|
+
// Interchange rows K+1 and IPIV(K+1).
|
246
|
+
//
|
247
|
+
kp = pivots(k);
|
248
|
+
if( kp!=k )
|
249
|
+
{
|
250
|
+
v = b(k);
|
251
|
+
b(k) = b(kp);
|
252
|
+
b(kp) = v;
|
253
|
+
}
|
254
|
+
k = k+1;
|
255
|
+
}
|
256
|
+
else
|
257
|
+
{
|
258
|
+
|
259
|
+
//
|
260
|
+
// 2 x 2 diagonal block
|
261
|
+
//
|
262
|
+
// Multiply by inv(U'(K+1+1)), where U(K+1+1) is the transformation
|
263
|
+
// stored in columns K+1 and K+1+1 of A.
|
264
|
+
//
|
265
|
+
v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k, 0, k-1));
|
266
|
+
b(k) = b(k)-v;
|
267
|
+
v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k+1, 0, k-1));
|
268
|
+
b(k+1) = b(k+1)-v;
|
269
|
+
|
270
|
+
//
|
271
|
+
// Interchange rows K+1 and -IPIV(K+1).
|
272
|
+
//
|
273
|
+
kp = pivots(k)+n;
|
274
|
+
if( kp!=k )
|
275
|
+
{
|
276
|
+
v = b(k);
|
277
|
+
b(k) = b(kp);
|
278
|
+
b(kp) = v;
|
279
|
+
}
|
280
|
+
k = k+2;
|
281
|
+
}
|
282
|
+
}
|
283
|
+
}
|
284
|
+
else
|
285
|
+
{
|
286
|
+
|
287
|
+
//
|
288
|
+
// Solve A*X = B, where A = L*D*L'.
|
289
|
+
//
|
290
|
+
// First solve L*D*X = B, overwriting B with X.
|
291
|
+
//
|
292
|
+
// K+1 is the main loop index, increasing from 1 to N in steps of
|
293
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
294
|
+
//
|
295
|
+
k = 0;
|
296
|
+
while(k<=n-1)
|
297
|
+
{
|
298
|
+
if( pivots(k)>=0 )
|
299
|
+
{
|
300
|
+
|
301
|
+
//
|
302
|
+
// 1 x 1 diagonal block
|
303
|
+
//
|
304
|
+
// Interchange rows K+1 and IPIV(K+1).
|
305
|
+
//
|
306
|
+
kp = pivots(k);
|
307
|
+
if( kp!=k )
|
308
|
+
{
|
309
|
+
v = b(k);
|
310
|
+
b(k) = b(kp);
|
311
|
+
b(kp) = v;
|
312
|
+
}
|
313
|
+
|
314
|
+
//
|
315
|
+
// Multiply by inv(L(K+1)), where L(K+1) is the transformation
|
316
|
+
// stored in column K+1 of A.
|
317
|
+
//
|
318
|
+
if( k+1<n )
|
319
|
+
{
|
320
|
+
v = b(k);
|
321
|
+
ap::vsub(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1), v);
|
322
|
+
}
|
323
|
+
|
324
|
+
//
|
325
|
+
// Multiply by the inverse of the diagonal block.
|
326
|
+
//
|
327
|
+
b(k) = b(k)/a(k,k);
|
328
|
+
k = k+1;
|
329
|
+
}
|
330
|
+
else
|
331
|
+
{
|
332
|
+
|
333
|
+
//
|
334
|
+
// 2 x 2 diagonal block
|
335
|
+
//
|
336
|
+
// Interchange rows K+1+1 and -IPIV(K+1).
|
337
|
+
//
|
338
|
+
kp = pivots(k)+n;
|
339
|
+
if( kp!=k+1 )
|
340
|
+
{
|
341
|
+
v = b(k+1);
|
342
|
+
b(k+1) = b(kp);
|
343
|
+
b(kp) = v;
|
344
|
+
}
|
345
|
+
|
346
|
+
//
|
347
|
+
// Multiply by inv(L(K+1)), where L(K+1) is the transformation
|
348
|
+
// stored in columns K+1 and K+1+1 of A.
|
349
|
+
//
|
350
|
+
if( k+1<n-1 )
|
351
|
+
{
|
352
|
+
v = b(k);
|
353
|
+
ap::vsub(b.getvector(k+2, n-1), a.getcolumn(k, k+2, n-1), v);
|
354
|
+
v = b(k+1);
|
355
|
+
ap::vsub(b.getvector(k+2, n-1), a.getcolumn(k+1, k+2, n-1), v);
|
356
|
+
}
|
357
|
+
|
358
|
+
//
|
359
|
+
// Multiply by the inverse of the diagonal block.
|
360
|
+
//
|
361
|
+
akm1k = a(k+1,k);
|
362
|
+
akm1 = a(k,k)/akm1k;
|
363
|
+
ak = a(k+1,k+1)/akm1k;
|
364
|
+
denom = akm1*ak-1;
|
365
|
+
bkm1 = b(k)/akm1k;
|
366
|
+
bk = b(k+1)/akm1k;
|
367
|
+
b(k) = (ak*bkm1-bk)/denom;
|
368
|
+
b(k+1) = (akm1*bk-bkm1)/denom;
|
369
|
+
k = k+2;
|
370
|
+
}
|
371
|
+
}
|
372
|
+
|
373
|
+
//
|
374
|
+
// Next solve L'*X = B, overwriting B with X.
|
375
|
+
//
|
376
|
+
// K+1 is the main loop index, decreasing from N to 1 in steps of
|
377
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
378
|
+
//
|
379
|
+
k = n-1;
|
380
|
+
while(k>=0)
|
381
|
+
{
|
382
|
+
if( pivots(k)>=0 )
|
383
|
+
{
|
384
|
+
|
385
|
+
//
|
386
|
+
// 1 x 1 diagonal block
|
387
|
+
//
|
388
|
+
// Multiply by inv(L'(K+1)), where L(K+1) is the transformation
|
389
|
+
// stored in column K+1 of A.
|
390
|
+
//
|
391
|
+
if( k+1<n )
|
392
|
+
{
|
393
|
+
v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1));
|
394
|
+
b(k) = b(k)-v;
|
395
|
+
}
|
396
|
+
|
397
|
+
//
|
398
|
+
// Interchange rows K+1 and IPIV(K+1).
|
399
|
+
//
|
400
|
+
kp = pivots(k);
|
401
|
+
if( kp!=k )
|
402
|
+
{
|
403
|
+
v = b(k);
|
404
|
+
b(k) = b(kp);
|
405
|
+
b(kp) = v;
|
406
|
+
}
|
407
|
+
k = k-1;
|
408
|
+
}
|
409
|
+
else
|
410
|
+
{
|
411
|
+
|
412
|
+
//
|
413
|
+
// 2 x 2 diagonal block
|
414
|
+
//
|
415
|
+
// Multiply by inv(L'(K+1-1)), where L(K+1-1) is the transformation
|
416
|
+
// stored in columns K+1-1 and K+1 of A.
|
417
|
+
//
|
418
|
+
if( k+1<n )
|
419
|
+
{
|
420
|
+
v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1));
|
421
|
+
b(k) = b(k)-v;
|
422
|
+
v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k-1, k+1, n-1));
|
423
|
+
b(k-1) = b(k-1)-v;
|
424
|
+
}
|
425
|
+
|
426
|
+
//
|
427
|
+
// Interchange rows K+1 and -IPIV(K+1).
|
428
|
+
//
|
429
|
+
kp = pivots(k)+n;
|
430
|
+
if( kp!=k )
|
431
|
+
{
|
432
|
+
v = b(k);
|
433
|
+
b(k) = b(kp);
|
434
|
+
b(kp) = v;
|
435
|
+
}
|
436
|
+
k = k-2;
|
437
|
+
}
|
438
|
+
}
|
439
|
+
}
|
440
|
+
x.setbounds(0, n-1);
|
441
|
+
ap::vmove(&x(0), &b(0), ap::vlen(0,n-1));
|
442
|
+
return result;
|
443
|
+
}
|
444
|
+
|
445
|
+
|
446
|
+
/*************************************************************************
|
447
|
+
Solving a system of linear equations with a symmetric system matrix
|
448
|
+
|
449
|
+
Input parameters:
|
450
|
+
A - system matrix (upper or lower triangle).
|
451
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
452
|
+
B - right side of a system.
|
453
|
+
Array whose index ranges within [0..N-1].
|
454
|
+
N - size of matrix A.
|
455
|
+
IsUpper - If IsUpper = True, A contains the upper triangle,
|
456
|
+
otherwise A contains the lower triangle.
|
457
|
+
|
458
|
+
Output parameters:
|
459
|
+
X - solution of a system.
|
460
|
+
Array whose index ranges within [0..N-1].
|
461
|
+
|
462
|
+
Result:
|
463
|
+
True, if the matrix is not singular. X contains the solution.
|
464
|
+
False, if the matrix is singular (the determinant of the matrix is equal
|
465
|
+
to 0). In this case, X doesn't contain a solution.
|
466
|
+
|
467
|
+
-- ALGLIB --
|
468
|
+
Copyright 2005 by Bochkanov Sergey
|
469
|
+
*************************************************************************/
|
470
|
+
bool smatrixsolve(ap::real_2d_array a,
|
471
|
+
const ap::real_1d_array& b,
|
472
|
+
int n,
|
473
|
+
bool isupper,
|
474
|
+
ap::real_1d_array& x)
|
475
|
+
{
|
476
|
+
bool result;
|
477
|
+
ap::integer_1d_array pivots;
|
478
|
+
|
479
|
+
smatrixldlt(a, n, isupper, pivots);
|
480
|
+
result = smatrixldltsolve(a, pivots, b, n, isupper, x);
|
481
|
+
return result;
|
482
|
+
}
|
483
|
+
|
484
|
+
|
485
|
+
/*************************************************************************
|
486
|
+
Obsolete 1-based subroutine.
|
487
|
+
*************************************************************************/
|
488
|
+
bool solvesystemldlt(const ap::real_2d_array& a,
|
489
|
+
const ap::integer_1d_array& pivots,
|
490
|
+
ap::real_1d_array b,
|
491
|
+
int n,
|
492
|
+
bool isupper,
|
493
|
+
ap::real_1d_array& x)
|
494
|
+
{
|
495
|
+
bool result;
|
496
|
+
int i;
|
497
|
+
int j;
|
498
|
+
int k;
|
499
|
+
int kp;
|
500
|
+
int km1;
|
501
|
+
int km2;
|
502
|
+
int kp1;
|
503
|
+
int kp2;
|
504
|
+
double ak;
|
505
|
+
double akm1;
|
506
|
+
double akm1k;
|
507
|
+
double bk;
|
508
|
+
double bkm1;
|
509
|
+
double denom;
|
510
|
+
double v;
|
511
|
+
|
512
|
+
|
513
|
+
//
|
514
|
+
// Quick return if possible
|
515
|
+
//
|
516
|
+
result = true;
|
517
|
+
if( n==0 )
|
518
|
+
{
|
519
|
+
return result;
|
520
|
+
}
|
521
|
+
|
522
|
+
//
|
523
|
+
// Check that the diagonal matrix D is nonsingular
|
524
|
+
//
|
525
|
+
if( isupper )
|
526
|
+
{
|
527
|
+
|
528
|
+
//
|
529
|
+
// Upper triangular storage: examine D from bottom to top
|
530
|
+
//
|
531
|
+
for(i = n; i >= 1; i--)
|
532
|
+
{
|
533
|
+
if( pivots(i)>0&&a(i,i)==0 )
|
534
|
+
{
|
535
|
+
result = false;
|
536
|
+
return result;
|
537
|
+
}
|
538
|
+
}
|
539
|
+
}
|
540
|
+
else
|
541
|
+
{
|
542
|
+
|
543
|
+
//
|
544
|
+
// Lower triangular storage: examine D from top to bottom.
|
545
|
+
//
|
546
|
+
for(i = 1; i <= n; i++)
|
547
|
+
{
|
548
|
+
if( pivots(i)>0&&a(i,i)==0 )
|
549
|
+
{
|
550
|
+
result = false;
|
551
|
+
return result;
|
552
|
+
}
|
553
|
+
}
|
554
|
+
}
|
555
|
+
|
556
|
+
//
|
557
|
+
// Solve Ax = b
|
558
|
+
//
|
559
|
+
if( isupper )
|
560
|
+
{
|
561
|
+
|
562
|
+
//
|
563
|
+
// Solve A*X = B, where A = U*D*U'.
|
564
|
+
//
|
565
|
+
// First solve U*D*X = B, overwriting B with X.
|
566
|
+
//
|
567
|
+
// K is the main loop index, decreasing from N to 1 in steps of
|
568
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
569
|
+
//
|
570
|
+
k = n;
|
571
|
+
while(k>=1)
|
572
|
+
{
|
573
|
+
if( pivots(k)>0 )
|
574
|
+
{
|
575
|
+
|
576
|
+
//
|
577
|
+
// 1 x 1 diagonal block
|
578
|
+
//
|
579
|
+
// Interchange rows K and IPIV(K).
|
580
|
+
//
|
581
|
+
kp = pivots(k);
|
582
|
+
if( kp!=k )
|
583
|
+
{
|
584
|
+
v = b(k);
|
585
|
+
b(k) = b(kp);
|
586
|
+
b(kp) = v;
|
587
|
+
}
|
588
|
+
|
589
|
+
//
|
590
|
+
// Multiply by inv(U(K)), where U(K) is the transformation
|
591
|
+
// stored in column K of A.
|
592
|
+
//
|
593
|
+
km1 = k-1;
|
594
|
+
v = b(k);
|
595
|
+
ap::vsub(b.getvector(1, km1), a.getcolumn(k, 1, km1), v);
|
596
|
+
|
597
|
+
//
|
598
|
+
// Multiply by the inverse of the diagonal block.
|
599
|
+
//
|
600
|
+
b(k) = b(k)/a(k,k);
|
601
|
+
k = k-1;
|
602
|
+
}
|
603
|
+
else
|
604
|
+
{
|
605
|
+
|
606
|
+
//
|
607
|
+
// 2 x 2 diagonal block
|
608
|
+
//
|
609
|
+
// Interchange rows K-1 and -IPIV(K).
|
610
|
+
//
|
611
|
+
kp = -pivots(k);
|
612
|
+
if( kp!=k-1 )
|
613
|
+
{
|
614
|
+
v = b(k-1);
|
615
|
+
b(k-1) = b(kp);
|
616
|
+
b(kp) = v;
|
617
|
+
}
|
618
|
+
|
619
|
+
//
|
620
|
+
// Multiply by inv(U(K)), where U(K) is the transformation
|
621
|
+
// stored in columns K-1 and K of A.
|
622
|
+
//
|
623
|
+
km2 = k-2;
|
624
|
+
km1 = k-1;
|
625
|
+
v = b(k);
|
626
|
+
ap::vsub(b.getvector(1, km2), a.getcolumn(k, 1, km2), v);
|
627
|
+
v = b(k-1);
|
628
|
+
ap::vsub(b.getvector(1, km2), a.getcolumn(km1, 1, km2), v);
|
629
|
+
|
630
|
+
//
|
631
|
+
// Multiply by the inverse of the diagonal block.
|
632
|
+
//
|
633
|
+
akm1k = a(k-1,k);
|
634
|
+
akm1 = a(k-1,k-1)/akm1k;
|
635
|
+
ak = a(k,k)/akm1k;
|
636
|
+
denom = akm1*ak-1;
|
637
|
+
bkm1 = b(k-1)/akm1k;
|
638
|
+
bk = b(k)/akm1k;
|
639
|
+
b(k-1) = (ak*bkm1-bk)/denom;
|
640
|
+
b(k) = (akm1*bk-bkm1)/denom;
|
641
|
+
k = k-2;
|
642
|
+
}
|
643
|
+
}
|
644
|
+
|
645
|
+
//
|
646
|
+
// Next solve U'*X = B, overwriting B with X.
|
647
|
+
//
|
648
|
+
// K is the main loop index, increasing from 1 to N in steps of
|
649
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
650
|
+
//
|
651
|
+
k = 1;
|
652
|
+
while(k<=n)
|
653
|
+
{
|
654
|
+
if( pivots(k)>0 )
|
655
|
+
{
|
656
|
+
|
657
|
+
//
|
658
|
+
// 1 x 1 diagonal block
|
659
|
+
//
|
660
|
+
// Multiply by inv(U'(K)), where U(K) is the transformation
|
661
|
+
// stored in column K of A.
|
662
|
+
//
|
663
|
+
km1 = k-1;
|
664
|
+
v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(k, 1, km1));
|
665
|
+
b(k) = b(k)-v;
|
666
|
+
|
667
|
+
//
|
668
|
+
// Interchange rows K and IPIV(K).
|
669
|
+
//
|
670
|
+
kp = pivots(k);
|
671
|
+
if( kp!=k )
|
672
|
+
{
|
673
|
+
v = b(k);
|
674
|
+
b(k) = b(kp);
|
675
|
+
b(kp) = v;
|
676
|
+
}
|
677
|
+
k = k+1;
|
678
|
+
}
|
679
|
+
else
|
680
|
+
{
|
681
|
+
|
682
|
+
//
|
683
|
+
// 2 x 2 diagonal block
|
684
|
+
//
|
685
|
+
// Multiply by inv(U'(K+1)), where U(K+1) is the transformation
|
686
|
+
// stored in columns K and K+1 of A.
|
687
|
+
//
|
688
|
+
km1 = k-1;
|
689
|
+
kp1 = k+1;
|
690
|
+
v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(k, 1, km1));
|
691
|
+
b(k) = b(k)-v;
|
692
|
+
v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(kp1, 1, km1));
|
693
|
+
b(k+1) = b(k+1)-v;
|
694
|
+
|
695
|
+
//
|
696
|
+
// Interchange rows K and -IPIV(K).
|
697
|
+
//
|
698
|
+
kp = -pivots(k);
|
699
|
+
if( kp!=k )
|
700
|
+
{
|
701
|
+
v = b(k);
|
702
|
+
b(k) = b(kp);
|
703
|
+
b(kp) = v;
|
704
|
+
}
|
705
|
+
k = k+2;
|
706
|
+
}
|
707
|
+
}
|
708
|
+
}
|
709
|
+
else
|
710
|
+
{
|
711
|
+
|
712
|
+
//
|
713
|
+
// Solve A*X = B, where A = L*D*L'.
|
714
|
+
//
|
715
|
+
// First solve L*D*X = B, overwriting B with X.
|
716
|
+
//
|
717
|
+
// K is the main loop index, increasing from 1 to N in steps of
|
718
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
719
|
+
//
|
720
|
+
k = 1;
|
721
|
+
while(k<=n)
|
722
|
+
{
|
723
|
+
if( pivots(k)>0 )
|
724
|
+
{
|
725
|
+
|
726
|
+
//
|
727
|
+
// 1 x 1 diagonal block
|
728
|
+
//
|
729
|
+
// Interchange rows K and IPIV(K).
|
730
|
+
//
|
731
|
+
kp = pivots(k);
|
732
|
+
if( kp!=k )
|
733
|
+
{
|
734
|
+
v = b(k);
|
735
|
+
b(k) = b(kp);
|
736
|
+
b(kp) = v;
|
737
|
+
}
|
738
|
+
|
739
|
+
//
|
740
|
+
// Multiply by inv(L(K)), where L(K) is the transformation
|
741
|
+
// stored in column K of A.
|
742
|
+
//
|
743
|
+
if( k<n )
|
744
|
+
{
|
745
|
+
kp1 = k+1;
|
746
|
+
v = b(k);
|
747
|
+
ap::vsub(b.getvector(kp1, n), a.getcolumn(k, kp1, n), v);
|
748
|
+
}
|
749
|
+
|
750
|
+
//
|
751
|
+
// Multiply by the inverse of the diagonal block.
|
752
|
+
//
|
753
|
+
b(k) = b(k)/a(k,k);
|
754
|
+
k = k+1;
|
755
|
+
}
|
756
|
+
else
|
757
|
+
{
|
758
|
+
|
759
|
+
//
|
760
|
+
// 2 x 2 diagonal block
|
761
|
+
//
|
762
|
+
// Interchange rows K+1 and -IPIV(K).
|
763
|
+
//
|
764
|
+
kp = -pivots(k);
|
765
|
+
if( kp!=k+1 )
|
766
|
+
{
|
767
|
+
v = b(k+1);
|
768
|
+
b(k+1) = b(kp);
|
769
|
+
b(kp) = v;
|
770
|
+
}
|
771
|
+
|
772
|
+
//
|
773
|
+
// Multiply by inv(L(K)), where L(K) is the transformation
|
774
|
+
// stored in columns K and K+1 of A.
|
775
|
+
//
|
776
|
+
if( k<n-1 )
|
777
|
+
{
|
778
|
+
kp1 = k+1;
|
779
|
+
kp2 = k+2;
|
780
|
+
v = b(k);
|
781
|
+
ap::vsub(b.getvector(kp2, n), a.getcolumn(k, kp2, n), v);
|
782
|
+
v = b(k+1);
|
783
|
+
ap::vsub(b.getvector(kp2, n), a.getcolumn(kp1, kp2, n), v);
|
784
|
+
}
|
785
|
+
|
786
|
+
//
|
787
|
+
// Multiply by the inverse of the diagonal block.
|
788
|
+
//
|
789
|
+
akm1k = a(k+1,k);
|
790
|
+
akm1 = a(k,k)/akm1k;
|
791
|
+
ak = a(k+1,k+1)/akm1k;
|
792
|
+
denom = akm1*ak-1;
|
793
|
+
bkm1 = b(k)/akm1k;
|
794
|
+
bk = b(k+1)/akm1k;
|
795
|
+
b(k) = (ak*bkm1-bk)/denom;
|
796
|
+
b(k+1) = (akm1*bk-bkm1)/denom;
|
797
|
+
k = k+2;
|
798
|
+
}
|
799
|
+
}
|
800
|
+
|
801
|
+
//
|
802
|
+
// Next solve L'*X = B, overwriting B with X.
|
803
|
+
//
|
804
|
+
// K is the main loop index, decreasing from N to 1 in steps of
|
805
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
806
|
+
//
|
807
|
+
k = n;
|
808
|
+
while(k>=1)
|
809
|
+
{
|
810
|
+
if( pivots(k)>0 )
|
811
|
+
{
|
812
|
+
|
813
|
+
//
|
814
|
+
// 1 x 1 diagonal block
|
815
|
+
//
|
816
|
+
// Multiply by inv(L'(K)), where L(K) is the transformation
|
817
|
+
// stored in column K of A.
|
818
|
+
//
|
819
|
+
if( k<n )
|
820
|
+
{
|
821
|
+
kp1 = k+1;
|
822
|
+
v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(k, kp1, n));
|
823
|
+
b(k) = b(k)-v;
|
824
|
+
}
|
825
|
+
|
826
|
+
//
|
827
|
+
// Interchange rows K and IPIV(K).
|
828
|
+
//
|
829
|
+
kp = pivots(k);
|
830
|
+
if( kp!=k )
|
831
|
+
{
|
832
|
+
v = b(k);
|
833
|
+
b(k) = b(kp);
|
834
|
+
b(kp) = v;
|
835
|
+
}
|
836
|
+
k = k-1;
|
837
|
+
}
|
838
|
+
else
|
839
|
+
{
|
840
|
+
|
841
|
+
//
|
842
|
+
// 2 x 2 diagonal block
|
843
|
+
//
|
844
|
+
// Multiply by inv(L'(K-1)), where L(K-1) is the transformation
|
845
|
+
// stored in columns K-1 and K of A.
|
846
|
+
//
|
847
|
+
if( k<n )
|
848
|
+
{
|
849
|
+
kp1 = k+1;
|
850
|
+
km1 = k-1;
|
851
|
+
v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(k, kp1, n));
|
852
|
+
b(k) = b(k)-v;
|
853
|
+
v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(km1, kp1, n));
|
854
|
+
b(k-1) = b(k-1)-v;
|
855
|
+
}
|
856
|
+
|
857
|
+
//
|
858
|
+
// Interchange rows K and -IPIV(K).
|
859
|
+
//
|
860
|
+
kp = -pivots(k);
|
861
|
+
if( kp!=k )
|
862
|
+
{
|
863
|
+
v = b(k);
|
864
|
+
b(k) = b(kp);
|
865
|
+
b(kp) = v;
|
866
|
+
}
|
867
|
+
k = k-2;
|
868
|
+
}
|
869
|
+
}
|
870
|
+
}
|
871
|
+
x.setbounds(1, n);
|
872
|
+
ap::vmove(&x(1), &b(1), ap::vlen(1,n));
|
873
|
+
return result;
|
874
|
+
}
|
875
|
+
|
876
|
+
|
877
|
+
/*************************************************************************
|
878
|
+
Obsolete 1-based subroutine
|
879
|
+
*************************************************************************/
|
880
|
+
bool solvesymmetricsystem(ap::real_2d_array a,
|
881
|
+
ap::real_1d_array b,
|
882
|
+
int n,
|
883
|
+
bool isupper,
|
884
|
+
ap::real_1d_array& x)
|
885
|
+
{
|
886
|
+
bool result;
|
887
|
+
ap::integer_1d_array pivots;
|
888
|
+
|
889
|
+
ldltdecomposition(a, n, isupper, pivots);
|
890
|
+
result = solvesystemldlt(a, pivots, b, n, isupper, x);
|
891
|
+
return result;
|
892
|
+
}
|
893
|
+
|
894
|
+
|
895
|
+
|