alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/bdss.cpp
ADDED
@@ -0,0 +1,1500 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright 2008 by Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "bdss.h"
|
35
|
+
|
36
|
+
static void dskfoldsplit(const ap::real_2d_array& xy,
|
37
|
+
int npoints,
|
38
|
+
int nclasses,
|
39
|
+
int foldscount,
|
40
|
+
bool stratifiedsplits,
|
41
|
+
ap::integer_1d_array& folds);
|
42
|
+
static double xlny(double x, double y);
|
43
|
+
static double getcv(const ap::integer_1d_array& cnt, int nc);
|
44
|
+
static void tieaddc(const ap::integer_1d_array& c,
|
45
|
+
const ap::integer_1d_array& ties,
|
46
|
+
int ntie,
|
47
|
+
int nc,
|
48
|
+
ap::integer_1d_array& cnt);
|
49
|
+
static void tiesubc(const ap::integer_1d_array& c,
|
50
|
+
const ap::integer_1d_array& ties,
|
51
|
+
int ntie,
|
52
|
+
int nc,
|
53
|
+
ap::integer_1d_array& cnt);
|
54
|
+
static void tiegetc(const ap::integer_1d_array& c,
|
55
|
+
const ap::integer_1d_array& ties,
|
56
|
+
int ntie,
|
57
|
+
int nc,
|
58
|
+
ap::integer_1d_array& cnt);
|
59
|
+
|
60
|
+
/*************************************************************************
|
61
|
+
This set of routines (DSErrAllocate, DSErrAccumulate, DSErrFinish)
|
62
|
+
calculates different error functions (classification error, cross-entropy,
|
63
|
+
rms, avg, avg.rel errors).
|
64
|
+
|
65
|
+
1. DSErrAllocate prepares buffer.
|
66
|
+
2. DSErrAccumulate accumulates individual errors:
|
67
|
+
* Y contains predicted output (posterior probabilities for classification)
|
68
|
+
* DesiredY contains desired output (class number for classification)
|
69
|
+
3. DSErrFinish outputs results:
|
70
|
+
* Buf[0] contains relative classification error (zero for regression tasks)
|
71
|
+
* Buf[1] contains avg. cross-entropy (zero for regression tasks)
|
72
|
+
* Buf[2] contains rms error (regression, classification)
|
73
|
+
* Buf[3] contains average error (regression, classification)
|
74
|
+
* Buf[4] contains average relative error (regression, classification)
|
75
|
+
|
76
|
+
NOTES(1):
|
77
|
+
"NClasses>0" means that we have classification task.
|
78
|
+
"NClasses<0" means regression task with -NClasses real outputs.
|
79
|
+
|
80
|
+
NOTES(2):
|
81
|
+
rms. avg, avg.rel errors for classification tasks are interpreted as
|
82
|
+
errors in posterior probabilities with respect to probabilities given
|
83
|
+
by training/test set.
|
84
|
+
|
85
|
+
-- ALGLIB --
|
86
|
+
Copyright 11.01.2009 by Bochkanov Sergey
|
87
|
+
*************************************************************************/
|
88
|
+
void dserrallocate(int nclasses, ap::real_1d_array& buf)
|
89
|
+
{
|
90
|
+
|
91
|
+
buf.setbounds(0, 7);
|
92
|
+
buf(0) = 0;
|
93
|
+
buf(1) = 0;
|
94
|
+
buf(2) = 0;
|
95
|
+
buf(3) = 0;
|
96
|
+
buf(4) = 0;
|
97
|
+
buf(5) = nclasses;
|
98
|
+
buf(6) = 0;
|
99
|
+
buf(7) = 0;
|
100
|
+
}
|
101
|
+
|
102
|
+
|
103
|
+
/*************************************************************************
|
104
|
+
See DSErrAllocate for comments on this routine.
|
105
|
+
|
106
|
+
-- ALGLIB --
|
107
|
+
Copyright 11.01.2009 by Bochkanov Sergey
|
108
|
+
*************************************************************************/
|
109
|
+
void dserraccumulate(ap::real_1d_array& buf,
|
110
|
+
const ap::real_1d_array& y,
|
111
|
+
const ap::real_1d_array& desiredy)
|
112
|
+
{
|
113
|
+
int nclasses;
|
114
|
+
int nout;
|
115
|
+
int offs;
|
116
|
+
int mmax;
|
117
|
+
int rmax;
|
118
|
+
int j;
|
119
|
+
double v;
|
120
|
+
double ev;
|
121
|
+
|
122
|
+
offs = 5;
|
123
|
+
nclasses = ap::round(buf(offs));
|
124
|
+
if( nclasses>0 )
|
125
|
+
{
|
126
|
+
|
127
|
+
//
|
128
|
+
// Classification
|
129
|
+
//
|
130
|
+
rmax = ap::round(desiredy(0));
|
131
|
+
mmax = 0;
|
132
|
+
for(j = 1; j <= nclasses-1; j++)
|
133
|
+
{
|
134
|
+
if( y(j)>y(mmax) )
|
135
|
+
{
|
136
|
+
mmax = j;
|
137
|
+
}
|
138
|
+
}
|
139
|
+
if( mmax!=rmax )
|
140
|
+
{
|
141
|
+
buf(0) = buf(0)+1;
|
142
|
+
}
|
143
|
+
if( y(rmax)>0 )
|
144
|
+
{
|
145
|
+
buf(1) = buf(1)-log(y(rmax));
|
146
|
+
}
|
147
|
+
else
|
148
|
+
{
|
149
|
+
buf(1) = buf(1)+log(ap::maxrealnumber);
|
150
|
+
}
|
151
|
+
for(j = 0; j <= nclasses-1; j++)
|
152
|
+
{
|
153
|
+
v = y(j);
|
154
|
+
if( j==rmax )
|
155
|
+
{
|
156
|
+
ev = 1;
|
157
|
+
}
|
158
|
+
else
|
159
|
+
{
|
160
|
+
ev = 0;
|
161
|
+
}
|
162
|
+
buf(2) = buf(2)+ap::sqr(v-ev);
|
163
|
+
buf(3) = buf(3)+fabs(v-ev);
|
164
|
+
if( ev!=0 )
|
165
|
+
{
|
166
|
+
buf(4) = buf(4)+fabs((v-ev)/ev);
|
167
|
+
buf(offs+2) = buf(offs+2)+1;
|
168
|
+
}
|
169
|
+
}
|
170
|
+
buf(offs+1) = buf(offs+1)+1;
|
171
|
+
}
|
172
|
+
else
|
173
|
+
{
|
174
|
+
|
175
|
+
//
|
176
|
+
// Regression
|
177
|
+
//
|
178
|
+
nout = -nclasses;
|
179
|
+
rmax = 0;
|
180
|
+
for(j = 1; j <= nout-1; j++)
|
181
|
+
{
|
182
|
+
if( desiredy(j)>desiredy(rmax) )
|
183
|
+
{
|
184
|
+
rmax = j;
|
185
|
+
}
|
186
|
+
}
|
187
|
+
mmax = 0;
|
188
|
+
for(j = 1; j <= nout-1; j++)
|
189
|
+
{
|
190
|
+
if( y(j)>y(mmax) )
|
191
|
+
{
|
192
|
+
mmax = j;
|
193
|
+
}
|
194
|
+
}
|
195
|
+
if( mmax!=rmax )
|
196
|
+
{
|
197
|
+
buf(0) = buf(0)+1;
|
198
|
+
}
|
199
|
+
for(j = 0; j <= nout-1; j++)
|
200
|
+
{
|
201
|
+
v = y(j);
|
202
|
+
ev = desiredy(j);
|
203
|
+
buf(2) = buf(2)+ap::sqr(v-ev);
|
204
|
+
buf(3) = buf(3)+fabs(v-ev);
|
205
|
+
if( ev!=0 )
|
206
|
+
{
|
207
|
+
buf(4) = buf(4)+fabs((v-ev)/ev);
|
208
|
+
buf(offs+2) = buf(offs+2)+1;
|
209
|
+
}
|
210
|
+
}
|
211
|
+
buf(offs+1) = buf(offs+1)+1;
|
212
|
+
}
|
213
|
+
}
|
214
|
+
|
215
|
+
|
216
|
+
/*************************************************************************
|
217
|
+
See DSErrAllocate for comments on this routine.
|
218
|
+
|
219
|
+
-- ALGLIB --
|
220
|
+
Copyright 11.01.2009 by Bochkanov Sergey
|
221
|
+
*************************************************************************/
|
222
|
+
void dserrfinish(ap::real_1d_array& buf)
|
223
|
+
{
|
224
|
+
int nout;
|
225
|
+
int offs;
|
226
|
+
|
227
|
+
offs = 5;
|
228
|
+
nout = abs(ap::round(buf(offs)));
|
229
|
+
if( buf(offs+1)!=0 )
|
230
|
+
{
|
231
|
+
buf(0) = buf(0)/buf(offs+1);
|
232
|
+
buf(1) = buf(1)/buf(offs+1);
|
233
|
+
buf(2) = sqrt(buf(2)/(nout*buf(offs+1)));
|
234
|
+
buf(3) = buf(3)/(nout*buf(offs+1));
|
235
|
+
}
|
236
|
+
if( buf(offs+2)!=0 )
|
237
|
+
{
|
238
|
+
buf(4) = buf(4)/buf(offs+2);
|
239
|
+
}
|
240
|
+
}
|
241
|
+
|
242
|
+
|
243
|
+
/*************************************************************************
|
244
|
+
|
245
|
+
-- ALGLIB --
|
246
|
+
Copyright 19.05.2008 by Bochkanov Sergey
|
247
|
+
*************************************************************************/
|
248
|
+
void dsnormalize(ap::real_2d_array& xy,
|
249
|
+
int npoints,
|
250
|
+
int nvars,
|
251
|
+
int& info,
|
252
|
+
ap::real_1d_array& means,
|
253
|
+
ap::real_1d_array& sigmas)
|
254
|
+
{
|
255
|
+
int i;
|
256
|
+
int j;
|
257
|
+
ap::real_1d_array tmp;
|
258
|
+
double mean;
|
259
|
+
double variance;
|
260
|
+
double skewness;
|
261
|
+
double kurtosis;
|
262
|
+
|
263
|
+
|
264
|
+
//
|
265
|
+
// Test parameters
|
266
|
+
//
|
267
|
+
if( npoints<=0||nvars<1 )
|
268
|
+
{
|
269
|
+
info = -1;
|
270
|
+
return;
|
271
|
+
}
|
272
|
+
info = 1;
|
273
|
+
|
274
|
+
//
|
275
|
+
// Standartization
|
276
|
+
//
|
277
|
+
means.setbounds(0, nvars-1);
|
278
|
+
sigmas.setbounds(0, nvars-1);
|
279
|
+
tmp.setbounds(0, npoints-1);
|
280
|
+
for(j = 0; j <= nvars-1; j++)
|
281
|
+
{
|
282
|
+
ap::vmove(tmp.getvector(0, npoints-1), xy.getcolumn(j, 0, npoints-1));
|
283
|
+
calculatemoments(tmp, npoints, mean, variance, skewness, kurtosis);
|
284
|
+
means(j) = mean;
|
285
|
+
sigmas(j) = sqrt(variance);
|
286
|
+
if( sigmas(j)==0 )
|
287
|
+
{
|
288
|
+
sigmas(j) = 1;
|
289
|
+
}
|
290
|
+
for(i = 0; i <= npoints-1; i++)
|
291
|
+
{
|
292
|
+
xy(i,j) = (xy(i,j)-means(j))/sigmas(j);
|
293
|
+
}
|
294
|
+
}
|
295
|
+
}
|
296
|
+
|
297
|
+
|
298
|
+
/*************************************************************************
|
299
|
+
|
300
|
+
-- ALGLIB --
|
301
|
+
Copyright 19.05.2008 by Bochkanov Sergey
|
302
|
+
*************************************************************************/
|
303
|
+
void dsnormalizec(const ap::real_2d_array& xy,
|
304
|
+
int npoints,
|
305
|
+
int nvars,
|
306
|
+
int& info,
|
307
|
+
ap::real_1d_array& means,
|
308
|
+
ap::real_1d_array& sigmas)
|
309
|
+
{
|
310
|
+
int i;
|
311
|
+
int j;
|
312
|
+
ap::real_1d_array tmp;
|
313
|
+
double mean;
|
314
|
+
double variance;
|
315
|
+
double skewness;
|
316
|
+
double kurtosis;
|
317
|
+
|
318
|
+
|
319
|
+
//
|
320
|
+
// Test parameters
|
321
|
+
//
|
322
|
+
if( npoints<=0||nvars<1 )
|
323
|
+
{
|
324
|
+
info = -1;
|
325
|
+
return;
|
326
|
+
}
|
327
|
+
info = 1;
|
328
|
+
|
329
|
+
//
|
330
|
+
// Standartization
|
331
|
+
//
|
332
|
+
means.setbounds(0, nvars-1);
|
333
|
+
sigmas.setbounds(0, nvars-1);
|
334
|
+
tmp.setbounds(0, npoints-1);
|
335
|
+
for(j = 0; j <= nvars-1; j++)
|
336
|
+
{
|
337
|
+
ap::vmove(tmp.getvector(0, npoints-1), xy.getcolumn(j, 0, npoints-1));
|
338
|
+
calculatemoments(tmp, npoints, mean, variance, skewness, kurtosis);
|
339
|
+
means(j) = mean;
|
340
|
+
sigmas(j) = sqrt(variance);
|
341
|
+
if( sigmas(j)==0 )
|
342
|
+
{
|
343
|
+
sigmas(j) = 1;
|
344
|
+
}
|
345
|
+
}
|
346
|
+
}
|
347
|
+
|
348
|
+
|
349
|
+
/*************************************************************************
|
350
|
+
|
351
|
+
-- ALGLIB --
|
352
|
+
Copyright 19.05.2008 by Bochkanov Sergey
|
353
|
+
*************************************************************************/
|
354
|
+
double dsgetmeanmindistance(const ap::real_2d_array& xy,
|
355
|
+
int npoints,
|
356
|
+
int nvars)
|
357
|
+
{
|
358
|
+
double result;
|
359
|
+
int i;
|
360
|
+
int j;
|
361
|
+
ap::real_1d_array tmp;
|
362
|
+
ap::real_1d_array tmp2;
|
363
|
+
double v;
|
364
|
+
|
365
|
+
|
366
|
+
//
|
367
|
+
// Test parameters
|
368
|
+
//
|
369
|
+
if( npoints<=0||nvars<1 )
|
370
|
+
{
|
371
|
+
result = 0;
|
372
|
+
return result;
|
373
|
+
}
|
374
|
+
|
375
|
+
//
|
376
|
+
// Process
|
377
|
+
//
|
378
|
+
tmp.setbounds(0, npoints-1);
|
379
|
+
for(i = 0; i <= npoints-1; i++)
|
380
|
+
{
|
381
|
+
tmp(i) = ap::maxrealnumber;
|
382
|
+
}
|
383
|
+
tmp2.setbounds(0, nvars-1);
|
384
|
+
for(i = 0; i <= npoints-1; i++)
|
385
|
+
{
|
386
|
+
for(j = i+1; j <= npoints-1; j++)
|
387
|
+
{
|
388
|
+
ap::vmove(&tmp2(0), &xy(i, 0), ap::vlen(0,nvars-1));
|
389
|
+
ap::vsub(&tmp2(0), &xy(j, 0), ap::vlen(0,nvars-1));
|
390
|
+
v = ap::vdotproduct(&tmp2(0), &tmp2(0), ap::vlen(0,nvars-1));
|
391
|
+
v = sqrt(v);
|
392
|
+
tmp(i) = ap::minreal(tmp(i), v);
|
393
|
+
tmp(j) = ap::minreal(tmp(j), v);
|
394
|
+
}
|
395
|
+
}
|
396
|
+
result = 0;
|
397
|
+
for(i = 0; i <= npoints-1; i++)
|
398
|
+
{
|
399
|
+
result = result+tmp(i)/npoints;
|
400
|
+
}
|
401
|
+
return result;
|
402
|
+
}
|
403
|
+
|
404
|
+
|
405
|
+
/*************************************************************************
|
406
|
+
|
407
|
+
-- ALGLIB --
|
408
|
+
Copyright 19.05.2008 by Bochkanov Sergey
|
409
|
+
*************************************************************************/
|
410
|
+
void dstie(ap::real_1d_array& a,
|
411
|
+
int n,
|
412
|
+
ap::integer_1d_array& ties,
|
413
|
+
int& tiecount,
|
414
|
+
ap::integer_1d_array& p1,
|
415
|
+
ap::integer_1d_array& p2)
|
416
|
+
{
|
417
|
+
int i;
|
418
|
+
int k;
|
419
|
+
ap::integer_1d_array tmp;
|
420
|
+
|
421
|
+
|
422
|
+
//
|
423
|
+
// Special case
|
424
|
+
//
|
425
|
+
if( n<=0 )
|
426
|
+
{
|
427
|
+
tiecount = 0;
|
428
|
+
return;
|
429
|
+
}
|
430
|
+
|
431
|
+
//
|
432
|
+
// Sort A
|
433
|
+
//
|
434
|
+
tagsort(a, n, p1, p2);
|
435
|
+
|
436
|
+
//
|
437
|
+
// Process ties
|
438
|
+
//
|
439
|
+
tiecount = 1;
|
440
|
+
for(i = 1; i <= n-1; i++)
|
441
|
+
{
|
442
|
+
if( a(i)!=a(i-1) )
|
443
|
+
{
|
444
|
+
tiecount = tiecount+1;
|
445
|
+
}
|
446
|
+
}
|
447
|
+
ties.setbounds(0, tiecount);
|
448
|
+
ties(0) = 0;
|
449
|
+
k = 1;
|
450
|
+
for(i = 1; i <= n-1; i++)
|
451
|
+
{
|
452
|
+
if( a(i)!=a(i-1) )
|
453
|
+
{
|
454
|
+
ties(k) = i;
|
455
|
+
k = k+1;
|
456
|
+
}
|
457
|
+
}
|
458
|
+
ties(tiecount) = n;
|
459
|
+
}
|
460
|
+
|
461
|
+
|
462
|
+
/*************************************************************************
|
463
|
+
|
464
|
+
-- ALGLIB --
|
465
|
+
Copyright 11.12.2008 by Bochkanov Sergey
|
466
|
+
*************************************************************************/
|
467
|
+
void dstiefasti(ap::real_1d_array& a,
|
468
|
+
ap::integer_1d_array& b,
|
469
|
+
int n,
|
470
|
+
ap::integer_1d_array& ties,
|
471
|
+
int& tiecount)
|
472
|
+
{
|
473
|
+
int i;
|
474
|
+
int k;
|
475
|
+
ap::integer_1d_array tmp;
|
476
|
+
|
477
|
+
|
478
|
+
//
|
479
|
+
// Special case
|
480
|
+
//
|
481
|
+
if( n<=0 )
|
482
|
+
{
|
483
|
+
tiecount = 0;
|
484
|
+
return;
|
485
|
+
}
|
486
|
+
|
487
|
+
//
|
488
|
+
// Sort A
|
489
|
+
//
|
490
|
+
tagsortfasti(a, b, n);
|
491
|
+
|
492
|
+
//
|
493
|
+
// Process ties
|
494
|
+
//
|
495
|
+
ties(0) = 0;
|
496
|
+
k = 1;
|
497
|
+
for(i = 1; i <= n-1; i++)
|
498
|
+
{
|
499
|
+
if( a(i)!=a(i-1) )
|
500
|
+
{
|
501
|
+
ties(k) = i;
|
502
|
+
k = k+1;
|
503
|
+
}
|
504
|
+
}
|
505
|
+
ties(k) = n;
|
506
|
+
tiecount = k;
|
507
|
+
}
|
508
|
+
|
509
|
+
|
510
|
+
/*************************************************************************
|
511
|
+
Optimal partition, internal subroutine.
|
512
|
+
|
513
|
+
-- ALGLIB --
|
514
|
+
Copyright 22.05.2008 by Bochkanov Sergey
|
515
|
+
*************************************************************************/
|
516
|
+
void dsoptimalsplit2(ap::real_1d_array a,
|
517
|
+
ap::integer_1d_array c,
|
518
|
+
int n,
|
519
|
+
int& info,
|
520
|
+
double& threshold,
|
521
|
+
double& pal,
|
522
|
+
double& pbl,
|
523
|
+
double& par,
|
524
|
+
double& pbr,
|
525
|
+
double& cve)
|
526
|
+
{
|
527
|
+
int i;
|
528
|
+
int t;
|
529
|
+
double s;
|
530
|
+
double pea;
|
531
|
+
double peb;
|
532
|
+
ap::integer_1d_array ties;
|
533
|
+
int tiecount;
|
534
|
+
ap::integer_1d_array p1;
|
535
|
+
ap::integer_1d_array p2;
|
536
|
+
double v1;
|
537
|
+
double v2;
|
538
|
+
int k;
|
539
|
+
int koptimal;
|
540
|
+
double pak;
|
541
|
+
double pbk;
|
542
|
+
double cvoptimal;
|
543
|
+
double cv;
|
544
|
+
|
545
|
+
|
546
|
+
//
|
547
|
+
// Test for errors in inputs
|
548
|
+
//
|
549
|
+
if( n<=0 )
|
550
|
+
{
|
551
|
+
info = -1;
|
552
|
+
return;
|
553
|
+
}
|
554
|
+
for(i = 0; i <= n-1; i++)
|
555
|
+
{
|
556
|
+
if( c(i)!=0&&c(i)!=1 )
|
557
|
+
{
|
558
|
+
info = -2;
|
559
|
+
return;
|
560
|
+
}
|
561
|
+
}
|
562
|
+
info = 1;
|
563
|
+
|
564
|
+
//
|
565
|
+
// Tie
|
566
|
+
//
|
567
|
+
dstie(a, n, ties, tiecount, p1, p2);
|
568
|
+
for(i = 0; i <= n-1; i++)
|
569
|
+
{
|
570
|
+
if( p2(i)!=i )
|
571
|
+
{
|
572
|
+
t = c(i);
|
573
|
+
c(i) = c(p2(i));
|
574
|
+
c(p2(i)) = t;
|
575
|
+
}
|
576
|
+
}
|
577
|
+
|
578
|
+
//
|
579
|
+
// Special case: number of ties is 1.
|
580
|
+
//
|
581
|
+
// NOTE: we assume that P[i,j] equals to 0 or 1,
|
582
|
+
// intermediate values are not allowed.
|
583
|
+
//
|
584
|
+
if( tiecount==1 )
|
585
|
+
{
|
586
|
+
info = -3;
|
587
|
+
return;
|
588
|
+
}
|
589
|
+
|
590
|
+
//
|
591
|
+
// General case, number of ties > 1
|
592
|
+
//
|
593
|
+
// NOTE: we assume that P[i,j] equals to 0 or 1,
|
594
|
+
// intermediate values are not allowed.
|
595
|
+
//
|
596
|
+
pal = 0;
|
597
|
+
pbl = 0;
|
598
|
+
par = 0;
|
599
|
+
pbr = 0;
|
600
|
+
for(i = 0; i <= n-1; i++)
|
601
|
+
{
|
602
|
+
if( c(i)==0 )
|
603
|
+
{
|
604
|
+
par = par+1;
|
605
|
+
}
|
606
|
+
if( c(i)==1 )
|
607
|
+
{
|
608
|
+
pbr = pbr+1;
|
609
|
+
}
|
610
|
+
}
|
611
|
+
koptimal = -1;
|
612
|
+
cvoptimal = ap::maxrealnumber;
|
613
|
+
for(k = 0; k <= tiecount-2; k++)
|
614
|
+
{
|
615
|
+
|
616
|
+
//
|
617
|
+
// first, obtain information about K-th tie which is
|
618
|
+
// moved from R-part to L-part
|
619
|
+
//
|
620
|
+
pak = 0;
|
621
|
+
pbk = 0;
|
622
|
+
for(i = ties(k); i <= ties(k+1)-1; i++)
|
623
|
+
{
|
624
|
+
if( c(i)==0 )
|
625
|
+
{
|
626
|
+
pak = pak+1;
|
627
|
+
}
|
628
|
+
if( c(i)==1 )
|
629
|
+
{
|
630
|
+
pbk = pbk+1;
|
631
|
+
}
|
632
|
+
}
|
633
|
+
|
634
|
+
//
|
635
|
+
// Calculate cross-validation CE
|
636
|
+
//
|
637
|
+
cv = 0;
|
638
|
+
cv = cv-xlny(pal+pak, (pal+pak)/(pal+pak+pbl+pbk+1));
|
639
|
+
cv = cv-xlny(pbl+pbk, (pbl+pbk)/(pal+pak+1+pbl+pbk));
|
640
|
+
cv = cv-xlny(par-pak, (par-pak)/(par-pak+pbr-pbk+1));
|
641
|
+
cv = cv-xlny(pbr-pbk, (pbr-pbk)/(par-pak+1+pbr-pbk));
|
642
|
+
|
643
|
+
//
|
644
|
+
// Compare with best
|
645
|
+
//
|
646
|
+
if( cv<cvoptimal )
|
647
|
+
{
|
648
|
+
cvoptimal = cv;
|
649
|
+
koptimal = k;
|
650
|
+
}
|
651
|
+
|
652
|
+
//
|
653
|
+
// update
|
654
|
+
//
|
655
|
+
pal = pal+pak;
|
656
|
+
pbl = pbl+pbk;
|
657
|
+
par = par-pak;
|
658
|
+
pbr = pbr-pbk;
|
659
|
+
}
|
660
|
+
cve = cvoptimal;
|
661
|
+
threshold = 0.5*(a(ties(koptimal))+a(ties(koptimal+1)));
|
662
|
+
pal = 0;
|
663
|
+
pbl = 0;
|
664
|
+
par = 0;
|
665
|
+
pbr = 0;
|
666
|
+
for(i = 0; i <= n-1; i++)
|
667
|
+
{
|
668
|
+
if( a(i)<threshold )
|
669
|
+
{
|
670
|
+
if( c(i)==0 )
|
671
|
+
{
|
672
|
+
pal = pal+1;
|
673
|
+
}
|
674
|
+
else
|
675
|
+
{
|
676
|
+
pbl = pbl+1;
|
677
|
+
}
|
678
|
+
}
|
679
|
+
else
|
680
|
+
{
|
681
|
+
if( c(i)==0 )
|
682
|
+
{
|
683
|
+
par = par+1;
|
684
|
+
}
|
685
|
+
else
|
686
|
+
{
|
687
|
+
pbr = pbr+1;
|
688
|
+
}
|
689
|
+
}
|
690
|
+
}
|
691
|
+
s = pal+pbl;
|
692
|
+
pal = pal/s;
|
693
|
+
pbl = pbl/s;
|
694
|
+
s = par+pbr;
|
695
|
+
par = par/s;
|
696
|
+
pbr = pbr/s;
|
697
|
+
}
|
698
|
+
|
699
|
+
|
700
|
+
/*************************************************************************
|
701
|
+
Optimal partition, internal subroutine. Fast version.
|
702
|
+
|
703
|
+
Accepts:
|
704
|
+
A array[0..N-1] array of attributes array[0..N-1]
|
705
|
+
C array[0..N-1] array of class labels
|
706
|
+
TiesBuf array[0..N] temporaries (ties)
|
707
|
+
CntBuf array[0..2*NC-1] temporaries (counts)
|
708
|
+
Alpha centering factor (0<=alpha<=1, recommended value - 0.05)
|
709
|
+
|
710
|
+
Output:
|
711
|
+
Info error code (">0"=OK, "<0"=bad)
|
712
|
+
RMS training set RMS error
|
713
|
+
CVRMS leave-one-out RMS error
|
714
|
+
|
715
|
+
Note:
|
716
|
+
content of all arrays is changed by subroutine
|
717
|
+
|
718
|
+
-- ALGLIB --
|
719
|
+
Copyright 11.12.2008 by Bochkanov Sergey
|
720
|
+
*************************************************************************/
|
721
|
+
void dsoptimalsplit2fast(ap::real_1d_array& a,
|
722
|
+
ap::integer_1d_array& c,
|
723
|
+
ap::integer_1d_array& tiesbuf,
|
724
|
+
ap::integer_1d_array& cntbuf,
|
725
|
+
int n,
|
726
|
+
int nc,
|
727
|
+
double alpha,
|
728
|
+
int& info,
|
729
|
+
double& threshold,
|
730
|
+
double& rms,
|
731
|
+
double& cvrms)
|
732
|
+
{
|
733
|
+
int i;
|
734
|
+
int k;
|
735
|
+
int cl;
|
736
|
+
int tiecount;
|
737
|
+
double cbest;
|
738
|
+
double cc;
|
739
|
+
int koptimal;
|
740
|
+
int sl;
|
741
|
+
int sr;
|
742
|
+
double v;
|
743
|
+
double w;
|
744
|
+
double x;
|
745
|
+
|
746
|
+
|
747
|
+
//
|
748
|
+
// Test for errors in inputs
|
749
|
+
//
|
750
|
+
if( n<=0||nc<2 )
|
751
|
+
{
|
752
|
+
info = -1;
|
753
|
+
return;
|
754
|
+
}
|
755
|
+
for(i = 0; i <= n-1; i++)
|
756
|
+
{
|
757
|
+
if( c(i)<0||c(i)>=nc )
|
758
|
+
{
|
759
|
+
info = -2;
|
760
|
+
return;
|
761
|
+
}
|
762
|
+
}
|
763
|
+
info = 1;
|
764
|
+
|
765
|
+
//
|
766
|
+
// Tie
|
767
|
+
//
|
768
|
+
dstiefasti(a, c, n, tiesbuf, tiecount);
|
769
|
+
|
770
|
+
//
|
771
|
+
// Special case: number of ties is 1.
|
772
|
+
//
|
773
|
+
if( tiecount==1 )
|
774
|
+
{
|
775
|
+
info = -3;
|
776
|
+
return;
|
777
|
+
}
|
778
|
+
|
779
|
+
//
|
780
|
+
// General case, number of ties > 1
|
781
|
+
//
|
782
|
+
for(i = 0; i <= 2*nc-1; i++)
|
783
|
+
{
|
784
|
+
cntbuf(i) = 0;
|
785
|
+
}
|
786
|
+
for(i = 0; i <= n-1; i++)
|
787
|
+
{
|
788
|
+
cntbuf(nc+c(i)) = cntbuf(nc+c(i))+1;
|
789
|
+
}
|
790
|
+
koptimal = -1;
|
791
|
+
threshold = a(n-1);
|
792
|
+
cbest = ap::maxrealnumber;
|
793
|
+
sl = 0;
|
794
|
+
sr = n;
|
795
|
+
for(k = 0; k <= tiecount-2; k++)
|
796
|
+
{
|
797
|
+
|
798
|
+
//
|
799
|
+
// first, move Kth tie from right to left
|
800
|
+
//
|
801
|
+
for(i = tiesbuf(k); i <= tiesbuf(k+1)-1; i++)
|
802
|
+
{
|
803
|
+
cl = c(i);
|
804
|
+
cntbuf(cl) = cntbuf(cl)+1;
|
805
|
+
cntbuf(nc+cl) = cntbuf(nc+cl)-1;
|
806
|
+
}
|
807
|
+
sl = sl+(tiesbuf(k+1)-tiesbuf(k));
|
808
|
+
sr = sr-(tiesbuf(k+1)-tiesbuf(k));
|
809
|
+
|
810
|
+
//
|
811
|
+
// Calculate RMS error
|
812
|
+
//
|
813
|
+
v = 0;
|
814
|
+
for(i = 0; i <= nc-1; i++)
|
815
|
+
{
|
816
|
+
w = cntbuf(i);
|
817
|
+
v = v+w*ap::sqr(w/sl-1);
|
818
|
+
v = v+(sl-w)*ap::sqr(w/sl);
|
819
|
+
w = cntbuf(nc+i);
|
820
|
+
v = v+w*ap::sqr(w/sr-1);
|
821
|
+
v = v+(sr-w)*ap::sqr(w/sr);
|
822
|
+
}
|
823
|
+
v = sqrt(v/(nc*n));
|
824
|
+
|
825
|
+
//
|
826
|
+
// Compare with best
|
827
|
+
//
|
828
|
+
x = double(2*sl)/double(sl+sr)-1;
|
829
|
+
cc = v*(1-alpha+alpha*ap::sqr(x));
|
830
|
+
if( cc<cbest )
|
831
|
+
{
|
832
|
+
|
833
|
+
//
|
834
|
+
// store split
|
835
|
+
//
|
836
|
+
rms = v;
|
837
|
+
koptimal = k;
|
838
|
+
cbest = cc;
|
839
|
+
|
840
|
+
//
|
841
|
+
// calculate CVRMS error
|
842
|
+
//
|
843
|
+
cvrms = 0;
|
844
|
+
for(i = 0; i <= nc-1; i++)
|
845
|
+
{
|
846
|
+
if( sl>1 )
|
847
|
+
{
|
848
|
+
w = cntbuf(i);
|
849
|
+
cvrms = cvrms+w*ap::sqr((w-1)/(sl-1)-1);
|
850
|
+
cvrms = cvrms+(sl-w)*ap::sqr(w/(sl-1));
|
851
|
+
}
|
852
|
+
else
|
853
|
+
{
|
854
|
+
w = cntbuf(i);
|
855
|
+
cvrms = cvrms+w*ap::sqr(double(1)/double(nc)-1);
|
856
|
+
cvrms = cvrms+(sl-w)*ap::sqr(double(1)/double(nc));
|
857
|
+
}
|
858
|
+
if( sr>1 )
|
859
|
+
{
|
860
|
+
w = cntbuf(nc+i);
|
861
|
+
cvrms = cvrms+w*ap::sqr((w-1)/(sr-1)-1);
|
862
|
+
cvrms = cvrms+(sr-w)*ap::sqr(w/(sr-1));
|
863
|
+
}
|
864
|
+
else
|
865
|
+
{
|
866
|
+
w = cntbuf(nc+i);
|
867
|
+
cvrms = cvrms+w*ap::sqr(double(1)/double(nc)-1);
|
868
|
+
cvrms = cvrms+(sr-w)*ap::sqr(double(1)/double(nc));
|
869
|
+
}
|
870
|
+
}
|
871
|
+
cvrms = sqrt(cvrms/(nc*n));
|
872
|
+
}
|
873
|
+
}
|
874
|
+
|
875
|
+
//
|
876
|
+
// Calculate threshold.
|
877
|
+
// Code is a bit complicated because there can be such
|
878
|
+
// numbers that 0.5(A+B) equals to A or B (if A-B=epsilon)
|
879
|
+
//
|
880
|
+
threshold = 0.5*(a(tiesbuf(koptimal))+a(tiesbuf(koptimal+1)));
|
881
|
+
if( threshold<=a(tiesbuf(koptimal)) )
|
882
|
+
{
|
883
|
+
threshold = a(tiesbuf(koptimal+1));
|
884
|
+
}
|
885
|
+
}
|
886
|
+
|
887
|
+
|
888
|
+
/*************************************************************************
|
889
|
+
Automatic non-optimal discretization, internal subroutine.
|
890
|
+
|
891
|
+
-- ALGLIB --
|
892
|
+
Copyright 22.05.2008 by Bochkanov Sergey
|
893
|
+
*************************************************************************/
|
894
|
+
void dssplitk(ap::real_1d_array a,
|
895
|
+
ap::integer_1d_array c,
|
896
|
+
int n,
|
897
|
+
int nc,
|
898
|
+
int kmax,
|
899
|
+
int& info,
|
900
|
+
ap::real_1d_array& thresholds,
|
901
|
+
int& ni,
|
902
|
+
double& cve)
|
903
|
+
{
|
904
|
+
int i;
|
905
|
+
int j;
|
906
|
+
int j1;
|
907
|
+
int k;
|
908
|
+
ap::integer_1d_array ties;
|
909
|
+
int tiecount;
|
910
|
+
ap::integer_1d_array p1;
|
911
|
+
ap::integer_1d_array p2;
|
912
|
+
ap::integer_1d_array cnt;
|
913
|
+
double v2;
|
914
|
+
int bestk;
|
915
|
+
double bestcve;
|
916
|
+
ap::integer_1d_array bestsizes;
|
917
|
+
double curcve;
|
918
|
+
ap::integer_1d_array cursizes;
|
919
|
+
|
920
|
+
|
921
|
+
//
|
922
|
+
// Test for errors in inputs
|
923
|
+
//
|
924
|
+
if( n<=0||nc<2||kmax<2 )
|
925
|
+
{
|
926
|
+
info = -1;
|
927
|
+
return;
|
928
|
+
}
|
929
|
+
for(i = 0; i <= n-1; i++)
|
930
|
+
{
|
931
|
+
if( c(i)<0||c(i)>=nc )
|
932
|
+
{
|
933
|
+
info = -2;
|
934
|
+
return;
|
935
|
+
}
|
936
|
+
}
|
937
|
+
info = 1;
|
938
|
+
|
939
|
+
//
|
940
|
+
// Tie
|
941
|
+
//
|
942
|
+
dstie(a, n, ties, tiecount, p1, p2);
|
943
|
+
for(i = 0; i <= n-1; i++)
|
944
|
+
{
|
945
|
+
if( p2(i)!=i )
|
946
|
+
{
|
947
|
+
k = c(i);
|
948
|
+
c(i) = c(p2(i));
|
949
|
+
c(p2(i)) = k;
|
950
|
+
}
|
951
|
+
}
|
952
|
+
|
953
|
+
//
|
954
|
+
// Special cases
|
955
|
+
//
|
956
|
+
if( tiecount==1 )
|
957
|
+
{
|
958
|
+
info = -3;
|
959
|
+
return;
|
960
|
+
}
|
961
|
+
|
962
|
+
//
|
963
|
+
// General case:
|
964
|
+
// 0. allocate arrays
|
965
|
+
//
|
966
|
+
kmax = ap::minint(kmax, tiecount);
|
967
|
+
bestsizes.setbounds(0, kmax-1);
|
968
|
+
cursizes.setbounds(0, kmax-1);
|
969
|
+
cnt.setbounds(0, nc-1);
|
970
|
+
|
971
|
+
//
|
972
|
+
// General case:
|
973
|
+
// 1. prepare "weak" solution (two subintervals, divided at median)
|
974
|
+
//
|
975
|
+
v2 = ap::maxrealnumber;
|
976
|
+
j = -1;
|
977
|
+
for(i = 1; i <= tiecount-1; i++)
|
978
|
+
{
|
979
|
+
if( fabs(ties(i)-0.5*(n-1))<v2 )
|
980
|
+
{
|
981
|
+
v2 = fabs(ties(i)-0.5*n);
|
982
|
+
j = i;
|
983
|
+
}
|
984
|
+
}
|
985
|
+
ap::ap_error::make_assertion(j>0, "DSSplitK: internal error #1!");
|
986
|
+
bestk = 2;
|
987
|
+
bestsizes(0) = ties(j);
|
988
|
+
bestsizes(1) = n-j;
|
989
|
+
bestcve = 0;
|
990
|
+
for(i = 0; i <= nc-1; i++)
|
991
|
+
{
|
992
|
+
cnt(i) = 0;
|
993
|
+
}
|
994
|
+
for(i = 0; i <= j-1; i++)
|
995
|
+
{
|
996
|
+
tieaddc(c, ties, i, nc, cnt);
|
997
|
+
}
|
998
|
+
bestcve = bestcve+getcv(cnt, nc);
|
999
|
+
for(i = 0; i <= nc-1; i++)
|
1000
|
+
{
|
1001
|
+
cnt(i) = 0;
|
1002
|
+
}
|
1003
|
+
for(i = j; i <= tiecount-1; i++)
|
1004
|
+
{
|
1005
|
+
tieaddc(c, ties, i, nc, cnt);
|
1006
|
+
}
|
1007
|
+
bestcve = bestcve+getcv(cnt, nc);
|
1008
|
+
|
1009
|
+
//
|
1010
|
+
// General case:
|
1011
|
+
// 2. Use greedy algorithm to find sub-optimal split in O(KMax*N) time
|
1012
|
+
//
|
1013
|
+
for(k = 2; k <= kmax; k++)
|
1014
|
+
{
|
1015
|
+
|
1016
|
+
//
|
1017
|
+
// Prepare greedy K-interval split
|
1018
|
+
//
|
1019
|
+
for(i = 0; i <= k-1; i++)
|
1020
|
+
{
|
1021
|
+
cursizes(i) = 0;
|
1022
|
+
}
|
1023
|
+
i = 0;
|
1024
|
+
j = 0;
|
1025
|
+
while(j<=tiecount-1&&i<=k-1)
|
1026
|
+
{
|
1027
|
+
|
1028
|
+
//
|
1029
|
+
// Rule: I-th bin is empty, fill it
|
1030
|
+
//
|
1031
|
+
if( cursizes(i)==0 )
|
1032
|
+
{
|
1033
|
+
cursizes(i) = ties(j+1)-ties(j);
|
1034
|
+
j = j+1;
|
1035
|
+
continue;
|
1036
|
+
}
|
1037
|
+
|
1038
|
+
//
|
1039
|
+
// Rule: (K-1-I) bins left, (K-1-I) ties left (1 tie per bin); next bin
|
1040
|
+
//
|
1041
|
+
if( tiecount-j==k-1-i )
|
1042
|
+
{
|
1043
|
+
i = i+1;
|
1044
|
+
continue;
|
1045
|
+
}
|
1046
|
+
|
1047
|
+
//
|
1048
|
+
// Rule: last bin, always place in current
|
1049
|
+
//
|
1050
|
+
if( i==k-1 )
|
1051
|
+
{
|
1052
|
+
cursizes(i) = cursizes(i)+ties(j+1)-ties(j);
|
1053
|
+
j = j+1;
|
1054
|
+
continue;
|
1055
|
+
}
|
1056
|
+
|
1057
|
+
//
|
1058
|
+
// Place J-th tie in I-th bin, or leave for I+1-th bin.
|
1059
|
+
//
|
1060
|
+
if( fabs(cursizes(i)+ties(j+1)-ties(j)-double(n)/double(k))<fabs(cursizes(i)-double(n)/double(k)) )
|
1061
|
+
{
|
1062
|
+
cursizes(i) = cursizes(i)+ties(j+1)-ties(j);
|
1063
|
+
j = j+1;
|
1064
|
+
}
|
1065
|
+
else
|
1066
|
+
{
|
1067
|
+
i = i+1;
|
1068
|
+
}
|
1069
|
+
}
|
1070
|
+
ap::ap_error::make_assertion(cursizes(k-1)!=0&&j==tiecount, "DSSplitK: internal error #1");
|
1071
|
+
|
1072
|
+
//
|
1073
|
+
// Calculate CVE
|
1074
|
+
//
|
1075
|
+
curcve = 0;
|
1076
|
+
j = 0;
|
1077
|
+
for(i = 0; i <= k-1; i++)
|
1078
|
+
{
|
1079
|
+
for(j1 = 0; j1 <= nc-1; j1++)
|
1080
|
+
{
|
1081
|
+
cnt(j1) = 0;
|
1082
|
+
}
|
1083
|
+
for(j1 = j; j1 <= j+cursizes(i)-1; j1++)
|
1084
|
+
{
|
1085
|
+
cnt(c(j1)) = cnt(c(j1))+1;
|
1086
|
+
}
|
1087
|
+
curcve = curcve+getcv(cnt, nc);
|
1088
|
+
j = j+cursizes(i);
|
1089
|
+
}
|
1090
|
+
|
1091
|
+
//
|
1092
|
+
// Choose best variant
|
1093
|
+
//
|
1094
|
+
if( curcve<bestcve )
|
1095
|
+
{
|
1096
|
+
for(i = 0; i <= k-1; i++)
|
1097
|
+
{
|
1098
|
+
bestsizes(i) = cursizes(i);
|
1099
|
+
}
|
1100
|
+
bestcve = curcve;
|
1101
|
+
bestk = k;
|
1102
|
+
}
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
//
|
1106
|
+
// Transform from sizes to thresholds
|
1107
|
+
//
|
1108
|
+
cve = bestcve;
|
1109
|
+
ni = bestk;
|
1110
|
+
thresholds.setbounds(0, ni-2);
|
1111
|
+
j = bestsizes(0);
|
1112
|
+
for(i = 1; i <= bestk-1; i++)
|
1113
|
+
{
|
1114
|
+
thresholds(i-1) = 0.5*(a(j-1)+a(j));
|
1115
|
+
j = j+bestsizes(i);
|
1116
|
+
}
|
1117
|
+
}
|
1118
|
+
|
1119
|
+
|
1120
|
+
/*************************************************************************
|
1121
|
+
Automatic optimal discretization, internal subroutine.
|
1122
|
+
|
1123
|
+
-- ALGLIB --
|
1124
|
+
Copyright 22.05.2008 by Bochkanov Sergey
|
1125
|
+
*************************************************************************/
|
1126
|
+
void dsoptimalsplitk(ap::real_1d_array a,
|
1127
|
+
ap::integer_1d_array c,
|
1128
|
+
int n,
|
1129
|
+
int nc,
|
1130
|
+
int kmax,
|
1131
|
+
int& info,
|
1132
|
+
ap::real_1d_array& thresholds,
|
1133
|
+
int& ni,
|
1134
|
+
double& cve)
|
1135
|
+
{
|
1136
|
+
int i;
|
1137
|
+
int j;
|
1138
|
+
int s;
|
1139
|
+
int jl;
|
1140
|
+
int jr;
|
1141
|
+
double v1;
|
1142
|
+
double v2;
|
1143
|
+
double v3;
|
1144
|
+
double v4;
|
1145
|
+
ap::integer_1d_array ties;
|
1146
|
+
int tiecount;
|
1147
|
+
ap::integer_1d_array p1;
|
1148
|
+
ap::integer_1d_array p2;
|
1149
|
+
double cvtemp;
|
1150
|
+
ap::integer_1d_array cnt;
|
1151
|
+
ap::integer_1d_array cnt2;
|
1152
|
+
ap::real_2d_array cv;
|
1153
|
+
ap::integer_2d_array splits;
|
1154
|
+
int k;
|
1155
|
+
int koptimal;
|
1156
|
+
double cvoptimal;
|
1157
|
+
|
1158
|
+
|
1159
|
+
//
|
1160
|
+
// Test for errors in inputs
|
1161
|
+
//
|
1162
|
+
if( n<=0||nc<2||kmax<2 )
|
1163
|
+
{
|
1164
|
+
info = -1;
|
1165
|
+
return;
|
1166
|
+
}
|
1167
|
+
for(i = 0; i <= n-1; i++)
|
1168
|
+
{
|
1169
|
+
if( c(i)<0||c(i)>=nc )
|
1170
|
+
{
|
1171
|
+
info = -2;
|
1172
|
+
return;
|
1173
|
+
}
|
1174
|
+
}
|
1175
|
+
info = 1;
|
1176
|
+
|
1177
|
+
//
|
1178
|
+
// Tie
|
1179
|
+
//
|
1180
|
+
dstie(a, n, ties, tiecount, p1, p2);
|
1181
|
+
for(i = 0; i <= n-1; i++)
|
1182
|
+
{
|
1183
|
+
if( p2(i)!=i )
|
1184
|
+
{
|
1185
|
+
k = c(i);
|
1186
|
+
c(i) = c(p2(i));
|
1187
|
+
c(p2(i)) = k;
|
1188
|
+
}
|
1189
|
+
}
|
1190
|
+
|
1191
|
+
//
|
1192
|
+
// Special cases
|
1193
|
+
//
|
1194
|
+
if( tiecount==1 )
|
1195
|
+
{
|
1196
|
+
info = -3;
|
1197
|
+
return;
|
1198
|
+
}
|
1199
|
+
|
1200
|
+
//
|
1201
|
+
// General case
|
1202
|
+
// Use dynamic programming to find best split in O(KMax*NC*TieCount^2) time
|
1203
|
+
//
|
1204
|
+
kmax = ap::minint(kmax, tiecount);
|
1205
|
+
cv.setbounds(0, kmax-1, 0, tiecount-1);
|
1206
|
+
splits.setbounds(0, kmax-1, 0, tiecount-1);
|
1207
|
+
cnt.setbounds(0, nc-1);
|
1208
|
+
cnt2.setbounds(0, nc-1);
|
1209
|
+
for(j = 0; j <= nc-1; j++)
|
1210
|
+
{
|
1211
|
+
cnt(j) = 0;
|
1212
|
+
}
|
1213
|
+
for(j = 0; j <= tiecount-1; j++)
|
1214
|
+
{
|
1215
|
+
tieaddc(c, ties, j, nc, cnt);
|
1216
|
+
splits(0,j) = 0;
|
1217
|
+
cv(0,j) = getcv(cnt, nc);
|
1218
|
+
}
|
1219
|
+
for(k = 1; k <= kmax-1; k++)
|
1220
|
+
{
|
1221
|
+
for(j = 0; j <= nc-1; j++)
|
1222
|
+
{
|
1223
|
+
cnt(j) = 0;
|
1224
|
+
}
|
1225
|
+
|
1226
|
+
//
|
1227
|
+
// Subtask size J in [K..TieCount-1]:
|
1228
|
+
// optimal K-splitting on ties from 0-th to J-th.
|
1229
|
+
//
|
1230
|
+
for(j = k; j <= tiecount-1; j++)
|
1231
|
+
{
|
1232
|
+
|
1233
|
+
//
|
1234
|
+
// Update Cnt - let it contain classes of ties from K-th to J-th
|
1235
|
+
//
|
1236
|
+
tieaddc(c, ties, j, nc, cnt);
|
1237
|
+
|
1238
|
+
//
|
1239
|
+
// Search for optimal split point S in [K..J]
|
1240
|
+
//
|
1241
|
+
for(i = 0; i <= nc-1; i++)
|
1242
|
+
{
|
1243
|
+
cnt2(i) = cnt(i);
|
1244
|
+
}
|
1245
|
+
cv(k,j) = cv(k-1,j-1)+getcv(cnt2, nc);
|
1246
|
+
splits(k,j) = j;
|
1247
|
+
for(s = k+1; s <= j; s++)
|
1248
|
+
{
|
1249
|
+
|
1250
|
+
//
|
1251
|
+
// Update Cnt2 - let it contain classes of ties from S-th to J-th
|
1252
|
+
//
|
1253
|
+
tiesubc(c, ties, s-1, nc, cnt2);
|
1254
|
+
|
1255
|
+
//
|
1256
|
+
// Calculate CVE
|
1257
|
+
//
|
1258
|
+
cvtemp = cv(k-1,s-1)+getcv(cnt2, nc);
|
1259
|
+
if( cvtemp<cv(k,j) )
|
1260
|
+
{
|
1261
|
+
cv(k,j) = cvtemp;
|
1262
|
+
splits(k,j) = s;
|
1263
|
+
}
|
1264
|
+
}
|
1265
|
+
}
|
1266
|
+
}
|
1267
|
+
|
1268
|
+
//
|
1269
|
+
// Choose best partition, output result
|
1270
|
+
//
|
1271
|
+
koptimal = -1;
|
1272
|
+
cvoptimal = ap::maxrealnumber;
|
1273
|
+
for(k = 0; k <= kmax-1; k++)
|
1274
|
+
{
|
1275
|
+
if( cv(k,tiecount-1)<cvoptimal )
|
1276
|
+
{
|
1277
|
+
cvoptimal = cv(k,tiecount-1);
|
1278
|
+
koptimal = k;
|
1279
|
+
}
|
1280
|
+
}
|
1281
|
+
ap::ap_error::make_assertion(koptimal>=0, "DSOptimalSplitK: internal error #1!");
|
1282
|
+
if( koptimal==0 )
|
1283
|
+
{
|
1284
|
+
|
1285
|
+
//
|
1286
|
+
// Special case: best partition is one big interval.
|
1287
|
+
// Even 2-partition is not better.
|
1288
|
+
// This is possible when dealing with "weak" predictor variables.
|
1289
|
+
//
|
1290
|
+
// Make binary split as close to the median as possible.
|
1291
|
+
//
|
1292
|
+
v2 = ap::maxrealnumber;
|
1293
|
+
j = -1;
|
1294
|
+
for(i = 1; i <= tiecount-1; i++)
|
1295
|
+
{
|
1296
|
+
if( fabs(ties(i)-0.5*(n-1))<v2 )
|
1297
|
+
{
|
1298
|
+
v2 = fabs(ties(i)-0.5*(n-1));
|
1299
|
+
j = i;
|
1300
|
+
}
|
1301
|
+
}
|
1302
|
+
ap::ap_error::make_assertion(j>0, "DSOptimalSplitK: internal error #2!");
|
1303
|
+
thresholds.setbounds(0, 0);
|
1304
|
+
thresholds(0) = 0.5*(a(ties(j-1))+a(ties(j)));
|
1305
|
+
ni = 2;
|
1306
|
+
cve = 0;
|
1307
|
+
for(i = 0; i <= nc-1; i++)
|
1308
|
+
{
|
1309
|
+
cnt(i) = 0;
|
1310
|
+
}
|
1311
|
+
for(i = 0; i <= j-1; i++)
|
1312
|
+
{
|
1313
|
+
tieaddc(c, ties, i, nc, cnt);
|
1314
|
+
}
|
1315
|
+
cve = cve+getcv(cnt, nc);
|
1316
|
+
for(i = 0; i <= nc-1; i++)
|
1317
|
+
{
|
1318
|
+
cnt(i) = 0;
|
1319
|
+
}
|
1320
|
+
for(i = j; i <= tiecount-1; i++)
|
1321
|
+
{
|
1322
|
+
tieaddc(c, ties, i, nc, cnt);
|
1323
|
+
}
|
1324
|
+
cve = cve+getcv(cnt, nc);
|
1325
|
+
}
|
1326
|
+
else
|
1327
|
+
{
|
1328
|
+
|
1329
|
+
//
|
1330
|
+
// General case: 2 or more intervals
|
1331
|
+
//
|
1332
|
+
thresholds.setbounds(0, koptimal-1);
|
1333
|
+
ni = koptimal+1;
|
1334
|
+
cve = cv(koptimal,tiecount-1);
|
1335
|
+
jl = splits(koptimal,tiecount-1);
|
1336
|
+
jr = tiecount-1;
|
1337
|
+
for(k = koptimal; k >= 1; k--)
|
1338
|
+
{
|
1339
|
+
thresholds(k-1) = 0.5*(a(ties(jl-1))+a(ties(jl)));
|
1340
|
+
jr = jl-1;
|
1341
|
+
jl = splits(k-1,jl-1);
|
1342
|
+
}
|
1343
|
+
}
|
1344
|
+
}
|
1345
|
+
|
1346
|
+
|
1347
|
+
/*************************************************************************
|
1348
|
+
Subroutine prepares K-fold split of the training set.
|
1349
|
+
|
1350
|
+
NOTES:
|
1351
|
+
"NClasses>0" means that we have classification task.
|
1352
|
+
"NClasses<0" means regression task with -NClasses real outputs.
|
1353
|
+
|
1354
|
+
-- ALGLIB --
|
1355
|
+
Copyright 11.01.2009 by Bochkanov Sergey
|
1356
|
+
*************************************************************************/
|
1357
|
+
static void dskfoldsplit(const ap::real_2d_array& xy,
|
1358
|
+
int npoints,
|
1359
|
+
int nclasses,
|
1360
|
+
int foldscount,
|
1361
|
+
bool stratifiedsplits,
|
1362
|
+
ap::integer_1d_array& folds)
|
1363
|
+
{
|
1364
|
+
int i;
|
1365
|
+
int j;
|
1366
|
+
int k;
|
1367
|
+
|
1368
|
+
|
1369
|
+
//
|
1370
|
+
// test parameters
|
1371
|
+
//
|
1372
|
+
ap::ap_error::make_assertion(npoints>0, "DSKFoldSplit: wrong NPoints!");
|
1373
|
+
ap::ap_error::make_assertion(nclasses>1||nclasses<0, "DSKFoldSplit: wrong NClasses!");
|
1374
|
+
ap::ap_error::make_assertion(foldscount>=2&&foldscount<=npoints, "DSKFoldSplit: wrong FoldsCount!");
|
1375
|
+
ap::ap_error::make_assertion(!stratifiedsplits, "DSKFoldSplit: stratified splits are not supported!");
|
1376
|
+
|
1377
|
+
//
|
1378
|
+
// Folds
|
1379
|
+
//
|
1380
|
+
folds.setbounds(0, npoints-1);
|
1381
|
+
for(i = 0; i <= npoints-1; i++)
|
1382
|
+
{
|
1383
|
+
folds(i) = i*foldscount/npoints;
|
1384
|
+
}
|
1385
|
+
for(i = 0; i <= npoints-2; i++)
|
1386
|
+
{
|
1387
|
+
j = i+ap::randominteger(npoints-i);
|
1388
|
+
if( j!=i )
|
1389
|
+
{
|
1390
|
+
k = folds(i);
|
1391
|
+
folds(i) = folds(j);
|
1392
|
+
folds(j) = k;
|
1393
|
+
}
|
1394
|
+
}
|
1395
|
+
}
|
1396
|
+
|
1397
|
+
|
1398
|
+
/*************************************************************************
|
1399
|
+
Internal function
|
1400
|
+
*************************************************************************/
|
1401
|
+
static double xlny(double x, double y)
|
1402
|
+
{
|
1403
|
+
double result;
|
1404
|
+
|
1405
|
+
if( x==0 )
|
1406
|
+
{
|
1407
|
+
result = 0;
|
1408
|
+
}
|
1409
|
+
else
|
1410
|
+
{
|
1411
|
+
result = x*log(y);
|
1412
|
+
}
|
1413
|
+
return result;
|
1414
|
+
}
|
1415
|
+
|
1416
|
+
|
1417
|
+
/*************************************************************************
|
1418
|
+
Internal function,
|
1419
|
+
returns number of samples of class I in Cnt[I]
|
1420
|
+
*************************************************************************/
|
1421
|
+
static double getcv(const ap::integer_1d_array& cnt, int nc)
|
1422
|
+
{
|
1423
|
+
double result;
|
1424
|
+
int i;
|
1425
|
+
double s;
|
1426
|
+
|
1427
|
+
s = 0;
|
1428
|
+
for(i = 0; i <= nc-1; i++)
|
1429
|
+
{
|
1430
|
+
s = s+cnt(i);
|
1431
|
+
}
|
1432
|
+
result = 0;
|
1433
|
+
for(i = 0; i <= nc-1; i++)
|
1434
|
+
{
|
1435
|
+
result = result-xlny(double(cnt(i)), cnt(i)/(s+nc-1));
|
1436
|
+
}
|
1437
|
+
return result;
|
1438
|
+
}
|
1439
|
+
|
1440
|
+
|
1441
|
+
/*************************************************************************
|
1442
|
+
Internal function, adds number of samples of class I in tie NTie to Cnt[I]
|
1443
|
+
*************************************************************************/
|
1444
|
+
static void tieaddc(const ap::integer_1d_array& c,
|
1445
|
+
const ap::integer_1d_array& ties,
|
1446
|
+
int ntie,
|
1447
|
+
int nc,
|
1448
|
+
ap::integer_1d_array& cnt)
|
1449
|
+
{
|
1450
|
+
int i;
|
1451
|
+
|
1452
|
+
for(i = ties(ntie); i <= ties(ntie+1)-1; i++)
|
1453
|
+
{
|
1454
|
+
cnt(c(i)) = cnt(c(i))+1;
|
1455
|
+
}
|
1456
|
+
}
|
1457
|
+
|
1458
|
+
|
1459
|
+
/*************************************************************************
|
1460
|
+
Internal function, subtracts number of samples of class I in tie NTie to Cnt[I]
|
1461
|
+
*************************************************************************/
|
1462
|
+
static void tiesubc(const ap::integer_1d_array& c,
|
1463
|
+
const ap::integer_1d_array& ties,
|
1464
|
+
int ntie,
|
1465
|
+
int nc,
|
1466
|
+
ap::integer_1d_array& cnt)
|
1467
|
+
{
|
1468
|
+
int i;
|
1469
|
+
|
1470
|
+
for(i = ties(ntie); i <= ties(ntie+1)-1; i++)
|
1471
|
+
{
|
1472
|
+
cnt(c(i)) = cnt(c(i))-1;
|
1473
|
+
}
|
1474
|
+
}
|
1475
|
+
|
1476
|
+
|
1477
|
+
/*************************************************************************
|
1478
|
+
Internal function,
|
1479
|
+
returns number of samples of class I in Cnt[I]
|
1480
|
+
*************************************************************************/
|
1481
|
+
static void tiegetc(const ap::integer_1d_array& c,
|
1482
|
+
const ap::integer_1d_array& ties,
|
1483
|
+
int ntie,
|
1484
|
+
int nc,
|
1485
|
+
ap::integer_1d_array& cnt)
|
1486
|
+
{
|
1487
|
+
int i;
|
1488
|
+
|
1489
|
+
for(i = 0; i <= nc-1; i++)
|
1490
|
+
{
|
1491
|
+
cnt(i) = 0;
|
1492
|
+
}
|
1493
|
+
for(i = ties(ntie); i <= ties(ntie+1)-1; i++)
|
1494
|
+
{
|
1495
|
+
cnt(c(i)) = cnt(c(i))+1;
|
1496
|
+
}
|
1497
|
+
}
|
1498
|
+
|
1499
|
+
|
1500
|
+
|