alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,112 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _descriptivestatistics_h
|
34
|
+
#define _descriptivestatistics_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
/*************************************************************************
|
40
|
+
Calculation of the distribution moments: mean, variance, slewness, kurtosis.
|
41
|
+
|
42
|
+
Input parameters:
|
43
|
+
X - sample. Array with whose indexes range within [0..N-1]
|
44
|
+
N - sample size.
|
45
|
+
|
46
|
+
Output parameters:
|
47
|
+
Mean - mean.
|
48
|
+
Variance- variance.
|
49
|
+
Skewness- skewness (if variance<>0; zero otherwise).
|
50
|
+
Kurtosis- kurtosis (if variance<>0; zero otherwise).
|
51
|
+
|
52
|
+
-- ALGLIB --
|
53
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
54
|
+
*************************************************************************/
|
55
|
+
void calculatemoments(const ap::real_1d_array& x,
|
56
|
+
int n,
|
57
|
+
double& mean,
|
58
|
+
double& variance,
|
59
|
+
double& skewness,
|
60
|
+
double& kurtosis);
|
61
|
+
|
62
|
+
|
63
|
+
/*************************************************************************
|
64
|
+
ADev
|
65
|
+
|
66
|
+
Input parameters:
|
67
|
+
X - sample (array indexes: [0..N-1])
|
68
|
+
N - sample size
|
69
|
+
|
70
|
+
Output parameters:
|
71
|
+
ADev- ADev
|
72
|
+
|
73
|
+
-- ALGLIB --
|
74
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
75
|
+
*************************************************************************/
|
76
|
+
void calculateadev(const ap::real_1d_array& x, int n, double& adev);
|
77
|
+
|
78
|
+
|
79
|
+
/*************************************************************************
|
80
|
+
Median calculation.
|
81
|
+
|
82
|
+
Input parameters:
|
83
|
+
X - sample (array indexes: [0..N-1])
|
84
|
+
N - sample size
|
85
|
+
|
86
|
+
Output parameters:
|
87
|
+
Median
|
88
|
+
|
89
|
+
-- ALGLIB --
|
90
|
+
Copyright 06.09.2006 by Bochkanov Sergey
|
91
|
+
*************************************************************************/
|
92
|
+
void calculatemedian(ap::real_1d_array x, int n, double& median);
|
93
|
+
|
94
|
+
|
95
|
+
/*************************************************************************
|
96
|
+
Percentile calculation.
|
97
|
+
|
98
|
+
Input parameters:
|
99
|
+
X - sample (array indexes: [0..N-1])
|
100
|
+
N - sample size, N>1
|
101
|
+
P - percentile (0<=P<=1)
|
102
|
+
|
103
|
+
Output parameters:
|
104
|
+
V - percentile
|
105
|
+
|
106
|
+
-- ALGLIB --
|
107
|
+
Copyright 01.03.2008 by Bochkanov Sergey
|
108
|
+
*************************************************************************/
|
109
|
+
void calculatepercentile(ap::real_1d_array x, int n, double p, double& v);
|
110
|
+
|
111
|
+
|
112
|
+
#endif
|
data/ext/alglib/det.cpp
ADDED
@@ -0,0 +1,140 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "det.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Determinant calculation of the matrix given by its LU decomposition.
|
38
|
+
|
39
|
+
Input parameters:
|
40
|
+
A - LU decomposition of the matrix (output of
|
41
|
+
RMatrixLU subroutine).
|
42
|
+
Pivots - table of permutations which were made during
|
43
|
+
the LU decomposition.
|
44
|
+
Output of RMatrixLU subroutine.
|
45
|
+
N - size of matrix A.
|
46
|
+
|
47
|
+
Result: matrix determinant.
|
48
|
+
|
49
|
+
-- ALGLIB --
|
50
|
+
Copyright 2005 by Bochkanov Sergey
|
51
|
+
*************************************************************************/
|
52
|
+
double rmatrixludet(const ap::real_2d_array& a,
|
53
|
+
const ap::integer_1d_array& pivots,
|
54
|
+
int n)
|
55
|
+
{
|
56
|
+
double result;
|
57
|
+
int i;
|
58
|
+
int s;
|
59
|
+
|
60
|
+
result = 1;
|
61
|
+
s = 1;
|
62
|
+
for(i = 0; i <= n-1; i++)
|
63
|
+
{
|
64
|
+
result = result*a(i,i);
|
65
|
+
if( pivots(i)!=i )
|
66
|
+
{
|
67
|
+
s = -s;
|
68
|
+
}
|
69
|
+
}
|
70
|
+
result = result*s;
|
71
|
+
return result;
|
72
|
+
}
|
73
|
+
|
74
|
+
|
75
|
+
/*************************************************************************
|
76
|
+
Calculation of the determinant of a general matrix
|
77
|
+
|
78
|
+
Input parameters:
|
79
|
+
A - matrix, array[0..N-1, 0..N-1]
|
80
|
+
N - size of matrix A.
|
81
|
+
|
82
|
+
Result: determinant of matrix A.
|
83
|
+
|
84
|
+
-- ALGLIB --
|
85
|
+
Copyright 2005 by Bochkanov Sergey
|
86
|
+
*************************************************************************/
|
87
|
+
double rmatrixdet(ap::real_2d_array a, int n)
|
88
|
+
{
|
89
|
+
double result;
|
90
|
+
ap::integer_1d_array pivots;
|
91
|
+
|
92
|
+
rmatrixlu(a, n, n, pivots);
|
93
|
+
result = rmatrixludet(a, pivots, n);
|
94
|
+
return result;
|
95
|
+
}
|
96
|
+
|
97
|
+
|
98
|
+
/*************************************************************************
|
99
|
+
Obsolete 1-based subroutine.
|
100
|
+
See RMatrixDetLU for 0-based replacement.
|
101
|
+
*************************************************************************/
|
102
|
+
double determinantlu(const ap::real_2d_array& a,
|
103
|
+
const ap::integer_1d_array& pivots,
|
104
|
+
int n)
|
105
|
+
{
|
106
|
+
double result;
|
107
|
+
int i;
|
108
|
+
int s;
|
109
|
+
|
110
|
+
result = 1;
|
111
|
+
s = 1;
|
112
|
+
for(i = 1; i <= n; i++)
|
113
|
+
{
|
114
|
+
result = result*a(i,i);
|
115
|
+
if( pivots(i)!=i )
|
116
|
+
{
|
117
|
+
s = -s;
|
118
|
+
}
|
119
|
+
}
|
120
|
+
result = result*s;
|
121
|
+
return result;
|
122
|
+
}
|
123
|
+
|
124
|
+
|
125
|
+
/*************************************************************************
|
126
|
+
Obsolete 1-based subroutine.
|
127
|
+
See RMatrixDet for 0-based replacement.
|
128
|
+
*************************************************************************/
|
129
|
+
double determinant(ap::real_2d_array a, int n)
|
130
|
+
{
|
131
|
+
double result;
|
132
|
+
ap::integer_1d_array pivots;
|
133
|
+
|
134
|
+
ludecomposition(a, n, n, pivots);
|
135
|
+
result = determinantlu(a, pivots, n);
|
136
|
+
return result;
|
137
|
+
}
|
138
|
+
|
139
|
+
|
140
|
+
|
data/ext/alglib/det.h
ADDED
@@ -0,0 +1,94 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _det_h
|
34
|
+
#define _det_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "lu.h"
|
40
|
+
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Determinant calculation of the matrix given by its LU decomposition.
|
44
|
+
|
45
|
+
Input parameters:
|
46
|
+
A - LU decomposition of the matrix (output of
|
47
|
+
RMatrixLU subroutine).
|
48
|
+
Pivots - table of permutations which were made during
|
49
|
+
the LU decomposition.
|
50
|
+
Output of RMatrixLU subroutine.
|
51
|
+
N - size of matrix A.
|
52
|
+
|
53
|
+
Result: matrix determinant.
|
54
|
+
|
55
|
+
-- ALGLIB --
|
56
|
+
Copyright 2005 by Bochkanov Sergey
|
57
|
+
*************************************************************************/
|
58
|
+
double rmatrixludet(const ap::real_2d_array& a,
|
59
|
+
const ap::integer_1d_array& pivots,
|
60
|
+
int n);
|
61
|
+
|
62
|
+
|
63
|
+
/*************************************************************************
|
64
|
+
Calculation of the determinant of a general matrix
|
65
|
+
|
66
|
+
Input parameters:
|
67
|
+
A - matrix, array[0..N-1, 0..N-1]
|
68
|
+
N - size of matrix A.
|
69
|
+
|
70
|
+
Result: determinant of matrix A.
|
71
|
+
|
72
|
+
-- ALGLIB --
|
73
|
+
Copyright 2005 by Bochkanov Sergey
|
74
|
+
*************************************************************************/
|
75
|
+
double rmatrixdet(ap::real_2d_array a, int n);
|
76
|
+
|
77
|
+
|
78
|
+
/*************************************************************************
|
79
|
+
Obsolete 1-based subroutine.
|
80
|
+
See RMatrixDetLU for 0-based replacement.
|
81
|
+
*************************************************************************/
|
82
|
+
double determinantlu(const ap::real_2d_array& a,
|
83
|
+
const ap::integer_1d_array& pivots,
|
84
|
+
int n);
|
85
|
+
|
86
|
+
|
87
|
+
/*************************************************************************
|
88
|
+
Obsolete 1-based subroutine.
|
89
|
+
See RMatrixDet for 0-based replacement.
|
90
|
+
*************************************************************************/
|
91
|
+
double determinant(ap::real_2d_array a, int n);
|
92
|
+
|
93
|
+
|
94
|
+
#endif
|
@@ -0,0 +1,1819 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "dforest.h"
|
35
|
+
|
36
|
+
static const int dfvnum = 8;
|
37
|
+
static const int innernodewidth = 3;
|
38
|
+
static const int leafnodewidth = 2;
|
39
|
+
static const int dfusestrongsplits = 1;
|
40
|
+
static const int dfuseevs = 2;
|
41
|
+
|
42
|
+
static int dfclserror(const decisionforest& df,
|
43
|
+
const ap::real_2d_array& xy,
|
44
|
+
int npoints);
|
45
|
+
static void dfprocessinternal(const decisionforest& df,
|
46
|
+
int offs,
|
47
|
+
const ap::real_1d_array& x,
|
48
|
+
ap::real_1d_array& y);
|
49
|
+
static void dfbuildtree(const ap::real_2d_array& xy,
|
50
|
+
int npoints,
|
51
|
+
int nvars,
|
52
|
+
int nclasses,
|
53
|
+
int nfeatures,
|
54
|
+
int nvarsinpool,
|
55
|
+
int flags,
|
56
|
+
dfinternalbuffers& bufs);
|
57
|
+
static void dfbuildtreerec(const ap::real_2d_array& xy,
|
58
|
+
int npoints,
|
59
|
+
int nvars,
|
60
|
+
int nclasses,
|
61
|
+
int nfeatures,
|
62
|
+
int nvarsinpool,
|
63
|
+
int flags,
|
64
|
+
int& numprocessed,
|
65
|
+
int idx1,
|
66
|
+
int idx2,
|
67
|
+
dfinternalbuffers& bufs);
|
68
|
+
static void dfweakspliti(ap::real_1d_array& x,
|
69
|
+
ap::integer_1d_array& y,
|
70
|
+
int n,
|
71
|
+
int nclasses,
|
72
|
+
int& info,
|
73
|
+
double& threshold,
|
74
|
+
double& e);
|
75
|
+
static void dfsplitc(ap::real_1d_array& x,
|
76
|
+
ap::integer_1d_array& c,
|
77
|
+
ap::integer_1d_array& cntbuf,
|
78
|
+
int n,
|
79
|
+
int nc,
|
80
|
+
int flags,
|
81
|
+
int& info,
|
82
|
+
double& threshold,
|
83
|
+
double& e);
|
84
|
+
static void dfsplitr(ap::real_1d_array& x,
|
85
|
+
ap::real_1d_array& y,
|
86
|
+
int n,
|
87
|
+
int flags,
|
88
|
+
int& info,
|
89
|
+
double& threshold,
|
90
|
+
double& e);
|
91
|
+
|
92
|
+
/*************************************************************************
|
93
|
+
This subroutine builds random decision forest.
|
94
|
+
|
95
|
+
INPUT PARAMETERS:
|
96
|
+
XY - training set
|
97
|
+
NPoints - training set size, NPoints>=1
|
98
|
+
NVars - number of independent variables, NVars>=1
|
99
|
+
NClasses - task type:
|
100
|
+
* NClasses=1 - regression task with one
|
101
|
+
dependent variable
|
102
|
+
* NClasses>1 - classification task with
|
103
|
+
NClasses classes.
|
104
|
+
NTrees - number of trees in a forest, NTrees>=1.
|
105
|
+
recommended values: 50-100.
|
106
|
+
R - percent of a training set used to build
|
107
|
+
individual trees. 0<R<=1.
|
108
|
+
recommended values: 0.1 <= R <= 0.66.
|
109
|
+
|
110
|
+
OUTPUT PARAMETERS:
|
111
|
+
Info - return code:
|
112
|
+
* -2, if there is a point with class number
|
113
|
+
outside of [0..NClasses-1].
|
114
|
+
* -1, if incorrect parameters was passed
|
115
|
+
(NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0
|
116
|
+
or R>1).
|
117
|
+
* 1, if task has been solved
|
118
|
+
DF - model built
|
119
|
+
Rep - training report, contains error on a training set
|
120
|
+
and out-of-bag estimates of generalization error.
|
121
|
+
|
122
|
+
-- ALGLIB --
|
123
|
+
Copyright 19.02.2009 by Bochkanov Sergey
|
124
|
+
*************************************************************************/
|
125
|
+
void dfbuildrandomdecisionforest(const ap::real_2d_array& xy,
|
126
|
+
int npoints,
|
127
|
+
int nvars,
|
128
|
+
int nclasses,
|
129
|
+
int ntrees,
|
130
|
+
double r,
|
131
|
+
int& info,
|
132
|
+
decisionforest& df,
|
133
|
+
dfreport& rep)
|
134
|
+
{
|
135
|
+
int samplesize;
|
136
|
+
|
137
|
+
if( r<=0||r>1 )
|
138
|
+
{
|
139
|
+
info = -1;
|
140
|
+
return;
|
141
|
+
}
|
142
|
+
samplesize = ap::maxint(ap::round(r*npoints), 1);
|
143
|
+
dfbuildinternal(xy, npoints, nvars, nclasses, ntrees, samplesize, ap::maxint(nvars/2, 1), dfusestrongsplits+dfuseevs, info, df, rep);
|
144
|
+
}
|
145
|
+
|
146
|
+
|
147
|
+
/*************************************************************************
|
148
|
+
Internal decision forest building subroutine,
|
149
|
+
should not be called by user.
|
150
|
+
|
151
|
+
-- ALGLIB --
|
152
|
+
Copyright 19.02.2009 by Bochkanov Sergey
|
153
|
+
*************************************************************************/
|
154
|
+
void dfbuildinternal(const ap::real_2d_array& xy,
|
155
|
+
int npoints,
|
156
|
+
int nvars,
|
157
|
+
int nclasses,
|
158
|
+
int ntrees,
|
159
|
+
int samplesize,
|
160
|
+
int nfeatures,
|
161
|
+
int flags,
|
162
|
+
int& info,
|
163
|
+
decisionforest& df,
|
164
|
+
dfreport& rep)
|
165
|
+
{
|
166
|
+
int i;
|
167
|
+
int j;
|
168
|
+
int k;
|
169
|
+
int tmpi;
|
170
|
+
int lasttreeoffs;
|
171
|
+
int offs;
|
172
|
+
int ooboffs;
|
173
|
+
int treesize;
|
174
|
+
int nvarsinpool;
|
175
|
+
bool useevs;
|
176
|
+
dfinternalbuffers bufs;
|
177
|
+
ap::integer_1d_array permbuf;
|
178
|
+
ap::real_1d_array oobbuf;
|
179
|
+
ap::integer_1d_array oobcntbuf;
|
180
|
+
ap::real_2d_array xys;
|
181
|
+
ap::real_1d_array x;
|
182
|
+
ap::real_1d_array y;
|
183
|
+
int oobcnt;
|
184
|
+
int oobrelcnt;
|
185
|
+
double v;
|
186
|
+
double vmin;
|
187
|
+
double vmax;
|
188
|
+
bool bflag;
|
189
|
+
|
190
|
+
|
191
|
+
//
|
192
|
+
// Test for inputs
|
193
|
+
//
|
194
|
+
if( npoints<1||samplesize<1||samplesize>npoints||nvars<1||nclasses<1||ntrees<1||nfeatures<1 )
|
195
|
+
{
|
196
|
+
info = -1;
|
197
|
+
return;
|
198
|
+
}
|
199
|
+
if( nclasses>1 )
|
200
|
+
{
|
201
|
+
for(i = 0; i <= npoints-1; i++)
|
202
|
+
{
|
203
|
+
if( ap::round(xy(i,nvars))<0||ap::round(xy(i,nvars))>=nclasses )
|
204
|
+
{
|
205
|
+
info = -2;
|
206
|
+
return;
|
207
|
+
}
|
208
|
+
}
|
209
|
+
}
|
210
|
+
info = 1;
|
211
|
+
|
212
|
+
//
|
213
|
+
// Flags
|
214
|
+
//
|
215
|
+
useevs = flags/dfuseevs%2!=0;
|
216
|
+
|
217
|
+
//
|
218
|
+
// Allocate data, prepare header
|
219
|
+
//
|
220
|
+
treesize = 1+innernodewidth*(samplesize-1)+leafnodewidth*samplesize;
|
221
|
+
permbuf.setbounds(0, npoints-1);
|
222
|
+
bufs.treebuf.setbounds(0, treesize-1);
|
223
|
+
bufs.idxbuf.setbounds(0, npoints-1);
|
224
|
+
bufs.tmpbufr.setbounds(0, npoints-1);
|
225
|
+
bufs.tmpbufr2.setbounds(0, npoints-1);
|
226
|
+
bufs.tmpbufi.setbounds(0, npoints-1);
|
227
|
+
bufs.varpool.setbounds(0, nvars-1);
|
228
|
+
bufs.evsbin.setbounds(0, nvars-1);
|
229
|
+
bufs.evssplits.setbounds(0, nvars-1);
|
230
|
+
bufs.classibuf.setbounds(0, 2*nclasses-1);
|
231
|
+
oobbuf.setbounds(0, nclasses*npoints-1);
|
232
|
+
oobcntbuf.setbounds(0, npoints-1);
|
233
|
+
df.trees.setbounds(0, ntrees*treesize-1);
|
234
|
+
xys.setbounds(0, samplesize-1, 0, nvars);
|
235
|
+
x.setbounds(0, nvars-1);
|
236
|
+
y.setbounds(0, nclasses-1);
|
237
|
+
for(i = 0; i <= npoints-1; i++)
|
238
|
+
{
|
239
|
+
permbuf(i) = i;
|
240
|
+
}
|
241
|
+
for(i = 0; i <= npoints*nclasses-1; i++)
|
242
|
+
{
|
243
|
+
oobbuf(i) = 0;
|
244
|
+
}
|
245
|
+
for(i = 0; i <= npoints-1; i++)
|
246
|
+
{
|
247
|
+
oobcntbuf(i) = 0;
|
248
|
+
}
|
249
|
+
|
250
|
+
//
|
251
|
+
// Prepare variable pool and EVS (extended variable selection/splitting) buffers
|
252
|
+
// (whether EVS is turned on or not):
|
253
|
+
// 1. detect binary variables and pre-calculate splits for them
|
254
|
+
// 2. detect variables with non-distinct values and exclude them from pool
|
255
|
+
//
|
256
|
+
for(i = 0; i <= nvars-1; i++)
|
257
|
+
{
|
258
|
+
bufs.varpool(i) = i;
|
259
|
+
}
|
260
|
+
nvarsinpool = nvars;
|
261
|
+
if( useevs )
|
262
|
+
{
|
263
|
+
for(j = 0; j <= nvars-1; j++)
|
264
|
+
{
|
265
|
+
vmin = xy(0,j);
|
266
|
+
vmax = vmin;
|
267
|
+
for(i = 0; i <= npoints-1; i++)
|
268
|
+
{
|
269
|
+
v = xy(i,j);
|
270
|
+
vmin = ap::minreal(vmin, v);
|
271
|
+
vmax = ap::maxreal(vmax, v);
|
272
|
+
}
|
273
|
+
if( vmin==vmax )
|
274
|
+
{
|
275
|
+
|
276
|
+
//
|
277
|
+
// exclude variable from pool
|
278
|
+
//
|
279
|
+
bufs.varpool(j) = bufs.varpool(nvarsinpool-1);
|
280
|
+
bufs.varpool(nvarsinpool-1) = -1;
|
281
|
+
nvarsinpool = nvarsinpool-1;
|
282
|
+
continue;
|
283
|
+
}
|
284
|
+
bflag = false;
|
285
|
+
for(i = 0; i <= npoints-1; i++)
|
286
|
+
{
|
287
|
+
v = xy(i,j);
|
288
|
+
if( v!=vmin&&v!=vmax )
|
289
|
+
{
|
290
|
+
bflag = true;
|
291
|
+
break;
|
292
|
+
}
|
293
|
+
}
|
294
|
+
if( bflag )
|
295
|
+
{
|
296
|
+
|
297
|
+
//
|
298
|
+
// non-binary variable
|
299
|
+
//
|
300
|
+
bufs.evsbin(j) = false;
|
301
|
+
}
|
302
|
+
else
|
303
|
+
{
|
304
|
+
|
305
|
+
//
|
306
|
+
// Prepare
|
307
|
+
//
|
308
|
+
bufs.evsbin(j) = true;
|
309
|
+
bufs.evssplits(j) = 0.5*(vmin+vmax);
|
310
|
+
if( bufs.evssplits(j)<=vmin )
|
311
|
+
{
|
312
|
+
bufs.evssplits(j) = vmax;
|
313
|
+
}
|
314
|
+
}
|
315
|
+
}
|
316
|
+
}
|
317
|
+
|
318
|
+
//
|
319
|
+
// RANDOM FOREST FORMAT
|
320
|
+
// W[0] - size of array
|
321
|
+
// W[1] - version number
|
322
|
+
// W[2] - NVars
|
323
|
+
// W[3] - NClasses (1 for regression)
|
324
|
+
// W[4] - NTrees
|
325
|
+
// W[5] - trees offset
|
326
|
+
//
|
327
|
+
//
|
328
|
+
// TREE FORMAT
|
329
|
+
// W[Offs] - size of sub-array
|
330
|
+
// node info:
|
331
|
+
// W[K+0] - variable number (-1 for leaf mode)
|
332
|
+
// W[K+1] - threshold (class/value for leaf node)
|
333
|
+
// W[K+2] - ">=" branch index (absent for leaf node)
|
334
|
+
//
|
335
|
+
//
|
336
|
+
df.nvars = nvars;
|
337
|
+
df.nclasses = nclasses;
|
338
|
+
df.ntrees = ntrees;
|
339
|
+
|
340
|
+
//
|
341
|
+
// Build forest
|
342
|
+
//
|
343
|
+
offs = 0;
|
344
|
+
for(i = 0; i <= ntrees-1; i++)
|
345
|
+
{
|
346
|
+
|
347
|
+
//
|
348
|
+
// Prepare sample
|
349
|
+
//
|
350
|
+
for(k = 0; k <= samplesize-1; k++)
|
351
|
+
{
|
352
|
+
j = k+ap::randominteger(npoints-k);
|
353
|
+
tmpi = permbuf(k);
|
354
|
+
permbuf(k) = permbuf(j);
|
355
|
+
permbuf(j) = tmpi;
|
356
|
+
j = permbuf(k);
|
357
|
+
ap::vmove(&xys(k, 0), &xy(j, 0), ap::vlen(0,nvars));
|
358
|
+
}
|
359
|
+
|
360
|
+
//
|
361
|
+
// build tree, copy
|
362
|
+
//
|
363
|
+
dfbuildtree(xys, samplesize, nvars, nclasses, nfeatures, nvarsinpool, flags, bufs);
|
364
|
+
j = ap::round(bufs.treebuf(0));
|
365
|
+
ap::vmove(&df.trees(offs), &bufs.treebuf(0), ap::vlen(offs,offs+j-1));
|
366
|
+
lasttreeoffs = offs;
|
367
|
+
offs = offs+j;
|
368
|
+
|
369
|
+
//
|
370
|
+
// OOB estimates
|
371
|
+
//
|
372
|
+
for(k = samplesize; k <= npoints-1; k++)
|
373
|
+
{
|
374
|
+
for(j = 0; j <= nclasses-1; j++)
|
375
|
+
{
|
376
|
+
y(j) = 0;
|
377
|
+
}
|
378
|
+
j = permbuf(k);
|
379
|
+
ap::vmove(&x(0), &xy(j, 0), ap::vlen(0,nvars-1));
|
380
|
+
dfprocessinternal(df, lasttreeoffs, x, y);
|
381
|
+
ap::vadd(&oobbuf(j*nclasses), &y(0), ap::vlen(j*nclasses,(j+1)*nclasses-1));
|
382
|
+
oobcntbuf(j) = oobcntbuf(j)+1;
|
383
|
+
}
|
384
|
+
}
|
385
|
+
df.bufsize = offs;
|
386
|
+
|
387
|
+
//
|
388
|
+
// Normalize OOB results
|
389
|
+
//
|
390
|
+
for(i = 0; i <= npoints-1; i++)
|
391
|
+
{
|
392
|
+
if( oobcntbuf(i)!=0 )
|
393
|
+
{
|
394
|
+
v = double(1)/double(oobcntbuf(i));
|
395
|
+
ap::vmul(&oobbuf(i*nclasses), ap::vlen(i*nclasses,i*nclasses+nclasses-1), v);
|
396
|
+
}
|
397
|
+
}
|
398
|
+
|
399
|
+
//
|
400
|
+
// Calculate training set estimates
|
401
|
+
//
|
402
|
+
rep.relclserror = dfrelclserror(df, xy, npoints);
|
403
|
+
rep.avgce = dfavgce(df, xy, npoints);
|
404
|
+
rep.rmserror = dfrmserror(df, xy, npoints);
|
405
|
+
rep.avgerror = dfavgerror(df, xy, npoints);
|
406
|
+
rep.avgrelerror = dfavgrelerror(df, xy, npoints);
|
407
|
+
|
408
|
+
//
|
409
|
+
// Calculate OOB estimates.
|
410
|
+
//
|
411
|
+
rep.oobrelclserror = 0;
|
412
|
+
rep.oobavgce = 0;
|
413
|
+
rep.oobrmserror = 0;
|
414
|
+
rep.oobavgerror = 0;
|
415
|
+
rep.oobavgrelerror = 0;
|
416
|
+
oobcnt = 0;
|
417
|
+
oobrelcnt = 0;
|
418
|
+
for(i = 0; i <= npoints-1; i++)
|
419
|
+
{
|
420
|
+
if( oobcntbuf(i)!=0 )
|
421
|
+
{
|
422
|
+
ooboffs = i*nclasses;
|
423
|
+
if( nclasses>1 )
|
424
|
+
{
|
425
|
+
|
426
|
+
//
|
427
|
+
// classification-specific code
|
428
|
+
//
|
429
|
+
k = ap::round(xy(i,nvars));
|
430
|
+
tmpi = 0;
|
431
|
+
for(j = 1; j <= nclasses-1; j++)
|
432
|
+
{
|
433
|
+
if( oobbuf(ooboffs+j)>oobbuf(ooboffs+tmpi) )
|
434
|
+
{
|
435
|
+
tmpi = j;
|
436
|
+
}
|
437
|
+
}
|
438
|
+
if( tmpi!=k )
|
439
|
+
{
|
440
|
+
rep.oobrelclserror = rep.oobrelclserror+1;
|
441
|
+
}
|
442
|
+
if( oobbuf(ooboffs+k)!=0 )
|
443
|
+
{
|
444
|
+
rep.oobavgce = rep.oobavgce-log(oobbuf(ooboffs+k));
|
445
|
+
}
|
446
|
+
else
|
447
|
+
{
|
448
|
+
rep.oobavgce = rep.oobavgce-log(ap::minrealnumber);
|
449
|
+
}
|
450
|
+
for(j = 0; j <= nclasses-1; j++)
|
451
|
+
{
|
452
|
+
if( j==k )
|
453
|
+
{
|
454
|
+
rep.oobrmserror = rep.oobrmserror+ap::sqr(oobbuf(ooboffs+j)-1);
|
455
|
+
rep.oobavgerror = rep.oobavgerror+fabs(oobbuf(ooboffs+j)-1);
|
456
|
+
rep.oobavgrelerror = rep.oobavgrelerror+fabs(oobbuf(ooboffs+j)-1);
|
457
|
+
oobrelcnt = oobrelcnt+1;
|
458
|
+
}
|
459
|
+
else
|
460
|
+
{
|
461
|
+
rep.oobrmserror = rep.oobrmserror+ap::sqr(oobbuf(ooboffs+j));
|
462
|
+
rep.oobavgerror = rep.oobavgerror+fabs(oobbuf(ooboffs+j));
|
463
|
+
}
|
464
|
+
}
|
465
|
+
}
|
466
|
+
else
|
467
|
+
{
|
468
|
+
|
469
|
+
//
|
470
|
+
// regression-specific code
|
471
|
+
//
|
472
|
+
rep.oobrmserror = rep.oobrmserror+ap::sqr(oobbuf(ooboffs)-xy(i,nvars));
|
473
|
+
rep.oobavgerror = rep.oobavgerror+fabs(oobbuf(ooboffs)-xy(i,nvars));
|
474
|
+
if( xy(i,nvars)!=0 )
|
475
|
+
{
|
476
|
+
rep.oobavgrelerror = rep.oobavgrelerror+fabs((oobbuf(ooboffs)-xy(i,nvars))/xy(i,nvars));
|
477
|
+
oobrelcnt = oobrelcnt+1;
|
478
|
+
}
|
479
|
+
}
|
480
|
+
|
481
|
+
//
|
482
|
+
// update OOB estimates count.
|
483
|
+
//
|
484
|
+
oobcnt = oobcnt+1;
|
485
|
+
}
|
486
|
+
}
|
487
|
+
if( oobcnt>0 )
|
488
|
+
{
|
489
|
+
rep.oobrelclserror = rep.oobrelclserror/oobcnt;
|
490
|
+
rep.oobavgce = rep.oobavgce/oobcnt;
|
491
|
+
rep.oobrmserror = sqrt(rep.oobrmserror/(oobcnt*nclasses));
|
492
|
+
rep.oobavgerror = rep.oobavgerror/(oobcnt*nclasses);
|
493
|
+
if( oobrelcnt>0 )
|
494
|
+
{
|
495
|
+
rep.oobavgrelerror = rep.oobavgrelerror/oobrelcnt;
|
496
|
+
}
|
497
|
+
}
|
498
|
+
}
|
499
|
+
|
500
|
+
|
501
|
+
/*************************************************************************
|
502
|
+
Procesing
|
503
|
+
|
504
|
+
INPUT PARAMETERS:
|
505
|
+
DF - decision forest model
|
506
|
+
X - input vector, array[0..NVars-1].
|
507
|
+
|
508
|
+
OUTPUT PARAMETERS:
|
509
|
+
Y - result. Regression estimate when solving regression task,
|
510
|
+
vector of posterior probabilities for classification task.
|
511
|
+
Subroutine does not allocate memory for this vector, it is
|
512
|
+
responsibility of a caller to allocate it. Array must be
|
513
|
+
at least [0..NClasses-1].
|
514
|
+
|
515
|
+
-- ALGLIB --
|
516
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
517
|
+
*************************************************************************/
|
518
|
+
void dfprocess(const decisionforest& df,
|
519
|
+
const ap::real_1d_array& x,
|
520
|
+
ap::real_1d_array& y)
|
521
|
+
{
|
522
|
+
int offs;
|
523
|
+
int i;
|
524
|
+
double v;
|
525
|
+
|
526
|
+
|
527
|
+
//
|
528
|
+
// Proceed
|
529
|
+
//
|
530
|
+
offs = 0;
|
531
|
+
for(i = 0; i <= df.nclasses-1; i++)
|
532
|
+
{
|
533
|
+
y(i) = 0;
|
534
|
+
}
|
535
|
+
for(i = 0; i <= df.ntrees-1; i++)
|
536
|
+
{
|
537
|
+
|
538
|
+
//
|
539
|
+
// Process basic tree
|
540
|
+
//
|
541
|
+
dfprocessinternal(df, offs, x, y);
|
542
|
+
|
543
|
+
//
|
544
|
+
// Next tree
|
545
|
+
//
|
546
|
+
offs = offs+ap::round(df.trees(offs));
|
547
|
+
}
|
548
|
+
v = double(1)/double(df.ntrees);
|
549
|
+
ap::vmul(&y(0), ap::vlen(0,df.nclasses-1), v);
|
550
|
+
}
|
551
|
+
|
552
|
+
|
553
|
+
/*************************************************************************
|
554
|
+
Relative classification error on the test set
|
555
|
+
|
556
|
+
INPUT PARAMETERS:
|
557
|
+
DF - decision forest model
|
558
|
+
XY - test set
|
559
|
+
NPoints - test set size
|
560
|
+
|
561
|
+
RESULT:
|
562
|
+
percent of incorrectly classified cases.
|
563
|
+
Zero if model solves regression task.
|
564
|
+
|
565
|
+
-- ALGLIB --
|
566
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
567
|
+
*************************************************************************/
|
568
|
+
double dfrelclserror(const decisionforest& df,
|
569
|
+
const ap::real_2d_array& xy,
|
570
|
+
int npoints)
|
571
|
+
{
|
572
|
+
double result;
|
573
|
+
|
574
|
+
result = double(dfclserror(df, xy, npoints))/double(npoints);
|
575
|
+
return result;
|
576
|
+
}
|
577
|
+
|
578
|
+
|
579
|
+
/*************************************************************************
|
580
|
+
Average cross-entropy (in bits per element) on the test set
|
581
|
+
|
582
|
+
INPUT PARAMETERS:
|
583
|
+
DF - decision forest model
|
584
|
+
XY - test set
|
585
|
+
NPoints - test set size
|
586
|
+
|
587
|
+
RESULT:
|
588
|
+
CrossEntropy/(NPoints*LN(2)).
|
589
|
+
Zero if model solves regression task.
|
590
|
+
|
591
|
+
-- ALGLIB --
|
592
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
593
|
+
*************************************************************************/
|
594
|
+
double dfavgce(const decisionforest& df,
|
595
|
+
const ap::real_2d_array& xy,
|
596
|
+
int npoints)
|
597
|
+
{
|
598
|
+
double result;
|
599
|
+
ap::real_1d_array x;
|
600
|
+
ap::real_1d_array y;
|
601
|
+
int i;
|
602
|
+
int j;
|
603
|
+
int k;
|
604
|
+
int tmpi;
|
605
|
+
|
606
|
+
x.setbounds(0, df.nvars-1);
|
607
|
+
y.setbounds(0, df.nclasses-1);
|
608
|
+
result = 0;
|
609
|
+
for(i = 0; i <= npoints-1; i++)
|
610
|
+
{
|
611
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,df.nvars-1));
|
612
|
+
dfprocess(df, x, y);
|
613
|
+
if( df.nclasses>1 )
|
614
|
+
{
|
615
|
+
|
616
|
+
//
|
617
|
+
// classification-specific code
|
618
|
+
//
|
619
|
+
k = ap::round(xy(i,df.nvars));
|
620
|
+
tmpi = 0;
|
621
|
+
for(j = 1; j <= df.nclasses-1; j++)
|
622
|
+
{
|
623
|
+
if( y(j)>y(tmpi) )
|
624
|
+
{
|
625
|
+
tmpi = j;
|
626
|
+
}
|
627
|
+
}
|
628
|
+
if( y(k)!=0 )
|
629
|
+
{
|
630
|
+
result = result-log(y(k));
|
631
|
+
}
|
632
|
+
else
|
633
|
+
{
|
634
|
+
result = result-log(ap::minrealnumber);
|
635
|
+
}
|
636
|
+
}
|
637
|
+
}
|
638
|
+
result = result/npoints;
|
639
|
+
return result;
|
640
|
+
}
|
641
|
+
|
642
|
+
|
643
|
+
/*************************************************************************
|
644
|
+
RMS error on the test set
|
645
|
+
|
646
|
+
INPUT PARAMETERS:
|
647
|
+
DF - decision forest model
|
648
|
+
XY - test set
|
649
|
+
NPoints - test set size
|
650
|
+
|
651
|
+
RESULT:
|
652
|
+
root mean square error.
|
653
|
+
Its meaning for regression task is obvious. As for
|
654
|
+
classification task, RMS error means error when estimating posterior
|
655
|
+
probabilities.
|
656
|
+
|
657
|
+
-- ALGLIB --
|
658
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
659
|
+
*************************************************************************/
|
660
|
+
double dfrmserror(const decisionforest& df,
|
661
|
+
const ap::real_2d_array& xy,
|
662
|
+
int npoints)
|
663
|
+
{
|
664
|
+
double result;
|
665
|
+
ap::real_1d_array x;
|
666
|
+
ap::real_1d_array y;
|
667
|
+
int i;
|
668
|
+
int j;
|
669
|
+
int k;
|
670
|
+
int tmpi;
|
671
|
+
|
672
|
+
x.setbounds(0, df.nvars-1);
|
673
|
+
y.setbounds(0, df.nclasses-1);
|
674
|
+
result = 0;
|
675
|
+
for(i = 0; i <= npoints-1; i++)
|
676
|
+
{
|
677
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,df.nvars-1));
|
678
|
+
dfprocess(df, x, y);
|
679
|
+
if( df.nclasses>1 )
|
680
|
+
{
|
681
|
+
|
682
|
+
//
|
683
|
+
// classification-specific code
|
684
|
+
//
|
685
|
+
k = ap::round(xy(i,df.nvars));
|
686
|
+
tmpi = 0;
|
687
|
+
for(j = 1; j <= df.nclasses-1; j++)
|
688
|
+
{
|
689
|
+
if( y(j)>y(tmpi) )
|
690
|
+
{
|
691
|
+
tmpi = j;
|
692
|
+
}
|
693
|
+
}
|
694
|
+
for(j = 0; j <= df.nclasses-1; j++)
|
695
|
+
{
|
696
|
+
if( j==k )
|
697
|
+
{
|
698
|
+
result = result+ap::sqr(y(j)-1);
|
699
|
+
}
|
700
|
+
else
|
701
|
+
{
|
702
|
+
result = result+ap::sqr(y(j));
|
703
|
+
}
|
704
|
+
}
|
705
|
+
}
|
706
|
+
else
|
707
|
+
{
|
708
|
+
|
709
|
+
//
|
710
|
+
// regression-specific code
|
711
|
+
//
|
712
|
+
result = result+ap::sqr(y(0)-xy(i,df.nvars));
|
713
|
+
}
|
714
|
+
}
|
715
|
+
result = sqrt(result/(npoints*df.nclasses));
|
716
|
+
return result;
|
717
|
+
}
|
718
|
+
|
719
|
+
|
720
|
+
/*************************************************************************
|
721
|
+
Average error on the test set
|
722
|
+
|
723
|
+
INPUT PARAMETERS:
|
724
|
+
DF - decision forest model
|
725
|
+
XY - test set
|
726
|
+
NPoints - test set size
|
727
|
+
|
728
|
+
RESULT:
|
729
|
+
Its meaning for regression task is obvious. As for
|
730
|
+
classification task, it means average error when estimating posterior
|
731
|
+
probabilities.
|
732
|
+
|
733
|
+
-- ALGLIB --
|
734
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
735
|
+
*************************************************************************/
|
736
|
+
double dfavgerror(const decisionforest& df,
|
737
|
+
const ap::real_2d_array& xy,
|
738
|
+
int npoints)
|
739
|
+
{
|
740
|
+
double result;
|
741
|
+
ap::real_1d_array x;
|
742
|
+
ap::real_1d_array y;
|
743
|
+
int i;
|
744
|
+
int j;
|
745
|
+
int k;
|
746
|
+
|
747
|
+
x.setbounds(0, df.nvars-1);
|
748
|
+
y.setbounds(0, df.nclasses-1);
|
749
|
+
result = 0;
|
750
|
+
for(i = 0; i <= npoints-1; i++)
|
751
|
+
{
|
752
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,df.nvars-1));
|
753
|
+
dfprocess(df, x, y);
|
754
|
+
if( df.nclasses>1 )
|
755
|
+
{
|
756
|
+
|
757
|
+
//
|
758
|
+
// classification-specific code
|
759
|
+
//
|
760
|
+
k = ap::round(xy(i,df.nvars));
|
761
|
+
for(j = 0; j <= df.nclasses-1; j++)
|
762
|
+
{
|
763
|
+
if( j==k )
|
764
|
+
{
|
765
|
+
result = result+fabs(y(j)-1);
|
766
|
+
}
|
767
|
+
else
|
768
|
+
{
|
769
|
+
result = result+fabs(y(j));
|
770
|
+
}
|
771
|
+
}
|
772
|
+
}
|
773
|
+
else
|
774
|
+
{
|
775
|
+
|
776
|
+
//
|
777
|
+
// regression-specific code
|
778
|
+
//
|
779
|
+
result = result+fabs(y(0)-xy(i,df.nvars));
|
780
|
+
}
|
781
|
+
}
|
782
|
+
result = result/(npoints*df.nclasses);
|
783
|
+
return result;
|
784
|
+
}
|
785
|
+
|
786
|
+
|
787
|
+
/*************************************************************************
|
788
|
+
Average relative error on the test set
|
789
|
+
|
790
|
+
INPUT PARAMETERS:
|
791
|
+
DF - decision forest model
|
792
|
+
XY - test set
|
793
|
+
NPoints - test set size
|
794
|
+
|
795
|
+
RESULT:
|
796
|
+
Its meaning for regression task is obvious. As for
|
797
|
+
classification task, it means average relative error when estimating
|
798
|
+
posterior probability of belonging to the correct class.
|
799
|
+
|
800
|
+
-- ALGLIB --
|
801
|
+
Copyright 16.02.2009 by Bochkanov Sergey
|
802
|
+
*************************************************************************/
|
803
|
+
double dfavgrelerror(const decisionforest& df,
|
804
|
+
const ap::real_2d_array& xy,
|
805
|
+
int npoints)
|
806
|
+
{
|
807
|
+
double result;
|
808
|
+
ap::real_1d_array x;
|
809
|
+
ap::real_1d_array y;
|
810
|
+
int relcnt;
|
811
|
+
int i;
|
812
|
+
int j;
|
813
|
+
int k;
|
814
|
+
|
815
|
+
x.setbounds(0, df.nvars-1);
|
816
|
+
y.setbounds(0, df.nclasses-1);
|
817
|
+
result = 0;
|
818
|
+
relcnt = 0;
|
819
|
+
for(i = 0; i <= npoints-1; i++)
|
820
|
+
{
|
821
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,df.nvars-1));
|
822
|
+
dfprocess(df, x, y);
|
823
|
+
if( df.nclasses>1 )
|
824
|
+
{
|
825
|
+
|
826
|
+
//
|
827
|
+
// classification-specific code
|
828
|
+
//
|
829
|
+
k = ap::round(xy(i,df.nvars));
|
830
|
+
for(j = 0; j <= df.nclasses-1; j++)
|
831
|
+
{
|
832
|
+
if( j==k )
|
833
|
+
{
|
834
|
+
result = result+fabs(y(j)-1);
|
835
|
+
relcnt = relcnt+1;
|
836
|
+
}
|
837
|
+
}
|
838
|
+
}
|
839
|
+
else
|
840
|
+
{
|
841
|
+
|
842
|
+
//
|
843
|
+
// regression-specific code
|
844
|
+
//
|
845
|
+
if( xy(i,df.nvars)!=0 )
|
846
|
+
{
|
847
|
+
result = result+fabs((y(0)-xy(i,df.nvars))/xy(i,df.nvars));
|
848
|
+
relcnt = relcnt+1;
|
849
|
+
}
|
850
|
+
}
|
851
|
+
}
|
852
|
+
if( relcnt>0 )
|
853
|
+
{
|
854
|
+
result = result/relcnt;
|
855
|
+
}
|
856
|
+
return result;
|
857
|
+
}
|
858
|
+
|
859
|
+
|
860
|
+
/*************************************************************************
|
861
|
+
Copying of DecisionForest strucure
|
862
|
+
|
863
|
+
INPUT PARAMETERS:
|
864
|
+
DF1 - original
|
865
|
+
|
866
|
+
OUTPUT PARAMETERS:
|
867
|
+
DF2 - copy
|
868
|
+
|
869
|
+
-- ALGLIB --
|
870
|
+
Copyright 13.02.2009 by Bochkanov Sergey
|
871
|
+
*************************************************************************/
|
872
|
+
void dfcopy(const decisionforest& df1, decisionforest& df2)
|
873
|
+
{
|
874
|
+
|
875
|
+
df2.nvars = df1.nvars;
|
876
|
+
df2.nclasses = df1.nclasses;
|
877
|
+
df2.ntrees = df1.ntrees;
|
878
|
+
df2.bufsize = df1.bufsize;
|
879
|
+
df2.trees.setbounds(0, df1.bufsize-1);
|
880
|
+
ap::vmove(&df2.trees(0), &df1.trees(0), ap::vlen(0,df1.bufsize-1));
|
881
|
+
}
|
882
|
+
|
883
|
+
|
884
|
+
/*************************************************************************
|
885
|
+
Serialization of DecisionForest strucure
|
886
|
+
|
887
|
+
INPUT PARAMETERS:
|
888
|
+
DF - original
|
889
|
+
|
890
|
+
OUTPUT PARAMETERS:
|
891
|
+
RA - array of real numbers which stores decision forest,
|
892
|
+
array[0..RLen-1]
|
893
|
+
RLen - RA lenght
|
894
|
+
|
895
|
+
-- ALGLIB --
|
896
|
+
Copyright 13.02.2009 by Bochkanov Sergey
|
897
|
+
*************************************************************************/
|
898
|
+
void dfserialize(const decisionforest& df, ap::real_1d_array& ra, int& rlen)
|
899
|
+
{
|
900
|
+
|
901
|
+
ra.setbounds(0, df.bufsize+5-1);
|
902
|
+
ra(0) = dfvnum;
|
903
|
+
ra(1) = df.nvars;
|
904
|
+
ra(2) = df.nclasses;
|
905
|
+
ra(3) = df.ntrees;
|
906
|
+
ra(4) = df.bufsize;
|
907
|
+
ap::vmove(&ra(5), &df.trees(0), ap::vlen(5,5+df.bufsize-1));
|
908
|
+
rlen = 5+df.bufsize;
|
909
|
+
}
|
910
|
+
|
911
|
+
|
912
|
+
/*************************************************************************
|
913
|
+
Unserialization of DecisionForest strucure
|
914
|
+
|
915
|
+
INPUT PARAMETERS:
|
916
|
+
RA - real array which stores decision forest
|
917
|
+
|
918
|
+
OUTPUT PARAMETERS:
|
919
|
+
DF - restored structure
|
920
|
+
|
921
|
+
-- ALGLIB --
|
922
|
+
Copyright 13.02.2009 by Bochkanov Sergey
|
923
|
+
*************************************************************************/
|
924
|
+
void dfunserialize(const ap::real_1d_array& ra, decisionforest& df)
|
925
|
+
{
|
926
|
+
|
927
|
+
ap::ap_error::make_assertion(ap::round(ra(0))==dfvnum, "DFUnserialize: incorrect array!");
|
928
|
+
df.nvars = ap::round(ra(1));
|
929
|
+
df.nclasses = ap::round(ra(2));
|
930
|
+
df.ntrees = ap::round(ra(3));
|
931
|
+
df.bufsize = ap::round(ra(4));
|
932
|
+
df.trees.setbounds(0, df.bufsize-1);
|
933
|
+
ap::vmove(&df.trees(0), &ra(5), ap::vlen(0,df.bufsize-1));
|
934
|
+
}
|
935
|
+
|
936
|
+
|
937
|
+
/*************************************************************************
|
938
|
+
Classification error
|
939
|
+
*************************************************************************/
|
940
|
+
static int dfclserror(const decisionforest& df,
|
941
|
+
const ap::real_2d_array& xy,
|
942
|
+
int npoints)
|
943
|
+
{
|
944
|
+
int result;
|
945
|
+
ap::real_1d_array x;
|
946
|
+
ap::real_1d_array y;
|
947
|
+
int i;
|
948
|
+
int j;
|
949
|
+
int k;
|
950
|
+
int tmpi;
|
951
|
+
|
952
|
+
if( df.nclasses<=1 )
|
953
|
+
{
|
954
|
+
result = 0;
|
955
|
+
return result;
|
956
|
+
}
|
957
|
+
x.setbounds(0, df.nvars-1);
|
958
|
+
y.setbounds(0, df.nclasses-1);
|
959
|
+
result = 0;
|
960
|
+
for(i = 0; i <= npoints-1; i++)
|
961
|
+
{
|
962
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,df.nvars-1));
|
963
|
+
dfprocess(df, x, y);
|
964
|
+
k = ap::round(xy(i,df.nvars));
|
965
|
+
tmpi = 0;
|
966
|
+
for(j = 1; j <= df.nclasses-1; j++)
|
967
|
+
{
|
968
|
+
if( y(j)>y(tmpi) )
|
969
|
+
{
|
970
|
+
tmpi = j;
|
971
|
+
}
|
972
|
+
}
|
973
|
+
if( tmpi!=k )
|
974
|
+
{
|
975
|
+
result = result+1;
|
976
|
+
}
|
977
|
+
}
|
978
|
+
return result;
|
979
|
+
}
|
980
|
+
|
981
|
+
|
982
|
+
/*************************************************************************
|
983
|
+
Internal subroutine for processing one decision tree starting at Offs
|
984
|
+
*************************************************************************/
|
985
|
+
static void dfprocessinternal(const decisionforest& df,
|
986
|
+
int offs,
|
987
|
+
const ap::real_1d_array& x,
|
988
|
+
ap::real_1d_array& y)
|
989
|
+
{
|
990
|
+
int i;
|
991
|
+
int k;
|
992
|
+
int idx;
|
993
|
+
|
994
|
+
|
995
|
+
//
|
996
|
+
// Set pointer to the root
|
997
|
+
//
|
998
|
+
k = offs+1;
|
999
|
+
|
1000
|
+
//
|
1001
|
+
// Navigate through the tree
|
1002
|
+
//
|
1003
|
+
while(true)
|
1004
|
+
{
|
1005
|
+
if( df.trees(k)==-1 )
|
1006
|
+
{
|
1007
|
+
if( df.nclasses==1 )
|
1008
|
+
{
|
1009
|
+
y(0) = y(0)+df.trees(k+1);
|
1010
|
+
}
|
1011
|
+
else
|
1012
|
+
{
|
1013
|
+
idx = ap::round(df.trees(k+1));
|
1014
|
+
y(idx) = y(idx)+1;
|
1015
|
+
}
|
1016
|
+
break;
|
1017
|
+
}
|
1018
|
+
if( x(ap::round(df.trees(k)))<df.trees(k+1) )
|
1019
|
+
{
|
1020
|
+
k = k+innernodewidth;
|
1021
|
+
}
|
1022
|
+
else
|
1023
|
+
{
|
1024
|
+
k = offs+ap::round(df.trees(k+2));
|
1025
|
+
}
|
1026
|
+
}
|
1027
|
+
}
|
1028
|
+
|
1029
|
+
|
1030
|
+
/*************************************************************************
|
1031
|
+
Builds one decision tree. Just a wrapper for the DFBuildTreeRec.
|
1032
|
+
*************************************************************************/
|
1033
|
+
static void dfbuildtree(const ap::real_2d_array& xy,
|
1034
|
+
int npoints,
|
1035
|
+
int nvars,
|
1036
|
+
int nclasses,
|
1037
|
+
int nfeatures,
|
1038
|
+
int nvarsinpool,
|
1039
|
+
int flags,
|
1040
|
+
dfinternalbuffers& bufs)
|
1041
|
+
{
|
1042
|
+
int numprocessed;
|
1043
|
+
int i;
|
1044
|
+
|
1045
|
+
ap::ap_error::make_assertion(npoints>0, "");
|
1046
|
+
|
1047
|
+
//
|
1048
|
+
// Prepare IdxBuf. It stores indices of the training set elements.
|
1049
|
+
// When training set is being split, contents of IdxBuf is
|
1050
|
+
// correspondingly reordered so we can know which elements belong
|
1051
|
+
// to which branch of decision tree.
|
1052
|
+
//
|
1053
|
+
for(i = 0; i <= npoints-1; i++)
|
1054
|
+
{
|
1055
|
+
bufs.idxbuf(i) = i;
|
1056
|
+
}
|
1057
|
+
|
1058
|
+
//
|
1059
|
+
// Recursive procedure
|
1060
|
+
//
|
1061
|
+
numprocessed = 1;
|
1062
|
+
dfbuildtreerec(xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, numprocessed, 0, npoints-1, bufs);
|
1063
|
+
bufs.treebuf(0) = numprocessed;
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
|
1067
|
+
/*************************************************************************
|
1068
|
+
Builds one decision tree (internal recursive subroutine)
|
1069
|
+
|
1070
|
+
Parameters:
|
1071
|
+
TreeBuf - large enough array, at least TreeSize
|
1072
|
+
IdxBuf - at least NPoints elements
|
1073
|
+
TmpBufR - at least NPoints
|
1074
|
+
TmpBufR2 - at least NPoints
|
1075
|
+
TmpBufI - at least NPoints
|
1076
|
+
TmpBufI2 - at least NPoints+1
|
1077
|
+
*************************************************************************/
|
1078
|
+
static void dfbuildtreerec(const ap::real_2d_array& xy,
|
1079
|
+
int npoints,
|
1080
|
+
int nvars,
|
1081
|
+
int nclasses,
|
1082
|
+
int nfeatures,
|
1083
|
+
int nvarsinpool,
|
1084
|
+
int flags,
|
1085
|
+
int& numprocessed,
|
1086
|
+
int idx1,
|
1087
|
+
int idx2,
|
1088
|
+
dfinternalbuffers& bufs)
|
1089
|
+
{
|
1090
|
+
int i;
|
1091
|
+
int j;
|
1092
|
+
int k;
|
1093
|
+
bool bflag;
|
1094
|
+
int offs;
|
1095
|
+
int i1;
|
1096
|
+
int i2;
|
1097
|
+
int lsize;
|
1098
|
+
int info;
|
1099
|
+
double sl;
|
1100
|
+
double sr;
|
1101
|
+
double w;
|
1102
|
+
int idxbest;
|
1103
|
+
double ebest;
|
1104
|
+
double tbest;
|
1105
|
+
int varcur;
|
1106
|
+
double s;
|
1107
|
+
double v;
|
1108
|
+
double v1;
|
1109
|
+
double v2;
|
1110
|
+
int nbuf;
|
1111
|
+
double threshold;
|
1112
|
+
int oldnp;
|
1113
|
+
double e;
|
1114
|
+
double currms;
|
1115
|
+
double curcvrms;
|
1116
|
+
bool useevs;
|
1117
|
+
|
1118
|
+
ap::ap_error::make_assertion(npoints>0, "");
|
1119
|
+
ap::ap_error::make_assertion(idx2>=idx1, "");
|
1120
|
+
useevs = flags/dfuseevs%2!=0;
|
1121
|
+
|
1122
|
+
//
|
1123
|
+
// Leaf node
|
1124
|
+
//
|
1125
|
+
if( idx2==idx1 )
|
1126
|
+
{
|
1127
|
+
bufs.treebuf(numprocessed) = -1;
|
1128
|
+
bufs.treebuf(numprocessed+1) = xy(bufs.idxbuf(idx1),nvars);
|
1129
|
+
numprocessed = numprocessed+leafnodewidth;
|
1130
|
+
return;
|
1131
|
+
}
|
1132
|
+
|
1133
|
+
//
|
1134
|
+
// Non-leaf node.
|
1135
|
+
// Select random variable, prepare split:
|
1136
|
+
// 1. prepare default solution - no splitting, class at random
|
1137
|
+
// 2. investigate possible splits, compare with default/best
|
1138
|
+
//
|
1139
|
+
idxbest = -1;
|
1140
|
+
if( nclasses>1 )
|
1141
|
+
{
|
1142
|
+
|
1143
|
+
//
|
1144
|
+
// default solution for classification
|
1145
|
+
//
|
1146
|
+
for(i = 0; i <= nclasses-1; i++)
|
1147
|
+
{
|
1148
|
+
bufs.classibuf(i) = 0;
|
1149
|
+
}
|
1150
|
+
s = idx2-idx1+1;
|
1151
|
+
for(i = idx1; i <= idx2; i++)
|
1152
|
+
{
|
1153
|
+
j = ap::round(xy(bufs.idxbuf(i),nvars));
|
1154
|
+
bufs.classibuf(j) = bufs.classibuf(j)+1;
|
1155
|
+
}
|
1156
|
+
ebest = 0;
|
1157
|
+
for(i = 0; i <= nclasses-1; i++)
|
1158
|
+
{
|
1159
|
+
ebest = ebest+bufs.classibuf(i)*ap::sqr(1-bufs.classibuf(i)/s)+(s-bufs.classibuf(i))*ap::sqr(bufs.classibuf(i)/s);
|
1160
|
+
}
|
1161
|
+
ebest = sqrt(ebest/(nclasses*(idx2-idx1+1)));
|
1162
|
+
}
|
1163
|
+
else
|
1164
|
+
{
|
1165
|
+
|
1166
|
+
//
|
1167
|
+
// default solution for regression
|
1168
|
+
//
|
1169
|
+
v = 0;
|
1170
|
+
for(i = idx1; i <= idx2; i++)
|
1171
|
+
{
|
1172
|
+
v = v+xy(bufs.idxbuf(i),nvars);
|
1173
|
+
}
|
1174
|
+
v = v/(idx2-idx1+1);
|
1175
|
+
ebest = 0;
|
1176
|
+
for(i = idx1; i <= idx2; i++)
|
1177
|
+
{
|
1178
|
+
ebest = ebest+ap::sqr(xy(bufs.idxbuf(i),nvars)-v);
|
1179
|
+
}
|
1180
|
+
ebest = sqrt(ebest/(idx2-idx1+1));
|
1181
|
+
}
|
1182
|
+
i = 0;
|
1183
|
+
while(i<=ap::minint(nfeatures, nvarsinpool)-1)
|
1184
|
+
{
|
1185
|
+
|
1186
|
+
//
|
1187
|
+
// select variables from pool
|
1188
|
+
//
|
1189
|
+
j = i+ap::randominteger(nvarsinpool-i);
|
1190
|
+
k = bufs.varpool(i);
|
1191
|
+
bufs.varpool(i) = bufs.varpool(j);
|
1192
|
+
bufs.varpool(j) = k;
|
1193
|
+
varcur = bufs.varpool(i);
|
1194
|
+
|
1195
|
+
//
|
1196
|
+
// load variable values to working array
|
1197
|
+
//
|
1198
|
+
// apply EVS preprocessing: if all variable values are same,
|
1199
|
+
// variable is excluded from pool.
|
1200
|
+
//
|
1201
|
+
// This is necessary for binary pre-splits (see later) to work.
|
1202
|
+
//
|
1203
|
+
for(j = idx1; j <= idx2; j++)
|
1204
|
+
{
|
1205
|
+
bufs.tmpbufr(j-idx1) = xy(bufs.idxbuf(j),varcur);
|
1206
|
+
}
|
1207
|
+
if( useevs )
|
1208
|
+
{
|
1209
|
+
bflag = false;
|
1210
|
+
v = bufs.tmpbufr(0);
|
1211
|
+
for(j = 0; j <= idx2-idx1; j++)
|
1212
|
+
{
|
1213
|
+
if( bufs.tmpbufr(j)!=v )
|
1214
|
+
{
|
1215
|
+
bflag = true;
|
1216
|
+
break;
|
1217
|
+
}
|
1218
|
+
}
|
1219
|
+
if( !bflag )
|
1220
|
+
{
|
1221
|
+
|
1222
|
+
//
|
1223
|
+
// exclude variable from pool,
|
1224
|
+
// go to the next iteration.
|
1225
|
+
// I is not increased.
|
1226
|
+
//
|
1227
|
+
k = bufs.varpool(i);
|
1228
|
+
bufs.varpool(i) = bufs.varpool(nvarsinpool-1);
|
1229
|
+
bufs.varpool(nvarsinpool-1) = k;
|
1230
|
+
nvarsinpool = nvarsinpool-1;
|
1231
|
+
continue;
|
1232
|
+
}
|
1233
|
+
}
|
1234
|
+
|
1235
|
+
//
|
1236
|
+
// load labels to working array
|
1237
|
+
//
|
1238
|
+
if( nclasses>1 )
|
1239
|
+
{
|
1240
|
+
for(j = idx1; j <= idx2; j++)
|
1241
|
+
{
|
1242
|
+
bufs.tmpbufi(j-idx1) = ap::round(xy(bufs.idxbuf(j),nvars));
|
1243
|
+
}
|
1244
|
+
}
|
1245
|
+
else
|
1246
|
+
{
|
1247
|
+
for(j = idx1; j <= idx2; j++)
|
1248
|
+
{
|
1249
|
+
bufs.tmpbufr2(j-idx1) = xy(bufs.idxbuf(j),nvars);
|
1250
|
+
}
|
1251
|
+
}
|
1252
|
+
|
1253
|
+
//
|
1254
|
+
// calculate split
|
1255
|
+
//
|
1256
|
+
if( useevs&&bufs.evsbin(varcur) )
|
1257
|
+
{
|
1258
|
+
|
1259
|
+
//
|
1260
|
+
// Pre-calculated splits for binary variables.
|
1261
|
+
// Threshold is already known, just calculate RMS error
|
1262
|
+
//
|
1263
|
+
threshold = bufs.evssplits(varcur);
|
1264
|
+
if( nclasses>1 )
|
1265
|
+
{
|
1266
|
+
|
1267
|
+
//
|
1268
|
+
// classification-specific code
|
1269
|
+
//
|
1270
|
+
for(j = 0; j <= 2*nclasses-1; j++)
|
1271
|
+
{
|
1272
|
+
bufs.classibuf(j) = 0;
|
1273
|
+
}
|
1274
|
+
sl = 0;
|
1275
|
+
sr = 0;
|
1276
|
+
for(j = 0; j <= idx2-idx1; j++)
|
1277
|
+
{
|
1278
|
+
k = bufs.tmpbufi(j);
|
1279
|
+
if( bufs.tmpbufr(j)<threshold )
|
1280
|
+
{
|
1281
|
+
bufs.classibuf(k) = bufs.classibuf(k)+1;
|
1282
|
+
sl = sl+1;
|
1283
|
+
}
|
1284
|
+
else
|
1285
|
+
{
|
1286
|
+
bufs.classibuf(k+nclasses) = bufs.classibuf(k+nclasses)+1;
|
1287
|
+
sr = sr+1;
|
1288
|
+
}
|
1289
|
+
}
|
1290
|
+
ap::ap_error::make_assertion(sl!=0&&sr!=0, "DFBuildTreeRec: something strange!");
|
1291
|
+
currms = 0;
|
1292
|
+
for(j = 0; j <= nclasses-1; j++)
|
1293
|
+
{
|
1294
|
+
w = bufs.classibuf(j);
|
1295
|
+
currms = currms+w*ap::sqr(w/sl-1);
|
1296
|
+
currms = currms+(sl-w)*ap::sqr(w/sl);
|
1297
|
+
w = bufs.classibuf(nclasses+j);
|
1298
|
+
currms = currms+w*ap::sqr(w/sr-1);
|
1299
|
+
currms = currms+(sr-w)*ap::sqr(w/sr);
|
1300
|
+
}
|
1301
|
+
currms = sqrt(currms/(nclasses*(idx2-idx1+1)));
|
1302
|
+
}
|
1303
|
+
else
|
1304
|
+
{
|
1305
|
+
|
1306
|
+
//
|
1307
|
+
// regression-specific code
|
1308
|
+
//
|
1309
|
+
sl = 0;
|
1310
|
+
sr = 0;
|
1311
|
+
v1 = 0;
|
1312
|
+
v2 = 0;
|
1313
|
+
for(j = 0; j <= idx2-idx1; j++)
|
1314
|
+
{
|
1315
|
+
if( bufs.tmpbufr(j)<threshold )
|
1316
|
+
{
|
1317
|
+
v1 = v1+bufs.tmpbufr2(j);
|
1318
|
+
sl = sl+1;
|
1319
|
+
}
|
1320
|
+
else
|
1321
|
+
{
|
1322
|
+
v2 = v2+bufs.tmpbufr2(j);
|
1323
|
+
sr = sr+1;
|
1324
|
+
}
|
1325
|
+
}
|
1326
|
+
ap::ap_error::make_assertion(sl!=0&&sr!=0, "DFBuildTreeRec: something strange!");
|
1327
|
+
v1 = v1/sl;
|
1328
|
+
v2 = v2/sr;
|
1329
|
+
currms = 0;
|
1330
|
+
for(j = 0; j <= idx2-idx1; j++)
|
1331
|
+
{
|
1332
|
+
if( bufs.tmpbufr(j)<threshold )
|
1333
|
+
{
|
1334
|
+
currms = currms+ap::sqr(v1-bufs.tmpbufr2(j));
|
1335
|
+
}
|
1336
|
+
else
|
1337
|
+
{
|
1338
|
+
currms = currms+ap::sqr(v2-bufs.tmpbufr2(j));
|
1339
|
+
}
|
1340
|
+
}
|
1341
|
+
currms = sqrt(currms/(idx2-idx1+1));
|
1342
|
+
}
|
1343
|
+
info = 1;
|
1344
|
+
}
|
1345
|
+
else
|
1346
|
+
{
|
1347
|
+
|
1348
|
+
//
|
1349
|
+
// Generic splits
|
1350
|
+
//
|
1351
|
+
if( nclasses>1 )
|
1352
|
+
{
|
1353
|
+
dfsplitc(bufs.tmpbufr, bufs.tmpbufi, bufs.classibuf, idx2-idx1+1, nclasses, dfusestrongsplits, info, threshold, currms);
|
1354
|
+
}
|
1355
|
+
else
|
1356
|
+
{
|
1357
|
+
dfsplitr(bufs.tmpbufr, bufs.tmpbufr2, idx2-idx1+1, dfusestrongsplits, info, threshold, currms);
|
1358
|
+
}
|
1359
|
+
}
|
1360
|
+
if( info>0 )
|
1361
|
+
{
|
1362
|
+
if( currms<=ebest )
|
1363
|
+
{
|
1364
|
+
ebest = currms;
|
1365
|
+
idxbest = varcur;
|
1366
|
+
tbest = threshold;
|
1367
|
+
}
|
1368
|
+
}
|
1369
|
+
|
1370
|
+
//
|
1371
|
+
// Next iteration
|
1372
|
+
//
|
1373
|
+
i = i+1;
|
1374
|
+
}
|
1375
|
+
|
1376
|
+
//
|
1377
|
+
// to split or not to split
|
1378
|
+
//
|
1379
|
+
if( idxbest<0 )
|
1380
|
+
{
|
1381
|
+
|
1382
|
+
//
|
1383
|
+
// All values are same, cannot split.
|
1384
|
+
//
|
1385
|
+
bufs.treebuf(numprocessed) = -1;
|
1386
|
+
if( nclasses>1 )
|
1387
|
+
{
|
1388
|
+
|
1389
|
+
//
|
1390
|
+
// Select random class label (randomness allows us to
|
1391
|
+
// approximate distribution of the classes)
|
1392
|
+
//
|
1393
|
+
bufs.treebuf(numprocessed+1) = ap::round(xy(bufs.idxbuf(idx1+ap::randominteger(idx2-idx1+1)),nvars));
|
1394
|
+
}
|
1395
|
+
else
|
1396
|
+
{
|
1397
|
+
|
1398
|
+
//
|
1399
|
+
// Select average (for regression task).
|
1400
|
+
//
|
1401
|
+
v = 0;
|
1402
|
+
for(i = idx1; i <= idx2; i++)
|
1403
|
+
{
|
1404
|
+
v = v+xy(bufs.idxbuf(i),nvars)/(idx2-idx1+1);
|
1405
|
+
}
|
1406
|
+
bufs.treebuf(numprocessed+1) = v;
|
1407
|
+
}
|
1408
|
+
numprocessed = numprocessed+leafnodewidth;
|
1409
|
+
}
|
1410
|
+
else
|
1411
|
+
{
|
1412
|
+
|
1413
|
+
//
|
1414
|
+
// we can split
|
1415
|
+
//
|
1416
|
+
bufs.treebuf(numprocessed) = idxbest;
|
1417
|
+
bufs.treebuf(numprocessed+1) = tbest;
|
1418
|
+
i1 = idx1;
|
1419
|
+
i2 = idx2;
|
1420
|
+
while(i1<=i2)
|
1421
|
+
{
|
1422
|
+
|
1423
|
+
//
|
1424
|
+
// Reorder indices so that left partition is in [Idx1..I1-1],
|
1425
|
+
// and right partition is in [I2+1..Idx2]
|
1426
|
+
//
|
1427
|
+
if( xy(bufs.idxbuf(i1),idxbest)<tbest )
|
1428
|
+
{
|
1429
|
+
i1 = i1+1;
|
1430
|
+
continue;
|
1431
|
+
}
|
1432
|
+
if( xy(bufs.idxbuf(i2),idxbest)>=tbest )
|
1433
|
+
{
|
1434
|
+
i2 = i2-1;
|
1435
|
+
continue;
|
1436
|
+
}
|
1437
|
+
j = bufs.idxbuf(i1);
|
1438
|
+
bufs.idxbuf(i1) = bufs.idxbuf(i2);
|
1439
|
+
bufs.idxbuf(i2) = j;
|
1440
|
+
i1 = i1+1;
|
1441
|
+
i2 = i2-1;
|
1442
|
+
}
|
1443
|
+
oldnp = numprocessed;
|
1444
|
+
numprocessed = numprocessed+innernodewidth;
|
1445
|
+
dfbuildtreerec(xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, numprocessed, idx1, i1-1, bufs);
|
1446
|
+
bufs.treebuf(oldnp+2) = numprocessed;
|
1447
|
+
dfbuildtreerec(xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, numprocessed, i2+1, idx2, bufs);
|
1448
|
+
}
|
1449
|
+
}
|
1450
|
+
|
1451
|
+
|
1452
|
+
/*************************************************************************
|
1453
|
+
Makes weak split on attribute
|
1454
|
+
*************************************************************************/
|
1455
|
+
static void dfweakspliti(ap::real_1d_array& x,
|
1456
|
+
ap::integer_1d_array& y,
|
1457
|
+
int n,
|
1458
|
+
int nclasses,
|
1459
|
+
int& info,
|
1460
|
+
double& threshold,
|
1461
|
+
double& e)
|
1462
|
+
{
|
1463
|
+
int i;
|
1464
|
+
int neq;
|
1465
|
+
int nless;
|
1466
|
+
int ngreater;
|
1467
|
+
|
1468
|
+
tagsortfasti(x, y, n);
|
1469
|
+
if( n%2==1 )
|
1470
|
+
{
|
1471
|
+
|
1472
|
+
//
|
1473
|
+
// odd number of elements
|
1474
|
+
//
|
1475
|
+
threshold = x(n/2);
|
1476
|
+
}
|
1477
|
+
else
|
1478
|
+
{
|
1479
|
+
|
1480
|
+
//
|
1481
|
+
// even number of elements.
|
1482
|
+
//
|
1483
|
+
// if two closest to the middle of the array are equal,
|
1484
|
+
// we will select one of them (to avoid possible problems with
|
1485
|
+
// floating point errors).
|
1486
|
+
// we will select halfsum otherwise.
|
1487
|
+
//
|
1488
|
+
if( x(n/2-1)==x(n/2) )
|
1489
|
+
{
|
1490
|
+
threshold = x(n/2-1);
|
1491
|
+
}
|
1492
|
+
else
|
1493
|
+
{
|
1494
|
+
threshold = 0.5*(x(n/2-1)+x(n/2));
|
1495
|
+
}
|
1496
|
+
}
|
1497
|
+
neq = 0;
|
1498
|
+
nless = 0;
|
1499
|
+
ngreater = 0;
|
1500
|
+
for(i = 0; i <= n-1; i++)
|
1501
|
+
{
|
1502
|
+
if( x(i)<threshold )
|
1503
|
+
{
|
1504
|
+
nless = nless+1;
|
1505
|
+
}
|
1506
|
+
if( x(i)==threshold )
|
1507
|
+
{
|
1508
|
+
neq = neq+1;
|
1509
|
+
}
|
1510
|
+
if( x(i)>threshold )
|
1511
|
+
{
|
1512
|
+
ngreater = ngreater+1;
|
1513
|
+
}
|
1514
|
+
}
|
1515
|
+
if( nless==0&&ngreater==0 )
|
1516
|
+
{
|
1517
|
+
info = -3;
|
1518
|
+
}
|
1519
|
+
else
|
1520
|
+
{
|
1521
|
+
if( neq!=0 )
|
1522
|
+
{
|
1523
|
+
if( nless<ngreater )
|
1524
|
+
{
|
1525
|
+
threshold = 0.5*(x(nless+neq-1)+x(nless+neq));
|
1526
|
+
}
|
1527
|
+
else
|
1528
|
+
{
|
1529
|
+
threshold = 0.5*(x(nless-1)+x(nless));
|
1530
|
+
}
|
1531
|
+
}
|
1532
|
+
info = 1;
|
1533
|
+
e = 0;
|
1534
|
+
}
|
1535
|
+
}
|
1536
|
+
|
1537
|
+
|
1538
|
+
/*************************************************************************
|
1539
|
+
Makes split on attribute
|
1540
|
+
*************************************************************************/
|
1541
|
+
static void dfsplitc(ap::real_1d_array& x,
|
1542
|
+
ap::integer_1d_array& c,
|
1543
|
+
ap::integer_1d_array& cntbuf,
|
1544
|
+
int n,
|
1545
|
+
int nc,
|
1546
|
+
int flags,
|
1547
|
+
int& info,
|
1548
|
+
double& threshold,
|
1549
|
+
double& e)
|
1550
|
+
{
|
1551
|
+
int i;
|
1552
|
+
int neq;
|
1553
|
+
int nless;
|
1554
|
+
int ngreater;
|
1555
|
+
int q;
|
1556
|
+
int qmin;
|
1557
|
+
int qmax;
|
1558
|
+
int qcnt;
|
1559
|
+
double cursplit;
|
1560
|
+
int nleft;
|
1561
|
+
double v;
|
1562
|
+
double cure;
|
1563
|
+
double w;
|
1564
|
+
double sl;
|
1565
|
+
double sr;
|
1566
|
+
|
1567
|
+
tagsortfasti(x, c, n);
|
1568
|
+
e = ap::maxrealnumber;
|
1569
|
+
threshold = 0.5*(x(0)+x(n-1));
|
1570
|
+
info = -3;
|
1571
|
+
if( flags/dfusestrongsplits%2==0 )
|
1572
|
+
{
|
1573
|
+
|
1574
|
+
//
|
1575
|
+
// weak splits, split at half
|
1576
|
+
//
|
1577
|
+
qcnt = 2;
|
1578
|
+
qmin = 1;
|
1579
|
+
qmax = 1;
|
1580
|
+
}
|
1581
|
+
else
|
1582
|
+
{
|
1583
|
+
|
1584
|
+
//
|
1585
|
+
// strong splits: choose best quartile
|
1586
|
+
//
|
1587
|
+
qcnt = 4;
|
1588
|
+
qmin = 1;
|
1589
|
+
qmax = 3;
|
1590
|
+
}
|
1591
|
+
for(q = qmin; q <= qmax; q++)
|
1592
|
+
{
|
1593
|
+
cursplit = x(n*q/qcnt);
|
1594
|
+
neq = 0;
|
1595
|
+
nless = 0;
|
1596
|
+
ngreater = 0;
|
1597
|
+
for(i = 0; i <= n-1; i++)
|
1598
|
+
{
|
1599
|
+
if( x(i)<cursplit )
|
1600
|
+
{
|
1601
|
+
nless = nless+1;
|
1602
|
+
}
|
1603
|
+
if( x(i)==cursplit )
|
1604
|
+
{
|
1605
|
+
neq = neq+1;
|
1606
|
+
}
|
1607
|
+
if( x(i)>cursplit )
|
1608
|
+
{
|
1609
|
+
ngreater = ngreater+1;
|
1610
|
+
}
|
1611
|
+
}
|
1612
|
+
ap::ap_error::make_assertion(neq!=0, "DFSplitR: NEq=0, something strange!!!");
|
1613
|
+
if( nless!=0||ngreater!=0 )
|
1614
|
+
{
|
1615
|
+
|
1616
|
+
//
|
1617
|
+
// set threshold between two partitions, with
|
1618
|
+
// some tweaking to avoid problems with floating point
|
1619
|
+
// arithmetics.
|
1620
|
+
//
|
1621
|
+
// The problem is that when you calculates C = 0.5*(A+B) there
|
1622
|
+
// can be no C which lies strictly between A and B (for example,
|
1623
|
+
// there is no floating point number which is
|
1624
|
+
// greater than 1 and less than 1+eps). In such situations
|
1625
|
+
// we choose right side as theshold (remember that
|
1626
|
+
// points which lie on threshold falls to the right side).
|
1627
|
+
//
|
1628
|
+
if( nless<ngreater )
|
1629
|
+
{
|
1630
|
+
cursplit = 0.5*(x(nless+neq-1)+x(nless+neq));
|
1631
|
+
nleft = nless+neq;
|
1632
|
+
if( cursplit<=x(nless+neq-1) )
|
1633
|
+
{
|
1634
|
+
cursplit = x(nless+neq);
|
1635
|
+
}
|
1636
|
+
}
|
1637
|
+
else
|
1638
|
+
{
|
1639
|
+
cursplit = 0.5*(x(nless-1)+x(nless));
|
1640
|
+
nleft = nless;
|
1641
|
+
if( cursplit<=x(nless-1) )
|
1642
|
+
{
|
1643
|
+
cursplit = x(nless);
|
1644
|
+
}
|
1645
|
+
}
|
1646
|
+
info = 1;
|
1647
|
+
cure = 0;
|
1648
|
+
for(i = 0; i <= 2*nc-1; i++)
|
1649
|
+
{
|
1650
|
+
cntbuf(i) = 0;
|
1651
|
+
}
|
1652
|
+
for(i = 0; i <= nleft-1; i++)
|
1653
|
+
{
|
1654
|
+
cntbuf(c(i)) = cntbuf(c(i))+1;
|
1655
|
+
}
|
1656
|
+
for(i = nleft; i <= n-1; i++)
|
1657
|
+
{
|
1658
|
+
cntbuf(nc+c(i)) = cntbuf(nc+c(i))+1;
|
1659
|
+
}
|
1660
|
+
sl = nleft;
|
1661
|
+
sr = n-nleft;
|
1662
|
+
v = 0;
|
1663
|
+
for(i = 0; i <= nc-1; i++)
|
1664
|
+
{
|
1665
|
+
w = cntbuf(i);
|
1666
|
+
v = v+w*ap::sqr(w/sl-1);
|
1667
|
+
v = v+(sl-w)*ap::sqr(w/sl);
|
1668
|
+
w = cntbuf(nc+i);
|
1669
|
+
v = v+w*ap::sqr(w/sr-1);
|
1670
|
+
v = v+(sr-w)*ap::sqr(w/sr);
|
1671
|
+
}
|
1672
|
+
cure = sqrt(v/(nc*n));
|
1673
|
+
if( cure<e )
|
1674
|
+
{
|
1675
|
+
threshold = cursplit;
|
1676
|
+
e = cure;
|
1677
|
+
}
|
1678
|
+
}
|
1679
|
+
}
|
1680
|
+
}
|
1681
|
+
|
1682
|
+
|
1683
|
+
/*************************************************************************
|
1684
|
+
Makes split on attribute
|
1685
|
+
*************************************************************************/
|
1686
|
+
static void dfsplitr(ap::real_1d_array& x,
|
1687
|
+
ap::real_1d_array& y,
|
1688
|
+
int n,
|
1689
|
+
int flags,
|
1690
|
+
int& info,
|
1691
|
+
double& threshold,
|
1692
|
+
double& e)
|
1693
|
+
{
|
1694
|
+
int i;
|
1695
|
+
int neq;
|
1696
|
+
int nless;
|
1697
|
+
int ngreater;
|
1698
|
+
int q;
|
1699
|
+
int qmin;
|
1700
|
+
int qmax;
|
1701
|
+
int qcnt;
|
1702
|
+
double cursplit;
|
1703
|
+
int nleft;
|
1704
|
+
double v;
|
1705
|
+
double cure;
|
1706
|
+
|
1707
|
+
tagsortfastr(x, y, n);
|
1708
|
+
e = ap::maxrealnumber;
|
1709
|
+
threshold = 0.5*(x(0)+x(n-1));
|
1710
|
+
info = -3;
|
1711
|
+
if( flags/dfusestrongsplits%2==0 )
|
1712
|
+
{
|
1713
|
+
|
1714
|
+
//
|
1715
|
+
// weak splits, split at half
|
1716
|
+
//
|
1717
|
+
qcnt = 2;
|
1718
|
+
qmin = 1;
|
1719
|
+
qmax = 1;
|
1720
|
+
}
|
1721
|
+
else
|
1722
|
+
{
|
1723
|
+
|
1724
|
+
//
|
1725
|
+
// strong splits: choose best quartile
|
1726
|
+
//
|
1727
|
+
qcnt = 4;
|
1728
|
+
qmin = 1;
|
1729
|
+
qmax = 3;
|
1730
|
+
}
|
1731
|
+
for(q = qmin; q <= qmax; q++)
|
1732
|
+
{
|
1733
|
+
cursplit = x(n*q/qcnt);
|
1734
|
+
neq = 0;
|
1735
|
+
nless = 0;
|
1736
|
+
ngreater = 0;
|
1737
|
+
for(i = 0; i <= n-1; i++)
|
1738
|
+
{
|
1739
|
+
if( x(i)<cursplit )
|
1740
|
+
{
|
1741
|
+
nless = nless+1;
|
1742
|
+
}
|
1743
|
+
if( x(i)==cursplit )
|
1744
|
+
{
|
1745
|
+
neq = neq+1;
|
1746
|
+
}
|
1747
|
+
if( x(i)>cursplit )
|
1748
|
+
{
|
1749
|
+
ngreater = ngreater+1;
|
1750
|
+
}
|
1751
|
+
}
|
1752
|
+
ap::ap_error::make_assertion(neq!=0, "DFSplitR: NEq=0, something strange!!!");
|
1753
|
+
if( nless!=0||ngreater!=0 )
|
1754
|
+
{
|
1755
|
+
|
1756
|
+
//
|
1757
|
+
// set threshold between two partitions, with
|
1758
|
+
// some tweaking to avoid problems with floating point
|
1759
|
+
// arithmetics.
|
1760
|
+
//
|
1761
|
+
// The problem is that when you calculates C = 0.5*(A+B) there
|
1762
|
+
// can be no C which lies strictly between A and B (for example,
|
1763
|
+
// there is no floating point number which is
|
1764
|
+
// greater than 1 and less than 1+eps). In such situations
|
1765
|
+
// we choose right side as theshold (remember that
|
1766
|
+
// points which lie on threshold falls to the right side).
|
1767
|
+
//
|
1768
|
+
if( nless<ngreater )
|
1769
|
+
{
|
1770
|
+
cursplit = 0.5*(x(nless+neq-1)+x(nless+neq));
|
1771
|
+
nleft = nless+neq;
|
1772
|
+
if( cursplit<=x(nless+neq-1) )
|
1773
|
+
{
|
1774
|
+
cursplit = x(nless+neq);
|
1775
|
+
}
|
1776
|
+
}
|
1777
|
+
else
|
1778
|
+
{
|
1779
|
+
cursplit = 0.5*(x(nless-1)+x(nless));
|
1780
|
+
nleft = nless;
|
1781
|
+
if( cursplit<=x(nless-1) )
|
1782
|
+
{
|
1783
|
+
cursplit = x(nless);
|
1784
|
+
}
|
1785
|
+
}
|
1786
|
+
info = 1;
|
1787
|
+
cure = 0;
|
1788
|
+
v = 0;
|
1789
|
+
for(i = 0; i <= nleft-1; i++)
|
1790
|
+
{
|
1791
|
+
v = v+y(i);
|
1792
|
+
}
|
1793
|
+
v = v/nleft;
|
1794
|
+
for(i = 0; i <= nleft-1; i++)
|
1795
|
+
{
|
1796
|
+
cure = cure+ap::sqr(y(i)-v);
|
1797
|
+
}
|
1798
|
+
v = 0;
|
1799
|
+
for(i = nleft; i <= n-1; i++)
|
1800
|
+
{
|
1801
|
+
v = v+y(i);
|
1802
|
+
}
|
1803
|
+
v = v/(n-nleft);
|
1804
|
+
for(i = nleft; i <= n-1; i++)
|
1805
|
+
{
|
1806
|
+
cure = cure+ap::sqr(y(i)-v);
|
1807
|
+
}
|
1808
|
+
cure = sqrt(cure/n);
|
1809
|
+
if( cure<e )
|
1810
|
+
{
|
1811
|
+
threshold = cursplit;
|
1812
|
+
e = cure;
|
1813
|
+
}
|
1814
|
+
}
|
1815
|
+
}
|
1816
|
+
}
|
1817
|
+
|
1818
|
+
|
1819
|
+
|