alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,127 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #ifndef _srcond_h
40
+ #define _srcond_h
41
+
42
+ #include "ap.h"
43
+ #include "ialglib.h"
44
+
45
+ #include "ldlt.h"
46
+ #include "ssolve.h"
47
+ #include "estnorm.h"
48
+
49
+
50
+ /*************************************************************************
51
+ Condition number estimate of a symmetric matrix
52
+
53
+ The algorithm calculates a lower bound of the condition number. In this
54
+ case, the algorithm does not return a lower bound of the condition number,
55
+ but an inverse number (to avoid an overflow in case of a singular matrix).
56
+
57
+ It should be noted that 1-norm and inf-norm condition numbers of symmetric
58
+ matrices are equal, so the algorithm doesn't take into account the
59
+ differences between these types of norms.
60
+
61
+ Input parameters:
62
+ A - symmetric definite matrix which is given by its upper or
63
+ lower triangle depending on IsUpper.
64
+ Array with elements [0..N-1, 0..N-1].
65
+ N - size of matrix A.
66
+ IsUpper - storage format.
67
+
68
+ Result:
69
+ 1/LowerBound(cond(A))
70
+ *************************************************************************/
71
+ double smatrixrcond(const ap::real_2d_array& a, int n, bool isupper);
72
+
73
+
74
+ /*************************************************************************
75
+ Condition number estimate of a matrix given by LDLT-decomposition
76
+
77
+ The algorithm calculates a lower bound of the condition number. In this
78
+ case, the algorithm does not return a lower bound of the condition number,
79
+ but an inverse number (to avoid an overflow in case of a singular matrix).
80
+
81
+ It should be noted that 1-norm and inf-norm condition numbers of symmetric
82
+ matrices are equal, so the algorithm doesn't take into account the
83
+ differences between these types of norms.
84
+
85
+ Input parameters:
86
+ L - LDLT-decomposition of matrix A given by the upper or lower
87
+ triangle depending on IsUpper.
88
+ Output of SMatrixLDLT subroutine.
89
+ Pivots - table of permutations which were made during LDLT-decomposition,
90
+ Output of SMatrixLDLT subroutine.
91
+ N - size of matrix A.
92
+ IsUpper - storage format.
93
+
94
+ Result:
95
+ 1/LowerBound(cond(A))
96
+ *************************************************************************/
97
+ double smatrixldltrcond(const ap::real_2d_array& l,
98
+ const ap::integer_1d_array& pivots,
99
+ int n,
100
+ bool isupper);
101
+
102
+
103
+ /*************************************************************************
104
+ Obsolete 1-based subroutine
105
+ *************************************************************************/
106
+ double rcondsymmetric(ap::real_2d_array a, int n, bool isupper);
107
+
108
+
109
+ /*************************************************************************
110
+ Obsolete 1-based subroutine
111
+ *************************************************************************/
112
+ double rcondldlt(const ap::real_2d_array& l,
113
+ const ap::integer_1d_array& pivots,
114
+ int n,
115
+ bool isupper);
116
+
117
+
118
+ void internalldltrcond(const ap::real_2d_array& l,
119
+ const ap::integer_1d_array& pivots,
120
+ int n,
121
+ bool isupper,
122
+ bool isnormprovided,
123
+ double anorm,
124
+ double& rcond);
125
+
126
+
127
+ #endif
@@ -0,0 +1,895 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #include <stdafx.h>
40
+ #include "ssolve.h"
41
+
42
+ /*************************************************************************
43
+ Solving a system of linear equations with a system matrix given by its
44
+ LDLT decomposition
45
+
46
+ The algorithm solves systems with a square matrix only.
47
+
48
+ Input parameters:
49
+ A - LDLT decomposition of the matrix (the result of the
50
+ SMatrixLDLT subroutine).
51
+ Pivots - row permutation table (the result of the SMatrixLDLT subroutine).
52
+ B - right side of a system.
53
+ Array whose index ranges within [0..N-1].
54
+ N - size of matrix A.
55
+ IsUpper - points to the triangle of matrix A in which the LDLT
56
+ decomposition is stored.
57
+ If IsUpper=True, the decomposition has the form of U*D*U',
58
+ matrix U is stored in the upper triangle of matrix A (in
59
+ that case, the lower triangle isn't used and isn't changed
60
+ by the subroutine).
61
+ Similarly, if IsUpper=False, the decomposition has the form
62
+ of L*D*L' and the lower triangle stores matrix L.
63
+
64
+ Output parameters:
65
+ X - solution of a system.
66
+ Array whose index ranges within [0..N-1].
67
+
68
+ Result:
69
+ True, if the matrix is not singular. X contains the solution.
70
+ False, if the matrix is singular (the determinant of matrix D is equal
71
+ to 0). In this case, X doesn't contain a solution.
72
+ *************************************************************************/
73
+ bool smatrixldltsolve(const ap::real_2d_array& a,
74
+ const ap::integer_1d_array& pivots,
75
+ ap::real_1d_array b,
76
+ int n,
77
+ bool isupper,
78
+ ap::real_1d_array& x)
79
+ {
80
+ bool result;
81
+ int i;
82
+ int j;
83
+ int k;
84
+ int kp;
85
+ double ak;
86
+ double akm1;
87
+ double akm1k;
88
+ double bk;
89
+ double bkm1;
90
+ double denom;
91
+ double v;
92
+
93
+
94
+ //
95
+ // Quick return if possible
96
+ //
97
+ result = true;
98
+ if( n==0 )
99
+ {
100
+ return result;
101
+ }
102
+
103
+ //
104
+ // Check that the diagonal matrix D is nonsingular
105
+ //
106
+ if( isupper )
107
+ {
108
+
109
+ //
110
+ // Upper triangular storage: examine D from bottom to top
111
+ //
112
+ for(i = n-1; i >= 0; i--)
113
+ {
114
+ if( pivots(i)>=0&&a(i,i)==0 )
115
+ {
116
+ result = false;
117
+ return result;
118
+ }
119
+ }
120
+ }
121
+ else
122
+ {
123
+
124
+ //
125
+ // Lower triangular storage: examine D from top to bottom.
126
+ //
127
+ for(i = 0; i <= n-1; i++)
128
+ {
129
+ if( pivots(i)>=0&&a(i,i)==0 )
130
+ {
131
+ result = false;
132
+ return result;
133
+ }
134
+ }
135
+ }
136
+
137
+ //
138
+ // Solve Ax = b
139
+ //
140
+ if( isupper )
141
+ {
142
+
143
+ //
144
+ // Solve A*X = B, where A = U*D*U'.
145
+ //
146
+ // First solve U*D*X = B, overwriting B with X.
147
+ //
148
+ // K+1 is the main loop index, decreasing from N to 1 in steps of
149
+ // 1 or 2, depending on the size of the diagonal blocks.
150
+ //
151
+ k = n-1;
152
+ while(k>=0)
153
+ {
154
+ if( pivots(k)>=0 )
155
+ {
156
+
157
+ //
158
+ // 1 x 1 diagonal block
159
+ //
160
+ // Interchange rows K+1 and IPIV(K+1).
161
+ //
162
+ kp = pivots(k);
163
+ if( kp!=k )
164
+ {
165
+ v = b(k);
166
+ b(k) = b(kp);
167
+ b(kp) = v;
168
+ }
169
+
170
+ //
171
+ // Multiply by inv(U(K+1)), where U(K+1) is the transformation
172
+ // stored in column K+1 of A.
173
+ //
174
+ v = b(k);
175
+ ap::vsub(b.getvector(0, k-1), a.getcolumn(k, 0, k-1), v);
176
+
177
+ //
178
+ // Multiply by the inverse of the diagonal block.
179
+ //
180
+ b(k) = b(k)/a(k,k);
181
+ k = k-1;
182
+ }
183
+ else
184
+ {
185
+
186
+ //
187
+ // 2 x 2 diagonal block
188
+ //
189
+ // Interchange rows K+1-1 and -IPIV(K+1).
190
+ //
191
+ kp = pivots(k)+n;
192
+ if( kp!=k-1 )
193
+ {
194
+ v = b(k-1);
195
+ b(k-1) = b(kp);
196
+ b(kp) = v;
197
+ }
198
+
199
+ //
200
+ // Multiply by inv(U(K+1)), where U(K+1) is the transformation
201
+ // stored in columns K+1-1 and K+1 of A.
202
+ //
203
+ v = b(k);
204
+ ap::vsub(b.getvector(0, k-2), a.getcolumn(k, 0, k-2), v);
205
+ v = b(k-1);
206
+ ap::vsub(b.getvector(0, k-2), a.getcolumn(k-1, 0, k-2), v);
207
+
208
+ //
209
+ // Multiply by the inverse of the diagonal block.
210
+ //
211
+ akm1k = a(k-1,k);
212
+ akm1 = a(k-1,k-1)/akm1k;
213
+ ak = a(k,k)/akm1k;
214
+ denom = akm1*ak-1;
215
+ bkm1 = b(k-1)/akm1k;
216
+ bk = b(k)/akm1k;
217
+ b(k-1) = (ak*bkm1-bk)/denom;
218
+ b(k) = (akm1*bk-bkm1)/denom;
219
+ k = k-2;
220
+ }
221
+ }
222
+
223
+ //
224
+ // Next solve U'*X = B, overwriting B with X.
225
+ //
226
+ // K+1 is the main loop index, increasing from 1 to N in steps of
227
+ // 1 or 2, depending on the size of the diagonal blocks.
228
+ //
229
+ k = 0;
230
+ while(k<=n-1)
231
+ {
232
+ if( pivots(k)>=0 )
233
+ {
234
+
235
+ //
236
+ // 1 x 1 diagonal block
237
+ //
238
+ // Multiply by inv(U'(K+1)), where U(K+1) is the transformation
239
+ // stored in column K+1 of A.
240
+ //
241
+ v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k, 0, k-1));
242
+ b(k) = b(k)-v;
243
+
244
+ //
245
+ // Interchange rows K+1 and IPIV(K+1).
246
+ //
247
+ kp = pivots(k);
248
+ if( kp!=k )
249
+ {
250
+ v = b(k);
251
+ b(k) = b(kp);
252
+ b(kp) = v;
253
+ }
254
+ k = k+1;
255
+ }
256
+ else
257
+ {
258
+
259
+ //
260
+ // 2 x 2 diagonal block
261
+ //
262
+ // Multiply by inv(U'(K+1+1)), where U(K+1+1) is the transformation
263
+ // stored in columns K+1 and K+1+1 of A.
264
+ //
265
+ v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k, 0, k-1));
266
+ b(k) = b(k)-v;
267
+ v = ap::vdotproduct(b.getvector(0, k-1), a.getcolumn(k+1, 0, k-1));
268
+ b(k+1) = b(k+1)-v;
269
+
270
+ //
271
+ // Interchange rows K+1 and -IPIV(K+1).
272
+ //
273
+ kp = pivots(k)+n;
274
+ if( kp!=k )
275
+ {
276
+ v = b(k);
277
+ b(k) = b(kp);
278
+ b(kp) = v;
279
+ }
280
+ k = k+2;
281
+ }
282
+ }
283
+ }
284
+ else
285
+ {
286
+
287
+ //
288
+ // Solve A*X = B, where A = L*D*L'.
289
+ //
290
+ // First solve L*D*X = B, overwriting B with X.
291
+ //
292
+ // K+1 is the main loop index, increasing from 1 to N in steps of
293
+ // 1 or 2, depending on the size of the diagonal blocks.
294
+ //
295
+ k = 0;
296
+ while(k<=n-1)
297
+ {
298
+ if( pivots(k)>=0 )
299
+ {
300
+
301
+ //
302
+ // 1 x 1 diagonal block
303
+ //
304
+ // Interchange rows K+1 and IPIV(K+1).
305
+ //
306
+ kp = pivots(k);
307
+ if( kp!=k )
308
+ {
309
+ v = b(k);
310
+ b(k) = b(kp);
311
+ b(kp) = v;
312
+ }
313
+
314
+ //
315
+ // Multiply by inv(L(K+1)), where L(K+1) is the transformation
316
+ // stored in column K+1 of A.
317
+ //
318
+ if( k+1<n )
319
+ {
320
+ v = b(k);
321
+ ap::vsub(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1), v);
322
+ }
323
+
324
+ //
325
+ // Multiply by the inverse of the diagonal block.
326
+ //
327
+ b(k) = b(k)/a(k,k);
328
+ k = k+1;
329
+ }
330
+ else
331
+ {
332
+
333
+ //
334
+ // 2 x 2 diagonal block
335
+ //
336
+ // Interchange rows K+1+1 and -IPIV(K+1).
337
+ //
338
+ kp = pivots(k)+n;
339
+ if( kp!=k+1 )
340
+ {
341
+ v = b(k+1);
342
+ b(k+1) = b(kp);
343
+ b(kp) = v;
344
+ }
345
+
346
+ //
347
+ // Multiply by inv(L(K+1)), where L(K+1) is the transformation
348
+ // stored in columns K+1 and K+1+1 of A.
349
+ //
350
+ if( k+1<n-1 )
351
+ {
352
+ v = b(k);
353
+ ap::vsub(b.getvector(k+2, n-1), a.getcolumn(k, k+2, n-1), v);
354
+ v = b(k+1);
355
+ ap::vsub(b.getvector(k+2, n-1), a.getcolumn(k+1, k+2, n-1), v);
356
+ }
357
+
358
+ //
359
+ // Multiply by the inverse of the diagonal block.
360
+ //
361
+ akm1k = a(k+1,k);
362
+ akm1 = a(k,k)/akm1k;
363
+ ak = a(k+1,k+1)/akm1k;
364
+ denom = akm1*ak-1;
365
+ bkm1 = b(k)/akm1k;
366
+ bk = b(k+1)/akm1k;
367
+ b(k) = (ak*bkm1-bk)/denom;
368
+ b(k+1) = (akm1*bk-bkm1)/denom;
369
+ k = k+2;
370
+ }
371
+ }
372
+
373
+ //
374
+ // Next solve L'*X = B, overwriting B with X.
375
+ //
376
+ // K+1 is the main loop index, decreasing from N to 1 in steps of
377
+ // 1 or 2, depending on the size of the diagonal blocks.
378
+ //
379
+ k = n-1;
380
+ while(k>=0)
381
+ {
382
+ if( pivots(k)>=0 )
383
+ {
384
+
385
+ //
386
+ // 1 x 1 diagonal block
387
+ //
388
+ // Multiply by inv(L'(K+1)), where L(K+1) is the transformation
389
+ // stored in column K+1 of A.
390
+ //
391
+ if( k+1<n )
392
+ {
393
+ v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1));
394
+ b(k) = b(k)-v;
395
+ }
396
+
397
+ //
398
+ // Interchange rows K+1 and IPIV(K+1).
399
+ //
400
+ kp = pivots(k);
401
+ if( kp!=k )
402
+ {
403
+ v = b(k);
404
+ b(k) = b(kp);
405
+ b(kp) = v;
406
+ }
407
+ k = k-1;
408
+ }
409
+ else
410
+ {
411
+
412
+ //
413
+ // 2 x 2 diagonal block
414
+ //
415
+ // Multiply by inv(L'(K+1-1)), where L(K+1-1) is the transformation
416
+ // stored in columns K+1-1 and K+1 of A.
417
+ //
418
+ if( k+1<n )
419
+ {
420
+ v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k, k+1, n-1));
421
+ b(k) = b(k)-v;
422
+ v = ap::vdotproduct(b.getvector(k+1, n-1), a.getcolumn(k-1, k+1, n-1));
423
+ b(k-1) = b(k-1)-v;
424
+ }
425
+
426
+ //
427
+ // Interchange rows K+1 and -IPIV(K+1).
428
+ //
429
+ kp = pivots(k)+n;
430
+ if( kp!=k )
431
+ {
432
+ v = b(k);
433
+ b(k) = b(kp);
434
+ b(kp) = v;
435
+ }
436
+ k = k-2;
437
+ }
438
+ }
439
+ }
440
+ x.setbounds(0, n-1);
441
+ ap::vmove(&x(0), &b(0), ap::vlen(0,n-1));
442
+ return result;
443
+ }
444
+
445
+
446
+ /*************************************************************************
447
+ Solving a system of linear equations with a symmetric system matrix
448
+
449
+ Input parameters:
450
+ A - system matrix (upper or lower triangle).
451
+ Array whose indexes range within [0..N-1, 0..N-1].
452
+ B - right side of a system.
453
+ Array whose index ranges within [0..N-1].
454
+ N - size of matrix A.
455
+ IsUpper - If IsUpper = True, A contains the upper triangle,
456
+ otherwise A contains the lower triangle.
457
+
458
+ Output parameters:
459
+ X - solution of a system.
460
+ Array whose index ranges within [0..N-1].
461
+
462
+ Result:
463
+ True, if the matrix is not singular. X contains the solution.
464
+ False, if the matrix is singular (the determinant of the matrix is equal
465
+ to 0). In this case, X doesn't contain a solution.
466
+
467
+ -- ALGLIB --
468
+ Copyright 2005 by Bochkanov Sergey
469
+ *************************************************************************/
470
+ bool smatrixsolve(ap::real_2d_array a,
471
+ const ap::real_1d_array& b,
472
+ int n,
473
+ bool isupper,
474
+ ap::real_1d_array& x)
475
+ {
476
+ bool result;
477
+ ap::integer_1d_array pivots;
478
+
479
+ smatrixldlt(a, n, isupper, pivots);
480
+ result = smatrixldltsolve(a, pivots, b, n, isupper, x);
481
+ return result;
482
+ }
483
+
484
+
485
+ /*************************************************************************
486
+ Obsolete 1-based subroutine.
487
+ *************************************************************************/
488
+ bool solvesystemldlt(const ap::real_2d_array& a,
489
+ const ap::integer_1d_array& pivots,
490
+ ap::real_1d_array b,
491
+ int n,
492
+ bool isupper,
493
+ ap::real_1d_array& x)
494
+ {
495
+ bool result;
496
+ int i;
497
+ int j;
498
+ int k;
499
+ int kp;
500
+ int km1;
501
+ int km2;
502
+ int kp1;
503
+ int kp2;
504
+ double ak;
505
+ double akm1;
506
+ double akm1k;
507
+ double bk;
508
+ double bkm1;
509
+ double denom;
510
+ double v;
511
+
512
+
513
+ //
514
+ // Quick return if possible
515
+ //
516
+ result = true;
517
+ if( n==0 )
518
+ {
519
+ return result;
520
+ }
521
+
522
+ //
523
+ // Check that the diagonal matrix D is nonsingular
524
+ //
525
+ if( isupper )
526
+ {
527
+
528
+ //
529
+ // Upper triangular storage: examine D from bottom to top
530
+ //
531
+ for(i = n; i >= 1; i--)
532
+ {
533
+ if( pivots(i)>0&&a(i,i)==0 )
534
+ {
535
+ result = false;
536
+ return result;
537
+ }
538
+ }
539
+ }
540
+ else
541
+ {
542
+
543
+ //
544
+ // Lower triangular storage: examine D from top to bottom.
545
+ //
546
+ for(i = 1; i <= n; i++)
547
+ {
548
+ if( pivots(i)>0&&a(i,i)==0 )
549
+ {
550
+ result = false;
551
+ return result;
552
+ }
553
+ }
554
+ }
555
+
556
+ //
557
+ // Solve Ax = b
558
+ //
559
+ if( isupper )
560
+ {
561
+
562
+ //
563
+ // Solve A*X = B, where A = U*D*U'.
564
+ //
565
+ // First solve U*D*X = B, overwriting B with X.
566
+ //
567
+ // K is the main loop index, decreasing from N to 1 in steps of
568
+ // 1 or 2, depending on the size of the diagonal blocks.
569
+ //
570
+ k = n;
571
+ while(k>=1)
572
+ {
573
+ if( pivots(k)>0 )
574
+ {
575
+
576
+ //
577
+ // 1 x 1 diagonal block
578
+ //
579
+ // Interchange rows K and IPIV(K).
580
+ //
581
+ kp = pivots(k);
582
+ if( kp!=k )
583
+ {
584
+ v = b(k);
585
+ b(k) = b(kp);
586
+ b(kp) = v;
587
+ }
588
+
589
+ //
590
+ // Multiply by inv(U(K)), where U(K) is the transformation
591
+ // stored in column K of A.
592
+ //
593
+ km1 = k-1;
594
+ v = b(k);
595
+ ap::vsub(b.getvector(1, km1), a.getcolumn(k, 1, km1), v);
596
+
597
+ //
598
+ // Multiply by the inverse of the diagonal block.
599
+ //
600
+ b(k) = b(k)/a(k,k);
601
+ k = k-1;
602
+ }
603
+ else
604
+ {
605
+
606
+ //
607
+ // 2 x 2 diagonal block
608
+ //
609
+ // Interchange rows K-1 and -IPIV(K).
610
+ //
611
+ kp = -pivots(k);
612
+ if( kp!=k-1 )
613
+ {
614
+ v = b(k-1);
615
+ b(k-1) = b(kp);
616
+ b(kp) = v;
617
+ }
618
+
619
+ //
620
+ // Multiply by inv(U(K)), where U(K) is the transformation
621
+ // stored in columns K-1 and K of A.
622
+ //
623
+ km2 = k-2;
624
+ km1 = k-1;
625
+ v = b(k);
626
+ ap::vsub(b.getvector(1, km2), a.getcolumn(k, 1, km2), v);
627
+ v = b(k-1);
628
+ ap::vsub(b.getvector(1, km2), a.getcolumn(km1, 1, km2), v);
629
+
630
+ //
631
+ // Multiply by the inverse of the diagonal block.
632
+ //
633
+ akm1k = a(k-1,k);
634
+ akm1 = a(k-1,k-1)/akm1k;
635
+ ak = a(k,k)/akm1k;
636
+ denom = akm1*ak-1;
637
+ bkm1 = b(k-1)/akm1k;
638
+ bk = b(k)/akm1k;
639
+ b(k-1) = (ak*bkm1-bk)/denom;
640
+ b(k) = (akm1*bk-bkm1)/denom;
641
+ k = k-2;
642
+ }
643
+ }
644
+
645
+ //
646
+ // Next solve U'*X = B, overwriting B with X.
647
+ //
648
+ // K is the main loop index, increasing from 1 to N in steps of
649
+ // 1 or 2, depending on the size of the diagonal blocks.
650
+ //
651
+ k = 1;
652
+ while(k<=n)
653
+ {
654
+ if( pivots(k)>0 )
655
+ {
656
+
657
+ //
658
+ // 1 x 1 diagonal block
659
+ //
660
+ // Multiply by inv(U'(K)), where U(K) is the transformation
661
+ // stored in column K of A.
662
+ //
663
+ km1 = k-1;
664
+ v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(k, 1, km1));
665
+ b(k) = b(k)-v;
666
+
667
+ //
668
+ // Interchange rows K and IPIV(K).
669
+ //
670
+ kp = pivots(k);
671
+ if( kp!=k )
672
+ {
673
+ v = b(k);
674
+ b(k) = b(kp);
675
+ b(kp) = v;
676
+ }
677
+ k = k+1;
678
+ }
679
+ else
680
+ {
681
+
682
+ //
683
+ // 2 x 2 diagonal block
684
+ //
685
+ // Multiply by inv(U'(K+1)), where U(K+1) is the transformation
686
+ // stored in columns K and K+1 of A.
687
+ //
688
+ km1 = k-1;
689
+ kp1 = k+1;
690
+ v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(k, 1, km1));
691
+ b(k) = b(k)-v;
692
+ v = ap::vdotproduct(b.getvector(1, km1), a.getcolumn(kp1, 1, km1));
693
+ b(k+1) = b(k+1)-v;
694
+
695
+ //
696
+ // Interchange rows K and -IPIV(K).
697
+ //
698
+ kp = -pivots(k);
699
+ if( kp!=k )
700
+ {
701
+ v = b(k);
702
+ b(k) = b(kp);
703
+ b(kp) = v;
704
+ }
705
+ k = k+2;
706
+ }
707
+ }
708
+ }
709
+ else
710
+ {
711
+
712
+ //
713
+ // Solve A*X = B, where A = L*D*L'.
714
+ //
715
+ // First solve L*D*X = B, overwriting B with X.
716
+ //
717
+ // K is the main loop index, increasing from 1 to N in steps of
718
+ // 1 or 2, depending on the size of the diagonal blocks.
719
+ //
720
+ k = 1;
721
+ while(k<=n)
722
+ {
723
+ if( pivots(k)>0 )
724
+ {
725
+
726
+ //
727
+ // 1 x 1 diagonal block
728
+ //
729
+ // Interchange rows K and IPIV(K).
730
+ //
731
+ kp = pivots(k);
732
+ if( kp!=k )
733
+ {
734
+ v = b(k);
735
+ b(k) = b(kp);
736
+ b(kp) = v;
737
+ }
738
+
739
+ //
740
+ // Multiply by inv(L(K)), where L(K) is the transformation
741
+ // stored in column K of A.
742
+ //
743
+ if( k<n )
744
+ {
745
+ kp1 = k+1;
746
+ v = b(k);
747
+ ap::vsub(b.getvector(kp1, n), a.getcolumn(k, kp1, n), v);
748
+ }
749
+
750
+ //
751
+ // Multiply by the inverse of the diagonal block.
752
+ //
753
+ b(k) = b(k)/a(k,k);
754
+ k = k+1;
755
+ }
756
+ else
757
+ {
758
+
759
+ //
760
+ // 2 x 2 diagonal block
761
+ //
762
+ // Interchange rows K+1 and -IPIV(K).
763
+ //
764
+ kp = -pivots(k);
765
+ if( kp!=k+1 )
766
+ {
767
+ v = b(k+1);
768
+ b(k+1) = b(kp);
769
+ b(kp) = v;
770
+ }
771
+
772
+ //
773
+ // Multiply by inv(L(K)), where L(K) is the transformation
774
+ // stored in columns K and K+1 of A.
775
+ //
776
+ if( k<n-1 )
777
+ {
778
+ kp1 = k+1;
779
+ kp2 = k+2;
780
+ v = b(k);
781
+ ap::vsub(b.getvector(kp2, n), a.getcolumn(k, kp2, n), v);
782
+ v = b(k+1);
783
+ ap::vsub(b.getvector(kp2, n), a.getcolumn(kp1, kp2, n), v);
784
+ }
785
+
786
+ //
787
+ // Multiply by the inverse of the diagonal block.
788
+ //
789
+ akm1k = a(k+1,k);
790
+ akm1 = a(k,k)/akm1k;
791
+ ak = a(k+1,k+1)/akm1k;
792
+ denom = akm1*ak-1;
793
+ bkm1 = b(k)/akm1k;
794
+ bk = b(k+1)/akm1k;
795
+ b(k) = (ak*bkm1-bk)/denom;
796
+ b(k+1) = (akm1*bk-bkm1)/denom;
797
+ k = k+2;
798
+ }
799
+ }
800
+
801
+ //
802
+ // Next solve L'*X = B, overwriting B with X.
803
+ //
804
+ // K is the main loop index, decreasing from N to 1 in steps of
805
+ // 1 or 2, depending on the size of the diagonal blocks.
806
+ //
807
+ k = n;
808
+ while(k>=1)
809
+ {
810
+ if( pivots(k)>0 )
811
+ {
812
+
813
+ //
814
+ // 1 x 1 diagonal block
815
+ //
816
+ // Multiply by inv(L'(K)), where L(K) is the transformation
817
+ // stored in column K of A.
818
+ //
819
+ if( k<n )
820
+ {
821
+ kp1 = k+1;
822
+ v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(k, kp1, n));
823
+ b(k) = b(k)-v;
824
+ }
825
+
826
+ //
827
+ // Interchange rows K and IPIV(K).
828
+ //
829
+ kp = pivots(k);
830
+ if( kp!=k )
831
+ {
832
+ v = b(k);
833
+ b(k) = b(kp);
834
+ b(kp) = v;
835
+ }
836
+ k = k-1;
837
+ }
838
+ else
839
+ {
840
+
841
+ //
842
+ // 2 x 2 diagonal block
843
+ //
844
+ // Multiply by inv(L'(K-1)), where L(K-1) is the transformation
845
+ // stored in columns K-1 and K of A.
846
+ //
847
+ if( k<n )
848
+ {
849
+ kp1 = k+1;
850
+ km1 = k-1;
851
+ v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(k, kp1, n));
852
+ b(k) = b(k)-v;
853
+ v = ap::vdotproduct(b.getvector(kp1, n), a.getcolumn(km1, kp1, n));
854
+ b(k-1) = b(k-1)-v;
855
+ }
856
+
857
+ //
858
+ // Interchange rows K and -IPIV(K).
859
+ //
860
+ kp = -pivots(k);
861
+ if( kp!=k )
862
+ {
863
+ v = b(k);
864
+ b(k) = b(kp);
865
+ b(kp) = v;
866
+ }
867
+ k = k-2;
868
+ }
869
+ }
870
+ }
871
+ x.setbounds(1, n);
872
+ ap::vmove(&x(1), &b(1), ap::vlen(1,n));
873
+ return result;
874
+ }
875
+
876
+
877
+ /*************************************************************************
878
+ Obsolete 1-based subroutine
879
+ *************************************************************************/
880
+ bool solvesymmetricsystem(ap::real_2d_array a,
881
+ ap::real_1d_array b,
882
+ int n,
883
+ bool isupper,
884
+ ap::real_1d_array& x)
885
+ {
886
+ bool result;
887
+ ap::integer_1d_array pivots;
888
+
889
+ ldltdecomposition(a, n, isupper, pivots);
890
+ result = solvesystemldlt(a, pivots, b, n, isupper, x);
891
+ return result;
892
+ }
893
+
894
+
895
+