alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,130 @@
1
+ /*************************************************************************
2
+ Cephes Math Library Release 2.8: June, 2000
3
+ Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
4
+
5
+ Contributors:
6
+ * Sergey Bochkanov (ALGLIB project). Translation from C to
7
+ pseudocode.
8
+
9
+ See subroutines comments for additional copyrights.
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions are
13
+ met:
14
+
15
+ - Redistributions of source code must retain the above copyright
16
+ notice, this list of conditions and the following disclaimer.
17
+
18
+ - Redistributions in binary form must reproduce the above copyright
19
+ notice, this list of conditions and the following disclaimer listed
20
+ in this license in the documentation and/or other materials
21
+ provided with the distribution.
22
+
23
+ - Neither the name of the copyright holders nor the names of its
24
+ contributors may be used to endorse or promote products derived from
25
+ this software without specific prior written permission.
26
+
27
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38
+ *************************************************************************/
39
+
40
+ #ifndef _poissondistr_h
41
+ #define _poissondistr_h
42
+
43
+ #include "ap.h"
44
+ #include "ialglib.h"
45
+
46
+ #include "gammaf.h"
47
+ #include "normaldistr.h"
48
+ #include "igammaf.h"
49
+
50
+
51
+ /*************************************************************************
52
+ Poisson distribution
53
+
54
+ Returns the sum of the first k+1 terms of the Poisson
55
+ distribution:
56
+
57
+ k j
58
+ -- -m m
59
+ > e --
60
+ -- j!
61
+ j=0
62
+
63
+ The terms are not summed directly; instead the incomplete
64
+ gamma integral is employed, according to the relation
65
+
66
+ y = pdtr( k, m ) = igamc( k+1, m ).
67
+
68
+ The arguments must both be positive.
69
+ ACCURACY:
70
+
71
+ See incomplete gamma function
72
+
73
+ Cephes Math Library Release 2.8: June, 2000
74
+ Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
75
+ *************************************************************************/
76
+ double poissondistribution(int k, double m);
77
+
78
+
79
+ /*************************************************************************
80
+ Complemented Poisson distribution
81
+
82
+ Returns the sum of the terms k+1 to infinity of the Poisson
83
+ distribution:
84
+
85
+ inf. j
86
+ -- -m m
87
+ > e --
88
+ -- j!
89
+ j=k+1
90
+
91
+ The terms are not summed directly; instead the incomplete
92
+ gamma integral is employed, according to the formula
93
+
94
+ y = pdtrc( k, m ) = igam( k+1, m ).
95
+
96
+ The arguments must both be positive.
97
+
98
+ ACCURACY:
99
+
100
+ See incomplete gamma function
101
+
102
+ Cephes Math Library Release 2.8: June, 2000
103
+ Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
104
+ *************************************************************************/
105
+ double poissoncdistribution(int k, double m);
106
+
107
+
108
+ /*************************************************************************
109
+ Inverse Poisson distribution
110
+
111
+ Finds the Poisson variable x such that the integral
112
+ from 0 to x of the Poisson density is equal to the
113
+ given probability y.
114
+
115
+ This is accomplished using the inverse gamma integral
116
+ function and the relation
117
+
118
+ m = igami( k+1, y ).
119
+
120
+ ACCURACY:
121
+
122
+ See inverse incomplete gamma function
123
+
124
+ Cephes Math Library Release 2.8: June, 2000
125
+ Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
126
+ *************************************************************************/
127
+ double invpoissondistribution(int k, double y);
128
+
129
+
130
+ #endif
@@ -0,0 +1,685 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #include <stdafx.h>
34
+ #include "polinterpolation.h"
35
+
36
+ /*************************************************************************
37
+ Interpolation using barycentric formula
38
+
39
+ F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))
40
+
41
+ Input parameters:
42
+ X - interpolation nodes, array[0..N-1]
43
+ F - function values, array[0..N-1]
44
+ W - barycentric weights, array[0..N-1]
45
+ N - nodes count, N>0
46
+ T - interpolation point
47
+
48
+ Result:
49
+ barycentric interpolant F(t)
50
+
51
+ -- ALGLIB --
52
+ Copyright 28.05.2007 by Bochkanov Sergey
53
+ *************************************************************************/
54
+ double barycentricinterpolation(const ap::real_1d_array& x,
55
+ const ap::real_1d_array& f,
56
+ const ap::real_1d_array& w,
57
+ int n,
58
+ double t)
59
+ {
60
+ double result;
61
+ double s1;
62
+ double s2;
63
+ double v;
64
+ double threshold;
65
+ double s;
66
+ int i;
67
+ int j;
68
+
69
+ ap::ap_error::make_assertion(n>0, "BarycentricInterpolation: N<=0!");
70
+ threshold = sqrt(ap::minrealnumber);
71
+
72
+ //
73
+ // First, decide: should we use "safe" formula (guarded
74
+ // against overflow) or fast one?
75
+ //
76
+ j = 0;
77
+ s = t-x(0);
78
+ for(i = 1; i <= n-1; i++)
79
+ {
80
+ if( fabs(t-x(i))<fabs(s) )
81
+ {
82
+ s = t-x(i);
83
+ j = i;
84
+ }
85
+ }
86
+ if( s==0 )
87
+ {
88
+ result = f(j);
89
+ return result;
90
+ }
91
+ if( fabs(s)>threshold )
92
+ {
93
+
94
+ //
95
+ // use fast formula
96
+ //
97
+ j = -1;
98
+ s = 1.0;
99
+ }
100
+
101
+ //
102
+ // Calculate using safe or fast barycentric formula
103
+ //
104
+ s1 = 0;
105
+ s2 = 0;
106
+ for(i = 0; i <= n-1; i++)
107
+ {
108
+ if( i!=j )
109
+ {
110
+ v = s*w(i)/(t-x(i));
111
+ s1 = s1+v*f(i);
112
+ s2 = s2+v;
113
+ }
114
+ else
115
+ {
116
+ v = w(i);
117
+ s1 = s1+v*f(i);
118
+ s2 = s2+v;
119
+ }
120
+ }
121
+ result = s1/s2;
122
+ return result;
123
+ }
124
+
125
+
126
+ /*************************************************************************
127
+ Polynomial interpolation on the equidistant nodes using barycentric
128
+ formula. O(N) complexity.
129
+
130
+ Input parameters:
131
+ A,B - interpolation interval [A,B]
132
+ F - function values, array[0..N-1].
133
+ F[i] = F(A+(B-A)*i/(N-1))
134
+ N - nodes count
135
+ T - interpolation point
136
+
137
+ Result:
138
+ the value of the interpolation polynomial F(t)
139
+
140
+ -- ALGLIB --
141
+ Copyright 28.05.2007 by Bochkanov Sergey
142
+ *************************************************************************/
143
+ double equidistantpolynomialinterpolation(double a,
144
+ double b,
145
+ const ap::real_1d_array& f,
146
+ int n,
147
+ double t)
148
+ {
149
+ double result;
150
+ double s1;
151
+ double s2;
152
+ double v;
153
+ double threshold;
154
+ double s;
155
+ int i;
156
+ int j;
157
+ double w;
158
+ double x;
159
+
160
+ ap::ap_error::make_assertion(n>0, "BarycentricInterpolation: N<=0!");
161
+ threshold = sqrt(ap::minrealnumber);
162
+
163
+ //
164
+ // Special case: N=1
165
+ //
166
+ if( n==1 )
167
+ {
168
+ result = f(0);
169
+ return result;
170
+ }
171
+
172
+ //
173
+ // First, decide: should we use "safe" formula (guarded
174
+ // against overflow) or fast one?
175
+ //
176
+ j = 0;
177
+ s = t-a;
178
+ for(i = 1; i <= n-1; i++)
179
+ {
180
+ x = a+double(i)/double(n-1)*(b-a);
181
+ if( fabs(t-x)<fabs(s) )
182
+ {
183
+ s = t-x;
184
+ j = i;
185
+ }
186
+ }
187
+ if( s==0 )
188
+ {
189
+ result = f(j);
190
+ return result;
191
+ }
192
+ if( fabs(s)>threshold )
193
+ {
194
+
195
+ //
196
+ // use fast formula
197
+ //
198
+ j = -1;
199
+ s = 1.0;
200
+ }
201
+
202
+ //
203
+ // Calculate using safe or fast barycentric formula
204
+ //
205
+ s1 = 0;
206
+ s2 = 0;
207
+ w = 1.0;
208
+ for(i = 0; i <= n-1; i++)
209
+ {
210
+ if( i!=j )
211
+ {
212
+ v = s*w/(t-(a+double(i)/double(n-1)*(b-a)));
213
+ s1 = s1+v*f(i);
214
+ s2 = s2+v;
215
+ }
216
+ else
217
+ {
218
+ v = w;
219
+ s1 = s1+v*f(i);
220
+ s2 = s2+v;
221
+ }
222
+ w = -w*(n-1-i);
223
+ w = w/(i+1);
224
+ }
225
+ result = s1/s2;
226
+ return result;
227
+ }
228
+
229
+
230
+ /*************************************************************************
231
+ Polynomial interpolation on the Chebyshev nodes (first kind) using
232
+ barycentric formula. O(N) complexity.
233
+
234
+ Input parameters:
235
+ A,B - interpolation interval [A,B]
236
+ F - function values, array[0..N-1].
237
+ F[i] = F(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)))
238
+ N - nodes count
239
+ T - interpolation point
240
+
241
+ Result:
242
+ the value of the interpolation polynomial F(t)
243
+
244
+ -- ALGLIB --
245
+ Copyright 28.05.2007 by Bochkanov Sergey
246
+ *************************************************************************/
247
+ double chebyshev1interpolation(double a,
248
+ double b,
249
+ const ap::real_1d_array& f,
250
+ int n,
251
+ double t)
252
+ {
253
+ double result;
254
+ double s1;
255
+ double s2;
256
+ double v;
257
+ double threshold;
258
+ double s;
259
+ int i;
260
+ int j;
261
+ double a0;
262
+ double delta;
263
+ double alpha;
264
+ double beta;
265
+ double ca;
266
+ double sa;
267
+ double tempc;
268
+ double temps;
269
+ double x;
270
+ double w;
271
+ double p1;
272
+
273
+ ap::ap_error::make_assertion(n>0, "Chebyshev1Interpolation: N<=0!");
274
+ threshold = sqrt(ap::minrealnumber);
275
+ t = (t-0.5*(a+b))/(0.5*(b-a));
276
+
277
+ //
278
+ // Prepare information for the recurrence formula
279
+ // used to calculate sin(pi*(2j+1)/(2n+2)) and
280
+ // cos(pi*(2j+1)/(2n+2)):
281
+ //
282
+ // A0 = pi/(2n+2)
283
+ // Delta = pi/(n+1)
284
+ // Alpha = 2 sin^2 (Delta/2)
285
+ // Beta = sin(Delta)
286
+ //
287
+ // so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
288
+ // Then we use
289
+ //
290
+ // sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
291
+ // cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
292
+ //
293
+ // to repeatedly calculate sin(..) and cos(..).
294
+ //
295
+ a0 = ap::pi()/(2*(n-1)+2);
296
+ delta = 2*ap::pi()/(2*(n-1)+2);
297
+ alpha = 2*ap::sqr(sin(delta/2));
298
+ beta = sin(delta);
299
+
300
+ //
301
+ // First, decide: should we use "safe" formula (guarded
302
+ // against overflow) or fast one?
303
+ //
304
+ ca = cos(a0);
305
+ sa = sin(a0);
306
+ j = 0;
307
+ x = ca;
308
+ s = t-x;
309
+ for(i = 1; i <= n-1; i++)
310
+ {
311
+
312
+ //
313
+ // Next X[i]
314
+ //
315
+ temps = sa-(alpha*sa-beta*ca);
316
+ tempc = ca-(alpha*ca+beta*sa);
317
+ sa = temps;
318
+ ca = tempc;
319
+ x = ca;
320
+
321
+ //
322
+ // Use X[i]
323
+ //
324
+ if( fabs(t-x)<fabs(s) )
325
+ {
326
+ s = t-x;
327
+ j = i;
328
+ }
329
+ }
330
+ if( s==0 )
331
+ {
332
+ result = f(j);
333
+ return result;
334
+ }
335
+ if( fabs(s)>threshold )
336
+ {
337
+
338
+ //
339
+ // use fast formula
340
+ //
341
+ j = -1;
342
+ s = 1.0;
343
+ }
344
+
345
+ //
346
+ // Calculate using safe or fast barycentric formula
347
+ //
348
+ s1 = 0;
349
+ s2 = 0;
350
+ ca = cos(a0);
351
+ sa = sin(a0);
352
+ p1 = 1.0;
353
+ for(i = 0; i <= n-1; i++)
354
+ {
355
+
356
+ //
357
+ // Calculate X[i], W[i]
358
+ //
359
+ x = ca;
360
+ w = p1*sa;
361
+
362
+ //
363
+ // Proceed
364
+ //
365
+ if( i!=j )
366
+ {
367
+ v = s*w/(t-x);
368
+ s1 = s1+v*f(i);
369
+ s2 = s2+v;
370
+ }
371
+ else
372
+ {
373
+ v = w;
374
+ s1 = s1+v*f(i);
375
+ s2 = s2+v;
376
+ }
377
+
378
+ //
379
+ // Next CA, SA, P1
380
+ //
381
+ temps = sa-(alpha*sa-beta*ca);
382
+ tempc = ca-(alpha*ca+beta*sa);
383
+ sa = temps;
384
+ ca = tempc;
385
+ p1 = -p1;
386
+ }
387
+ result = s1/s2;
388
+ return result;
389
+ }
390
+
391
+
392
+ /*************************************************************************
393
+ Polynomial interpolation on the Chebyshev nodes (second kind) using
394
+ barycentric formula. O(N) complexity.
395
+
396
+ Input parameters:
397
+ A,B - interpolation interval [A,B]
398
+ F - function values, array[0..N-1].
399
+ F[i] = F(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)))
400
+ N - nodes count
401
+ T - interpolation point
402
+
403
+ Result:
404
+ the value of the interpolation polynomial F(t)
405
+
406
+ -- ALGLIB --
407
+ Copyright 28.05.2007 by Bochkanov Sergey
408
+ *************************************************************************/
409
+ double chebyshev2interpolation(double a,
410
+ double b,
411
+ const ap::real_1d_array& f,
412
+ int n,
413
+ double t)
414
+ {
415
+ double result;
416
+ double s1;
417
+ double s2;
418
+ double v;
419
+ double threshold;
420
+ double s;
421
+ int i;
422
+ int j;
423
+ double a0;
424
+ double delta;
425
+ double alpha;
426
+ double beta;
427
+ double ca;
428
+ double sa;
429
+ double tempc;
430
+ double temps;
431
+ double x;
432
+ double w;
433
+ double p1;
434
+
435
+ ap::ap_error::make_assertion(n>1, "Chebyshev2Interpolation: N<=1!");
436
+ threshold = sqrt(ap::minrealnumber);
437
+ t = (t-0.5*(a+b))/(0.5*(b-a));
438
+
439
+ //
440
+ // Prepare information for the recurrence formula
441
+ // used to calculate sin(pi*i/n) and
442
+ // cos(pi*i/n):
443
+ //
444
+ // A0 = 0
445
+ // Delta = pi/n
446
+ // Alpha = 2 sin^2 (Delta/2)
447
+ // Beta = sin(Delta)
448
+ //
449
+ // so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
450
+ // Then we use
451
+ //
452
+ // sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
453
+ // cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
454
+ //
455
+ // to repeatedly calculate sin(..) and cos(..).
456
+ //
457
+ a0 = 0.0;
458
+ delta = ap::pi()/(n-1);
459
+ alpha = 2*ap::sqr(sin(delta/2));
460
+ beta = sin(delta);
461
+
462
+ //
463
+ // First, decide: should we use "safe" formula (guarded
464
+ // against overflow) or fast one?
465
+ //
466
+ ca = cos(a0);
467
+ sa = sin(a0);
468
+ j = 0;
469
+ x = ca;
470
+ s = t-x;
471
+ for(i = 1; i <= n-1; i++)
472
+ {
473
+
474
+ //
475
+ // Next X[i]
476
+ //
477
+ temps = sa-(alpha*sa-beta*ca);
478
+ tempc = ca-(alpha*ca+beta*sa);
479
+ sa = temps;
480
+ ca = tempc;
481
+ x = ca;
482
+
483
+ //
484
+ // Use X[i]
485
+ //
486
+ if( fabs(t-x)<fabs(s) )
487
+ {
488
+ s = t-x;
489
+ j = i;
490
+ }
491
+ }
492
+ if( s==0 )
493
+ {
494
+ result = f(j);
495
+ return result;
496
+ }
497
+ if( fabs(s)>threshold )
498
+ {
499
+
500
+ //
501
+ // use fast formula
502
+ //
503
+ j = -1;
504
+ s = 1.0;
505
+ }
506
+
507
+ //
508
+ // Calculate using safe or fast barycentric formula
509
+ //
510
+ s1 = 0;
511
+ s2 = 0;
512
+ ca = cos(a0);
513
+ sa = sin(a0);
514
+ p1 = 1.0;
515
+ for(i = 0; i <= n-1; i++)
516
+ {
517
+
518
+ //
519
+ // Calculate X[i], W[i]
520
+ //
521
+ x = ca;
522
+ if( i==0||i==n-1 )
523
+ {
524
+ w = 0.5*p1;
525
+ }
526
+ else
527
+ {
528
+ w = 1.0*p1;
529
+ }
530
+
531
+ //
532
+ // Proceed
533
+ //
534
+ if( i!=j )
535
+ {
536
+ v = s*w/(t-x);
537
+ s1 = s1+v*f(i);
538
+ s2 = s2+v;
539
+ }
540
+ else
541
+ {
542
+ v = w;
543
+ s1 = s1+v*f(i);
544
+ s2 = s2+v;
545
+ }
546
+
547
+ //
548
+ // Next CA, SA, P1
549
+ //
550
+ temps = sa-(alpha*sa-beta*ca);
551
+ tempc = ca-(alpha*ca+beta*sa);
552
+ sa = temps;
553
+ ca = tempc;
554
+ p1 = -p1;
555
+ }
556
+ result = s1/s2;
557
+ return result;
558
+ }
559
+
560
+
561
+ /*************************************************************************
562
+ Polynomial interpolation on the arbitrary nodes using Neville's algorithm.
563
+ O(N^2) complexity.
564
+
565
+ Input parameters:
566
+ X - interpolation nodes, array[0..N-1].
567
+ F - function values, array[0..N-1].
568
+ N - nodes count
569
+ T - interpolation point
570
+
571
+ Result:
572
+ the value of the interpolation polynomial F(t)
573
+
574
+ -- ALGLIB --
575
+ Copyright 28.05.2007 by Bochkanov Sergey
576
+ *************************************************************************/
577
+ double nevilleinterpolation(const ap::real_1d_array& x,
578
+ ap::real_1d_array f,
579
+ int n,
580
+ double t)
581
+ {
582
+ double result;
583
+ int m;
584
+ int i;
585
+
586
+ n = n-1;
587
+ for(m = 1; m <= n; m++)
588
+ {
589
+ for(i = 0; i <= n-m; i++)
590
+ {
591
+ f(i) = ((t-x(i+m))*f(i)+(x(i)-t)*f(i+1))/(x(i)-x(i+m));
592
+ }
593
+ }
594
+ result = f(0);
595
+ return result;
596
+ }
597
+
598
+
599
+ /*************************************************************************
600
+ Polynomial interpolation on the arbitrary nodes using Neville's algorithm.
601
+ O(N^2) complexity. Subroutine returns the value of the interpolation
602
+ polynomial, the first and the second derivative.
603
+
604
+ Input parameters:
605
+ X - interpolation nodes, array[0..N-1].
606
+ F - function values, array[0..N-1].
607
+ N - nodes count
608
+ T - interpolation point
609
+
610
+ Output parameters:
611
+ P - the value of the interpolation polynomial F(t)
612
+ DP - the first derivative of the interpolation polynomial dF(t)/dt
613
+ D2P - the second derivative of the interpolation polynomial d2F(t)/dt2
614
+
615
+ -- ALGLIB --
616
+ Copyright 28.05.2007 by Bochkanov Sergey
617
+ *************************************************************************/
618
+ void nevilledifferentiation(const ap::real_1d_array& x,
619
+ ap::real_1d_array f,
620
+ int n,
621
+ double t,
622
+ double& p,
623
+ double& dp,
624
+ double& d2p)
625
+ {
626
+ int m;
627
+ int i;
628
+ ap::real_1d_array df;
629
+ ap::real_1d_array d2f;
630
+
631
+ n = n-1;
632
+ df.setbounds(0, n);
633
+ d2f.setbounds(0, n);
634
+ for(i = 0; i <= n; i++)
635
+ {
636
+ d2f(i) = 0;
637
+ df(i) = 0;
638
+ }
639
+ for(m = 1; m <= n; m++)
640
+ {
641
+ for(i = 0; i <= n-m; i++)
642
+ {
643
+ d2f(i) = ((t-x(i+m))*d2f(i)+(x(i)-t)*d2f(i+1)+2*df(i)-2*df(i+1))/(x(i)-x(i+m));
644
+ df(i) = ((t-x(i+m))*df(i)+f(i)+(x(i)-t)*df(i+1)-f(i+1))/(x(i)-x(i+m));
645
+ f(i) = ((t-x(i+m))*f(i)+(x(i)-t)*f(i+1))/(x(i)-x(i+m));
646
+ }
647
+ }
648
+ p = f(0);
649
+ dp = df(0);
650
+ d2p = d2f(0);
651
+ }
652
+
653
+
654
+ /*************************************************************************
655
+ Obsolete algorithm, replaced by NevilleInterpolation.
656
+ *************************************************************************/
657
+ double lagrangeinterpolate(int n,
658
+ const ap::real_1d_array& x,
659
+ ap::real_1d_array f,
660
+ double t)
661
+ {
662
+ double result;
663
+
664
+ result = nevilleinterpolation(x, f, n, t);
665
+ return result;
666
+ }
667
+
668
+
669
+ /*************************************************************************
670
+ Obsolete algorithm, replaced by NevilleInterpolationWithDerivative
671
+ *************************************************************************/
672
+ void lagrangederivative(int n,
673
+ const ap::real_1d_array& x,
674
+ ap::real_1d_array f,
675
+ double t,
676
+ double& p,
677
+ double& dp)
678
+ {
679
+ double d2p;
680
+
681
+ nevilledifferentiation(x, f, n, t, p, dp, d2p);
682
+ }
683
+
684
+
685
+