alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,130 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Cephes Math Library Release 2.8: June, 2000
|
3
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
* Sergey Bochkanov (ALGLIB project). Translation from C to
|
7
|
+
pseudocode.
|
8
|
+
|
9
|
+
See subroutines comments for additional copyrights.
|
10
|
+
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
12
|
+
modification, are permitted provided that the following conditions are
|
13
|
+
met:
|
14
|
+
|
15
|
+
- Redistributions of source code must retain the above copyright
|
16
|
+
notice, this list of conditions and the following disclaimer.
|
17
|
+
|
18
|
+
- Redistributions in binary form must reproduce the above copyright
|
19
|
+
notice, this list of conditions and the following disclaimer listed
|
20
|
+
in this license in the documentation and/or other materials
|
21
|
+
provided with the distribution.
|
22
|
+
|
23
|
+
- Neither the name of the copyright holders nor the names of its
|
24
|
+
contributors may be used to endorse or promote products derived from
|
25
|
+
this software without specific prior written permission.
|
26
|
+
|
27
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
|
+
*************************************************************************/
|
39
|
+
|
40
|
+
#ifndef _poissondistr_h
|
41
|
+
#define _poissondistr_h
|
42
|
+
|
43
|
+
#include "ap.h"
|
44
|
+
#include "ialglib.h"
|
45
|
+
|
46
|
+
#include "gammaf.h"
|
47
|
+
#include "normaldistr.h"
|
48
|
+
#include "igammaf.h"
|
49
|
+
|
50
|
+
|
51
|
+
/*************************************************************************
|
52
|
+
Poisson distribution
|
53
|
+
|
54
|
+
Returns the sum of the first k+1 terms of the Poisson
|
55
|
+
distribution:
|
56
|
+
|
57
|
+
k j
|
58
|
+
-- -m m
|
59
|
+
> e --
|
60
|
+
-- j!
|
61
|
+
j=0
|
62
|
+
|
63
|
+
The terms are not summed directly; instead the incomplete
|
64
|
+
gamma integral is employed, according to the relation
|
65
|
+
|
66
|
+
y = pdtr( k, m ) = igamc( k+1, m ).
|
67
|
+
|
68
|
+
The arguments must both be positive.
|
69
|
+
ACCURACY:
|
70
|
+
|
71
|
+
See incomplete gamma function
|
72
|
+
|
73
|
+
Cephes Math Library Release 2.8: June, 2000
|
74
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
75
|
+
*************************************************************************/
|
76
|
+
double poissondistribution(int k, double m);
|
77
|
+
|
78
|
+
|
79
|
+
/*************************************************************************
|
80
|
+
Complemented Poisson distribution
|
81
|
+
|
82
|
+
Returns the sum of the terms k+1 to infinity of the Poisson
|
83
|
+
distribution:
|
84
|
+
|
85
|
+
inf. j
|
86
|
+
-- -m m
|
87
|
+
> e --
|
88
|
+
-- j!
|
89
|
+
j=k+1
|
90
|
+
|
91
|
+
The terms are not summed directly; instead the incomplete
|
92
|
+
gamma integral is employed, according to the formula
|
93
|
+
|
94
|
+
y = pdtrc( k, m ) = igam( k+1, m ).
|
95
|
+
|
96
|
+
The arguments must both be positive.
|
97
|
+
|
98
|
+
ACCURACY:
|
99
|
+
|
100
|
+
See incomplete gamma function
|
101
|
+
|
102
|
+
Cephes Math Library Release 2.8: June, 2000
|
103
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
104
|
+
*************************************************************************/
|
105
|
+
double poissoncdistribution(int k, double m);
|
106
|
+
|
107
|
+
|
108
|
+
/*************************************************************************
|
109
|
+
Inverse Poisson distribution
|
110
|
+
|
111
|
+
Finds the Poisson variable x such that the integral
|
112
|
+
from 0 to x of the Poisson density is equal to the
|
113
|
+
given probability y.
|
114
|
+
|
115
|
+
This is accomplished using the inverse gamma integral
|
116
|
+
function and the relation
|
117
|
+
|
118
|
+
m = igami( k+1, y ).
|
119
|
+
|
120
|
+
ACCURACY:
|
121
|
+
|
122
|
+
See inverse incomplete gamma function
|
123
|
+
|
124
|
+
Cephes Math Library Release 2.8: June, 2000
|
125
|
+
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
126
|
+
*************************************************************************/
|
127
|
+
double invpoissondistribution(int k, double y);
|
128
|
+
|
129
|
+
|
130
|
+
#endif
|
@@ -0,0 +1,685 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "polinterpolation.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Interpolation using barycentric formula
|
38
|
+
|
39
|
+
F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))
|
40
|
+
|
41
|
+
Input parameters:
|
42
|
+
X - interpolation nodes, array[0..N-1]
|
43
|
+
F - function values, array[0..N-1]
|
44
|
+
W - barycentric weights, array[0..N-1]
|
45
|
+
N - nodes count, N>0
|
46
|
+
T - interpolation point
|
47
|
+
|
48
|
+
Result:
|
49
|
+
barycentric interpolant F(t)
|
50
|
+
|
51
|
+
-- ALGLIB --
|
52
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
53
|
+
*************************************************************************/
|
54
|
+
double barycentricinterpolation(const ap::real_1d_array& x,
|
55
|
+
const ap::real_1d_array& f,
|
56
|
+
const ap::real_1d_array& w,
|
57
|
+
int n,
|
58
|
+
double t)
|
59
|
+
{
|
60
|
+
double result;
|
61
|
+
double s1;
|
62
|
+
double s2;
|
63
|
+
double v;
|
64
|
+
double threshold;
|
65
|
+
double s;
|
66
|
+
int i;
|
67
|
+
int j;
|
68
|
+
|
69
|
+
ap::ap_error::make_assertion(n>0, "BarycentricInterpolation: N<=0!");
|
70
|
+
threshold = sqrt(ap::minrealnumber);
|
71
|
+
|
72
|
+
//
|
73
|
+
// First, decide: should we use "safe" formula (guarded
|
74
|
+
// against overflow) or fast one?
|
75
|
+
//
|
76
|
+
j = 0;
|
77
|
+
s = t-x(0);
|
78
|
+
for(i = 1; i <= n-1; i++)
|
79
|
+
{
|
80
|
+
if( fabs(t-x(i))<fabs(s) )
|
81
|
+
{
|
82
|
+
s = t-x(i);
|
83
|
+
j = i;
|
84
|
+
}
|
85
|
+
}
|
86
|
+
if( s==0 )
|
87
|
+
{
|
88
|
+
result = f(j);
|
89
|
+
return result;
|
90
|
+
}
|
91
|
+
if( fabs(s)>threshold )
|
92
|
+
{
|
93
|
+
|
94
|
+
//
|
95
|
+
// use fast formula
|
96
|
+
//
|
97
|
+
j = -1;
|
98
|
+
s = 1.0;
|
99
|
+
}
|
100
|
+
|
101
|
+
//
|
102
|
+
// Calculate using safe or fast barycentric formula
|
103
|
+
//
|
104
|
+
s1 = 0;
|
105
|
+
s2 = 0;
|
106
|
+
for(i = 0; i <= n-1; i++)
|
107
|
+
{
|
108
|
+
if( i!=j )
|
109
|
+
{
|
110
|
+
v = s*w(i)/(t-x(i));
|
111
|
+
s1 = s1+v*f(i);
|
112
|
+
s2 = s2+v;
|
113
|
+
}
|
114
|
+
else
|
115
|
+
{
|
116
|
+
v = w(i);
|
117
|
+
s1 = s1+v*f(i);
|
118
|
+
s2 = s2+v;
|
119
|
+
}
|
120
|
+
}
|
121
|
+
result = s1/s2;
|
122
|
+
return result;
|
123
|
+
}
|
124
|
+
|
125
|
+
|
126
|
+
/*************************************************************************
|
127
|
+
Polynomial interpolation on the equidistant nodes using barycentric
|
128
|
+
formula. O(N) complexity.
|
129
|
+
|
130
|
+
Input parameters:
|
131
|
+
A,B - interpolation interval [A,B]
|
132
|
+
F - function values, array[0..N-1].
|
133
|
+
F[i] = F(A+(B-A)*i/(N-1))
|
134
|
+
N - nodes count
|
135
|
+
T - interpolation point
|
136
|
+
|
137
|
+
Result:
|
138
|
+
the value of the interpolation polynomial F(t)
|
139
|
+
|
140
|
+
-- ALGLIB --
|
141
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
142
|
+
*************************************************************************/
|
143
|
+
double equidistantpolynomialinterpolation(double a,
|
144
|
+
double b,
|
145
|
+
const ap::real_1d_array& f,
|
146
|
+
int n,
|
147
|
+
double t)
|
148
|
+
{
|
149
|
+
double result;
|
150
|
+
double s1;
|
151
|
+
double s2;
|
152
|
+
double v;
|
153
|
+
double threshold;
|
154
|
+
double s;
|
155
|
+
int i;
|
156
|
+
int j;
|
157
|
+
double w;
|
158
|
+
double x;
|
159
|
+
|
160
|
+
ap::ap_error::make_assertion(n>0, "BarycentricInterpolation: N<=0!");
|
161
|
+
threshold = sqrt(ap::minrealnumber);
|
162
|
+
|
163
|
+
//
|
164
|
+
// Special case: N=1
|
165
|
+
//
|
166
|
+
if( n==1 )
|
167
|
+
{
|
168
|
+
result = f(0);
|
169
|
+
return result;
|
170
|
+
}
|
171
|
+
|
172
|
+
//
|
173
|
+
// First, decide: should we use "safe" formula (guarded
|
174
|
+
// against overflow) or fast one?
|
175
|
+
//
|
176
|
+
j = 0;
|
177
|
+
s = t-a;
|
178
|
+
for(i = 1; i <= n-1; i++)
|
179
|
+
{
|
180
|
+
x = a+double(i)/double(n-1)*(b-a);
|
181
|
+
if( fabs(t-x)<fabs(s) )
|
182
|
+
{
|
183
|
+
s = t-x;
|
184
|
+
j = i;
|
185
|
+
}
|
186
|
+
}
|
187
|
+
if( s==0 )
|
188
|
+
{
|
189
|
+
result = f(j);
|
190
|
+
return result;
|
191
|
+
}
|
192
|
+
if( fabs(s)>threshold )
|
193
|
+
{
|
194
|
+
|
195
|
+
//
|
196
|
+
// use fast formula
|
197
|
+
//
|
198
|
+
j = -1;
|
199
|
+
s = 1.0;
|
200
|
+
}
|
201
|
+
|
202
|
+
//
|
203
|
+
// Calculate using safe or fast barycentric formula
|
204
|
+
//
|
205
|
+
s1 = 0;
|
206
|
+
s2 = 0;
|
207
|
+
w = 1.0;
|
208
|
+
for(i = 0; i <= n-1; i++)
|
209
|
+
{
|
210
|
+
if( i!=j )
|
211
|
+
{
|
212
|
+
v = s*w/(t-(a+double(i)/double(n-1)*(b-a)));
|
213
|
+
s1 = s1+v*f(i);
|
214
|
+
s2 = s2+v;
|
215
|
+
}
|
216
|
+
else
|
217
|
+
{
|
218
|
+
v = w;
|
219
|
+
s1 = s1+v*f(i);
|
220
|
+
s2 = s2+v;
|
221
|
+
}
|
222
|
+
w = -w*(n-1-i);
|
223
|
+
w = w/(i+1);
|
224
|
+
}
|
225
|
+
result = s1/s2;
|
226
|
+
return result;
|
227
|
+
}
|
228
|
+
|
229
|
+
|
230
|
+
/*************************************************************************
|
231
|
+
Polynomial interpolation on the Chebyshev nodes (first kind) using
|
232
|
+
barycentric formula. O(N) complexity.
|
233
|
+
|
234
|
+
Input parameters:
|
235
|
+
A,B - interpolation interval [A,B]
|
236
|
+
F - function values, array[0..N-1].
|
237
|
+
F[i] = F(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)))
|
238
|
+
N - nodes count
|
239
|
+
T - interpolation point
|
240
|
+
|
241
|
+
Result:
|
242
|
+
the value of the interpolation polynomial F(t)
|
243
|
+
|
244
|
+
-- ALGLIB --
|
245
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
246
|
+
*************************************************************************/
|
247
|
+
double chebyshev1interpolation(double a,
|
248
|
+
double b,
|
249
|
+
const ap::real_1d_array& f,
|
250
|
+
int n,
|
251
|
+
double t)
|
252
|
+
{
|
253
|
+
double result;
|
254
|
+
double s1;
|
255
|
+
double s2;
|
256
|
+
double v;
|
257
|
+
double threshold;
|
258
|
+
double s;
|
259
|
+
int i;
|
260
|
+
int j;
|
261
|
+
double a0;
|
262
|
+
double delta;
|
263
|
+
double alpha;
|
264
|
+
double beta;
|
265
|
+
double ca;
|
266
|
+
double sa;
|
267
|
+
double tempc;
|
268
|
+
double temps;
|
269
|
+
double x;
|
270
|
+
double w;
|
271
|
+
double p1;
|
272
|
+
|
273
|
+
ap::ap_error::make_assertion(n>0, "Chebyshev1Interpolation: N<=0!");
|
274
|
+
threshold = sqrt(ap::minrealnumber);
|
275
|
+
t = (t-0.5*(a+b))/(0.5*(b-a));
|
276
|
+
|
277
|
+
//
|
278
|
+
// Prepare information for the recurrence formula
|
279
|
+
// used to calculate sin(pi*(2j+1)/(2n+2)) and
|
280
|
+
// cos(pi*(2j+1)/(2n+2)):
|
281
|
+
//
|
282
|
+
// A0 = pi/(2n+2)
|
283
|
+
// Delta = pi/(n+1)
|
284
|
+
// Alpha = 2 sin^2 (Delta/2)
|
285
|
+
// Beta = sin(Delta)
|
286
|
+
//
|
287
|
+
// so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
|
288
|
+
// Then we use
|
289
|
+
//
|
290
|
+
// sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
|
291
|
+
// cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
|
292
|
+
//
|
293
|
+
// to repeatedly calculate sin(..) and cos(..).
|
294
|
+
//
|
295
|
+
a0 = ap::pi()/(2*(n-1)+2);
|
296
|
+
delta = 2*ap::pi()/(2*(n-1)+2);
|
297
|
+
alpha = 2*ap::sqr(sin(delta/2));
|
298
|
+
beta = sin(delta);
|
299
|
+
|
300
|
+
//
|
301
|
+
// First, decide: should we use "safe" formula (guarded
|
302
|
+
// against overflow) or fast one?
|
303
|
+
//
|
304
|
+
ca = cos(a0);
|
305
|
+
sa = sin(a0);
|
306
|
+
j = 0;
|
307
|
+
x = ca;
|
308
|
+
s = t-x;
|
309
|
+
for(i = 1; i <= n-1; i++)
|
310
|
+
{
|
311
|
+
|
312
|
+
//
|
313
|
+
// Next X[i]
|
314
|
+
//
|
315
|
+
temps = sa-(alpha*sa-beta*ca);
|
316
|
+
tempc = ca-(alpha*ca+beta*sa);
|
317
|
+
sa = temps;
|
318
|
+
ca = tempc;
|
319
|
+
x = ca;
|
320
|
+
|
321
|
+
//
|
322
|
+
// Use X[i]
|
323
|
+
//
|
324
|
+
if( fabs(t-x)<fabs(s) )
|
325
|
+
{
|
326
|
+
s = t-x;
|
327
|
+
j = i;
|
328
|
+
}
|
329
|
+
}
|
330
|
+
if( s==0 )
|
331
|
+
{
|
332
|
+
result = f(j);
|
333
|
+
return result;
|
334
|
+
}
|
335
|
+
if( fabs(s)>threshold )
|
336
|
+
{
|
337
|
+
|
338
|
+
//
|
339
|
+
// use fast formula
|
340
|
+
//
|
341
|
+
j = -1;
|
342
|
+
s = 1.0;
|
343
|
+
}
|
344
|
+
|
345
|
+
//
|
346
|
+
// Calculate using safe or fast barycentric formula
|
347
|
+
//
|
348
|
+
s1 = 0;
|
349
|
+
s2 = 0;
|
350
|
+
ca = cos(a0);
|
351
|
+
sa = sin(a0);
|
352
|
+
p1 = 1.0;
|
353
|
+
for(i = 0; i <= n-1; i++)
|
354
|
+
{
|
355
|
+
|
356
|
+
//
|
357
|
+
// Calculate X[i], W[i]
|
358
|
+
//
|
359
|
+
x = ca;
|
360
|
+
w = p1*sa;
|
361
|
+
|
362
|
+
//
|
363
|
+
// Proceed
|
364
|
+
//
|
365
|
+
if( i!=j )
|
366
|
+
{
|
367
|
+
v = s*w/(t-x);
|
368
|
+
s1 = s1+v*f(i);
|
369
|
+
s2 = s2+v;
|
370
|
+
}
|
371
|
+
else
|
372
|
+
{
|
373
|
+
v = w;
|
374
|
+
s1 = s1+v*f(i);
|
375
|
+
s2 = s2+v;
|
376
|
+
}
|
377
|
+
|
378
|
+
//
|
379
|
+
// Next CA, SA, P1
|
380
|
+
//
|
381
|
+
temps = sa-(alpha*sa-beta*ca);
|
382
|
+
tempc = ca-(alpha*ca+beta*sa);
|
383
|
+
sa = temps;
|
384
|
+
ca = tempc;
|
385
|
+
p1 = -p1;
|
386
|
+
}
|
387
|
+
result = s1/s2;
|
388
|
+
return result;
|
389
|
+
}
|
390
|
+
|
391
|
+
|
392
|
+
/*************************************************************************
|
393
|
+
Polynomial interpolation on the Chebyshev nodes (second kind) using
|
394
|
+
barycentric formula. O(N) complexity.
|
395
|
+
|
396
|
+
Input parameters:
|
397
|
+
A,B - interpolation interval [A,B]
|
398
|
+
F - function values, array[0..N-1].
|
399
|
+
F[i] = F(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)))
|
400
|
+
N - nodes count
|
401
|
+
T - interpolation point
|
402
|
+
|
403
|
+
Result:
|
404
|
+
the value of the interpolation polynomial F(t)
|
405
|
+
|
406
|
+
-- ALGLIB --
|
407
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
408
|
+
*************************************************************************/
|
409
|
+
double chebyshev2interpolation(double a,
|
410
|
+
double b,
|
411
|
+
const ap::real_1d_array& f,
|
412
|
+
int n,
|
413
|
+
double t)
|
414
|
+
{
|
415
|
+
double result;
|
416
|
+
double s1;
|
417
|
+
double s2;
|
418
|
+
double v;
|
419
|
+
double threshold;
|
420
|
+
double s;
|
421
|
+
int i;
|
422
|
+
int j;
|
423
|
+
double a0;
|
424
|
+
double delta;
|
425
|
+
double alpha;
|
426
|
+
double beta;
|
427
|
+
double ca;
|
428
|
+
double sa;
|
429
|
+
double tempc;
|
430
|
+
double temps;
|
431
|
+
double x;
|
432
|
+
double w;
|
433
|
+
double p1;
|
434
|
+
|
435
|
+
ap::ap_error::make_assertion(n>1, "Chebyshev2Interpolation: N<=1!");
|
436
|
+
threshold = sqrt(ap::minrealnumber);
|
437
|
+
t = (t-0.5*(a+b))/(0.5*(b-a));
|
438
|
+
|
439
|
+
//
|
440
|
+
// Prepare information for the recurrence formula
|
441
|
+
// used to calculate sin(pi*i/n) and
|
442
|
+
// cos(pi*i/n):
|
443
|
+
//
|
444
|
+
// A0 = 0
|
445
|
+
// Delta = pi/n
|
446
|
+
// Alpha = 2 sin^2 (Delta/2)
|
447
|
+
// Beta = sin(Delta)
|
448
|
+
//
|
449
|
+
// so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
|
450
|
+
// Then we use
|
451
|
+
//
|
452
|
+
// sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
|
453
|
+
// cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
|
454
|
+
//
|
455
|
+
// to repeatedly calculate sin(..) and cos(..).
|
456
|
+
//
|
457
|
+
a0 = 0.0;
|
458
|
+
delta = ap::pi()/(n-1);
|
459
|
+
alpha = 2*ap::sqr(sin(delta/2));
|
460
|
+
beta = sin(delta);
|
461
|
+
|
462
|
+
//
|
463
|
+
// First, decide: should we use "safe" formula (guarded
|
464
|
+
// against overflow) or fast one?
|
465
|
+
//
|
466
|
+
ca = cos(a0);
|
467
|
+
sa = sin(a0);
|
468
|
+
j = 0;
|
469
|
+
x = ca;
|
470
|
+
s = t-x;
|
471
|
+
for(i = 1; i <= n-1; i++)
|
472
|
+
{
|
473
|
+
|
474
|
+
//
|
475
|
+
// Next X[i]
|
476
|
+
//
|
477
|
+
temps = sa-(alpha*sa-beta*ca);
|
478
|
+
tempc = ca-(alpha*ca+beta*sa);
|
479
|
+
sa = temps;
|
480
|
+
ca = tempc;
|
481
|
+
x = ca;
|
482
|
+
|
483
|
+
//
|
484
|
+
// Use X[i]
|
485
|
+
//
|
486
|
+
if( fabs(t-x)<fabs(s) )
|
487
|
+
{
|
488
|
+
s = t-x;
|
489
|
+
j = i;
|
490
|
+
}
|
491
|
+
}
|
492
|
+
if( s==0 )
|
493
|
+
{
|
494
|
+
result = f(j);
|
495
|
+
return result;
|
496
|
+
}
|
497
|
+
if( fabs(s)>threshold )
|
498
|
+
{
|
499
|
+
|
500
|
+
//
|
501
|
+
// use fast formula
|
502
|
+
//
|
503
|
+
j = -1;
|
504
|
+
s = 1.0;
|
505
|
+
}
|
506
|
+
|
507
|
+
//
|
508
|
+
// Calculate using safe or fast barycentric formula
|
509
|
+
//
|
510
|
+
s1 = 0;
|
511
|
+
s2 = 0;
|
512
|
+
ca = cos(a0);
|
513
|
+
sa = sin(a0);
|
514
|
+
p1 = 1.0;
|
515
|
+
for(i = 0; i <= n-1; i++)
|
516
|
+
{
|
517
|
+
|
518
|
+
//
|
519
|
+
// Calculate X[i], W[i]
|
520
|
+
//
|
521
|
+
x = ca;
|
522
|
+
if( i==0||i==n-1 )
|
523
|
+
{
|
524
|
+
w = 0.5*p1;
|
525
|
+
}
|
526
|
+
else
|
527
|
+
{
|
528
|
+
w = 1.0*p1;
|
529
|
+
}
|
530
|
+
|
531
|
+
//
|
532
|
+
// Proceed
|
533
|
+
//
|
534
|
+
if( i!=j )
|
535
|
+
{
|
536
|
+
v = s*w/(t-x);
|
537
|
+
s1 = s1+v*f(i);
|
538
|
+
s2 = s2+v;
|
539
|
+
}
|
540
|
+
else
|
541
|
+
{
|
542
|
+
v = w;
|
543
|
+
s1 = s1+v*f(i);
|
544
|
+
s2 = s2+v;
|
545
|
+
}
|
546
|
+
|
547
|
+
//
|
548
|
+
// Next CA, SA, P1
|
549
|
+
//
|
550
|
+
temps = sa-(alpha*sa-beta*ca);
|
551
|
+
tempc = ca-(alpha*ca+beta*sa);
|
552
|
+
sa = temps;
|
553
|
+
ca = tempc;
|
554
|
+
p1 = -p1;
|
555
|
+
}
|
556
|
+
result = s1/s2;
|
557
|
+
return result;
|
558
|
+
}
|
559
|
+
|
560
|
+
|
561
|
+
/*************************************************************************
|
562
|
+
Polynomial interpolation on the arbitrary nodes using Neville's algorithm.
|
563
|
+
O(N^2) complexity.
|
564
|
+
|
565
|
+
Input parameters:
|
566
|
+
X - interpolation nodes, array[0..N-1].
|
567
|
+
F - function values, array[0..N-1].
|
568
|
+
N - nodes count
|
569
|
+
T - interpolation point
|
570
|
+
|
571
|
+
Result:
|
572
|
+
the value of the interpolation polynomial F(t)
|
573
|
+
|
574
|
+
-- ALGLIB --
|
575
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
576
|
+
*************************************************************************/
|
577
|
+
double nevilleinterpolation(const ap::real_1d_array& x,
|
578
|
+
ap::real_1d_array f,
|
579
|
+
int n,
|
580
|
+
double t)
|
581
|
+
{
|
582
|
+
double result;
|
583
|
+
int m;
|
584
|
+
int i;
|
585
|
+
|
586
|
+
n = n-1;
|
587
|
+
for(m = 1; m <= n; m++)
|
588
|
+
{
|
589
|
+
for(i = 0; i <= n-m; i++)
|
590
|
+
{
|
591
|
+
f(i) = ((t-x(i+m))*f(i)+(x(i)-t)*f(i+1))/(x(i)-x(i+m));
|
592
|
+
}
|
593
|
+
}
|
594
|
+
result = f(0);
|
595
|
+
return result;
|
596
|
+
}
|
597
|
+
|
598
|
+
|
599
|
+
/*************************************************************************
|
600
|
+
Polynomial interpolation on the arbitrary nodes using Neville's algorithm.
|
601
|
+
O(N^2) complexity. Subroutine returns the value of the interpolation
|
602
|
+
polynomial, the first and the second derivative.
|
603
|
+
|
604
|
+
Input parameters:
|
605
|
+
X - interpolation nodes, array[0..N-1].
|
606
|
+
F - function values, array[0..N-1].
|
607
|
+
N - nodes count
|
608
|
+
T - interpolation point
|
609
|
+
|
610
|
+
Output parameters:
|
611
|
+
P - the value of the interpolation polynomial F(t)
|
612
|
+
DP - the first derivative of the interpolation polynomial dF(t)/dt
|
613
|
+
D2P - the second derivative of the interpolation polynomial d2F(t)/dt2
|
614
|
+
|
615
|
+
-- ALGLIB --
|
616
|
+
Copyright 28.05.2007 by Bochkanov Sergey
|
617
|
+
*************************************************************************/
|
618
|
+
void nevilledifferentiation(const ap::real_1d_array& x,
|
619
|
+
ap::real_1d_array f,
|
620
|
+
int n,
|
621
|
+
double t,
|
622
|
+
double& p,
|
623
|
+
double& dp,
|
624
|
+
double& d2p)
|
625
|
+
{
|
626
|
+
int m;
|
627
|
+
int i;
|
628
|
+
ap::real_1d_array df;
|
629
|
+
ap::real_1d_array d2f;
|
630
|
+
|
631
|
+
n = n-1;
|
632
|
+
df.setbounds(0, n);
|
633
|
+
d2f.setbounds(0, n);
|
634
|
+
for(i = 0; i <= n; i++)
|
635
|
+
{
|
636
|
+
d2f(i) = 0;
|
637
|
+
df(i) = 0;
|
638
|
+
}
|
639
|
+
for(m = 1; m <= n; m++)
|
640
|
+
{
|
641
|
+
for(i = 0; i <= n-m; i++)
|
642
|
+
{
|
643
|
+
d2f(i) = ((t-x(i+m))*d2f(i)+(x(i)-t)*d2f(i+1)+2*df(i)-2*df(i+1))/(x(i)-x(i+m));
|
644
|
+
df(i) = ((t-x(i+m))*df(i)+f(i)+(x(i)-t)*df(i+1)-f(i+1))/(x(i)-x(i+m));
|
645
|
+
f(i) = ((t-x(i+m))*f(i)+(x(i)-t)*f(i+1))/(x(i)-x(i+m));
|
646
|
+
}
|
647
|
+
}
|
648
|
+
p = f(0);
|
649
|
+
dp = df(0);
|
650
|
+
d2p = d2f(0);
|
651
|
+
}
|
652
|
+
|
653
|
+
|
654
|
+
/*************************************************************************
|
655
|
+
Obsolete algorithm, replaced by NevilleInterpolation.
|
656
|
+
*************************************************************************/
|
657
|
+
double lagrangeinterpolate(int n,
|
658
|
+
const ap::real_1d_array& x,
|
659
|
+
ap::real_1d_array f,
|
660
|
+
double t)
|
661
|
+
{
|
662
|
+
double result;
|
663
|
+
|
664
|
+
result = nevilleinterpolation(x, f, n, t);
|
665
|
+
return result;
|
666
|
+
}
|
667
|
+
|
668
|
+
|
669
|
+
/*************************************************************************
|
670
|
+
Obsolete algorithm, replaced by NevilleInterpolationWithDerivative
|
671
|
+
*************************************************************************/
|
672
|
+
void lagrangederivative(int n,
|
673
|
+
const ap::real_1d_array& x,
|
674
|
+
ap::real_1d_array f,
|
675
|
+
double t,
|
676
|
+
double& p,
|
677
|
+
double& dp)
|
678
|
+
{
|
679
|
+
double d2p;
|
680
|
+
|
681
|
+
nevilledifferentiation(x, f, n, t, p, dp, d2p);
|
682
|
+
}
|
683
|
+
|
684
|
+
|
685
|
+
|