alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,97 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _gqgenlobatto_h
34
+ #define _gqgenlobatto_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ #include "blas.h"
40
+ #include "rotations.h"
41
+ #include "tdevd.h"
42
+
43
+
44
+ /*************************************************************************
45
+ Computation of nodes and weights for a Gauss-Lobatto quadrature formula
46
+
47
+ The algorithm generates the N-point Gauss-Lobatto quadrature formula with
48
+ weight function given by coefficients alpha and beta of a recurrence which
49
+ generates a system of orthogonal polynomials.
50
+
51
+ P-1(x) = 0
52
+ P0(x) = 1
53
+ Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
54
+
55
+ and zero moment Mu0
56
+
57
+ Mu0 = integral(W(x)dx,a,b)
58
+
59
+
60
+ Input parameters:
61
+ Alpha � array of coefficients.
62
+ Array whose index ranges within [0..N-2].
63
+ Beta � array of coefficients.
64
+ Array whose index ranges within [0..N-2].
65
+ Zero-indexed element is not used.
66
+ Beta[I]>0
67
+ Mu0 � zero moment of the weighting function.
68
+ A � left boundary of the integration interval.
69
+ B � right boundary of the integration interval.
70
+ N � number of nodes of the quadrature formula, N>=3
71
+ (including the left and right boundary nodes).
72
+
73
+ Output parameters:
74
+ X � array of nodes of the quadrature formula (in ascending order).
75
+ Array whose index ranges within [0..N-1].
76
+ W � array of weights of the quadrature formula.
77
+ Array whose index ranges within [0..N-1].
78
+
79
+ Result:
80
+ True, if the algorithm finished its work successfully.
81
+ False, if the algorithm of finding the eigenvalues has not converged,
82
+ or one or more of the Beta coefficients is less or equal to 0.
83
+
84
+ -- ALGLIB --
85
+ Copyright 2005 by Bochkanov Sergey
86
+ *************************************************************************/
87
+ bool generategausslobattoquadrature(ap::real_1d_array alpha,
88
+ ap::real_1d_array beta,
89
+ double mu0,
90
+ double a,
91
+ double b,
92
+ int n,
93
+ ap::real_1d_array& x,
94
+ ap::real_1d_array& w);
95
+
96
+
97
+ #endif
@@ -0,0 +1,232 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #include <stdafx.h>
34
+ #include <stdio.h>
35
+ #include "gqgenradau.h"
36
+
37
+ static void testgenerategaussradauquadrature();
38
+
39
+ /*************************************************************************
40
+ Computation of nodes and weights for a Gauss-Radua quadrature formula
41
+
42
+ The algorithm generates the N-point Gauss-Radau quadrature formula with
43
+ weight function given by the coefficients alpha and beta of a recurrence
44
+ which generates a system of orthogonal polynomials.
45
+
46
+ P-1(x) = 0
47
+ P0(x) = 1
48
+ Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
49
+
50
+ and zero moment Mu0
51
+
52
+ Mu0 = integral(W(x)dx,a,b)
53
+
54
+
55
+ Input parameters:
56
+ Alpha � array of coefficients.
57
+ Array whose index ranges within [0..N-2].
58
+ Beta � array of coefficients.
59
+ Array whose index ranges within [0..N-1].
60
+ Zero-indexed element is not used.
61
+ Beta[I]>0
62
+ Mu0 � zero moment of the weighting function.
63
+ A � left boundary of the integration interval.
64
+ N � number of nodes of the quadrature formula, N>=2
65
+ (including the left boundary node).
66
+
67
+ Output parameters:
68
+ X � array of nodes of the quadrature formula (in ascending order).
69
+ Array whose index ranges within [0..N-1].
70
+ W � array of weights of the quadrature formula.
71
+ Array whose index ranges within [0..N-1].
72
+
73
+ Result:
74
+ True, if the algorithm finished its work successfully.
75
+ False, if the algorithm of finding eigenvalues has not converged, or
76
+ one or more of the Beta coefficients is less or equal to 0.
77
+
78
+ -- ALGLIB --
79
+ Copyright 2005 by Bochkanov Sergey
80
+ *************************************************************************/
81
+ bool generategaussradauquadrature(ap::real_1d_array alpha,
82
+ ap::real_1d_array beta,
83
+ double mu0,
84
+ double a,
85
+ int n,
86
+ ap::real_1d_array& x,
87
+ ap::real_1d_array& w)
88
+ {
89
+ bool result;
90
+ int i;
91
+ ap::real_1d_array d;
92
+ ap::real_1d_array e;
93
+ ap::real_2d_array z;
94
+ double polim1;
95
+ double poli;
96
+ double t;
97
+
98
+ if( n<2 )
99
+ {
100
+ result = false;
101
+ return result;
102
+ }
103
+
104
+ //
105
+ // Initialize, D[1:N], E[1:N]
106
+ //
107
+ n = n-1;
108
+ d.setbounds(1, n+1);
109
+ e.setbounds(1, n);
110
+ for(i = 1; i <= n; i++)
111
+ {
112
+ d(i) = alpha(i-1);
113
+ if( beta(i)<=0 )
114
+ {
115
+ result = false;
116
+ return result;
117
+ }
118
+ e(i) = sqrt(beta(i));
119
+ }
120
+
121
+ //
122
+ // Caclulate Pn(a), Pn-1(a), and D[N+1]
123
+ //
124
+ beta(0) = 0;
125
+ polim1 = 0;
126
+ poli = 1;
127
+ for(i = 1; i <= n; i++)
128
+ {
129
+ t = (a-alpha(i-1))*poli-beta(i-1)*polim1;
130
+ polim1 = poli;
131
+ poli = t;
132
+ }
133
+ d(n+1) = a-beta(n)*polim1/poli;
134
+
135
+ //
136
+ // EVD
137
+ //
138
+ result = tridiagonalevd(d, e, n+1, 3, z);
139
+ if( !result )
140
+ {
141
+ return result;
142
+ }
143
+
144
+ //
145
+ // Generate
146
+ //
147
+ x.setbounds(0, n);
148
+ w.setbounds(0, n);
149
+ for(i = 1; i <= n+1; i++)
150
+ {
151
+ x(i-1) = d(i);
152
+ w(i-1) = mu0*ap::sqr(z(1,i));
153
+ }
154
+ return result;
155
+ }
156
+
157
+
158
+ static void testgenerategaussradauquadrature()
159
+ {
160
+ ap::real_1d_array alpha;
161
+ ap::real_1d_array beta;
162
+ ap::real_1d_array x;
163
+ ap::real_1d_array w;
164
+ double err;
165
+ int i;
166
+
167
+ printf("TESTING GAUSS-RADAU QUADRATURES GENERATION\n");
168
+
169
+ //
170
+ // first test
171
+ //
172
+ alpha.setbounds(0, 0);
173
+ beta.setbounds(0, 1);
174
+ alpha(0) = 0;
175
+ beta(0) = 0;
176
+ beta(1) = double(1*1)/double(4*1*1-1);
177
+ generategaussradauquadrature(alpha, beta, 2.0, double(-1), 2, x, w);
178
+ err = 0;
179
+ err = ap::maxreal(err, fabs(x(0)+1));
180
+ err = ap::maxreal(err, fabs(x(1)-double(1)/double(3)));
181
+ err = ap::maxreal(err, fabs(w(0)-0.5));
182
+ err = ap::maxreal(err, fabs(w(1)-1.5));
183
+ printf("First test (Gauss-Radau 2): error is %6.3le\n",
184
+ double(err));
185
+
186
+ //
187
+ // second test
188
+ //
189
+ alpha.setbounds(0, 1);
190
+ beta.setbounds(0, 2);
191
+ alpha(0) = 0;
192
+ alpha(1) = 0;
193
+ for(i = 0; i <= 2; i++)
194
+ {
195
+ beta(i) = ap::sqr(double(i))/(4*ap::sqr(double(i))-1);
196
+ }
197
+ generategaussradauquadrature(alpha, beta, 2.0, double(-1), 3, x, w);
198
+ err = 0;
199
+ err = ap::maxreal(err, fabs(x(0)+1));
200
+ err = ap::maxreal(err, fabs(x(1)-(1-sqrt(double(6)))/5));
201
+ err = ap::maxreal(err, fabs(x(2)-(1+sqrt(double(6)))/5));
202
+ err = ap::maxreal(err, fabs(w(0)-double(2)/double(9)));
203
+ err = ap::maxreal(err, fabs(w(1)-(16+sqrt(double(6)))/18));
204
+ err = ap::maxreal(err, fabs(w(2)-(16-sqrt(double(6)))/18));
205
+ printf("Second test (Gauss-Radau 3): error is %6.3le\n",
206
+ double(err));
207
+
208
+ //
209
+ // third test
210
+ //
211
+ alpha.setbounds(0, 1);
212
+ beta.setbounds(0, 2);
213
+ alpha(0) = 0;
214
+ alpha(1) = 0;
215
+ for(i = 0; i <= 2; i++)
216
+ {
217
+ beta(i) = ap::sqr(double(i))/(4*ap::sqr(double(i))-1);
218
+ }
219
+ generategaussradauquadrature(alpha, beta, 2.0, double(+1), 3, x, w);
220
+ err = 0;
221
+ err = ap::maxreal(err, fabs(x(2)-1));
222
+ err = ap::maxreal(err, fabs(x(1)+(1-sqrt(double(6)))/5));
223
+ err = ap::maxreal(err, fabs(x(0)+(1+sqrt(double(6)))/5));
224
+ err = ap::maxreal(err, fabs(w(2)-double(2)/double(9)));
225
+ err = ap::maxreal(err, fabs(w(1)-(16+sqrt(double(6)))/18));
226
+ err = ap::maxreal(err, fabs(w(0)-(16-sqrt(double(6)))/18));
227
+ printf("Second test (Gauss-Radau 3, at point b): error is %6.3le\n",
228
+ double(err));
229
+ }
230
+
231
+
232
+
@@ -0,0 +1,95 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _gqgenradau_h
34
+ #define _gqgenradau_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ #include "blas.h"
40
+ #include "rotations.h"
41
+ #include "tdevd.h"
42
+
43
+
44
+ /*************************************************************************
45
+ Computation of nodes and weights for a Gauss-Radua quadrature formula
46
+
47
+ The algorithm generates the N-point Gauss-Radau quadrature formula with
48
+ weight function given by the coefficients alpha and beta of a recurrence
49
+ which generates a system of orthogonal polynomials.
50
+
51
+ P-1(x) = 0
52
+ P0(x) = 1
53
+ Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
54
+
55
+ and zero moment Mu0
56
+
57
+ Mu0 = integral(W(x)dx,a,b)
58
+
59
+
60
+ Input parameters:
61
+ Alpha � array of coefficients.
62
+ Array whose index ranges within [0..N-2].
63
+ Beta � array of coefficients.
64
+ Array whose index ranges within [0..N-1].
65
+ Zero-indexed element is not used.
66
+ Beta[I]>0
67
+ Mu0 � zero moment of the weighting function.
68
+ A � left boundary of the integration interval.
69
+ N � number of nodes of the quadrature formula, N>=2
70
+ (including the left boundary node).
71
+
72
+ Output parameters:
73
+ X � array of nodes of the quadrature formula (in ascending order).
74
+ Array whose index ranges within [0..N-1].
75
+ W � array of weights of the quadrature formula.
76
+ Array whose index ranges within [0..N-1].
77
+
78
+ Result:
79
+ True, if the algorithm finished its work successfully.
80
+ False, if the algorithm of finding eigenvalues has not converged, or
81
+ one or more of the Beta coefficients is less or equal to 0.
82
+
83
+ -- ALGLIB --
84
+ Copyright 2005 by Bochkanov Sergey
85
+ *************************************************************************/
86
+ bool generategaussradauquadrature(ap::real_1d_array alpha,
87
+ ap::real_1d_array beta,
88
+ double mu0,
89
+ double a,
90
+ int n,
91
+ ap::real_1d_array& x,
92
+ ap::real_1d_array& w);
93
+
94
+
95
+ #endif
@@ -0,0 +1,480 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #include <stdafx.h>
34
+ #include "hbisinv.h"
35
+
36
+ /*************************************************************************
37
+ Subroutine for finding the eigenvalues (and eigenvectors) of a Hermitian
38
+ matrix in a given half-interval (A, B] by using a bisection and inverse
39
+ iteration
40
+
41
+ Input parameters:
42
+ A - Hermitian matrix which is given by its upper or lower
43
+ triangular part. Array whose indexes range within
44
+ [0..N-1, 0..N-1].
45
+ N - size of matrix A.
46
+ ZNeeded - flag controlling whether the eigenvectors are needed or
47
+ not. If ZNeeded is equal to:
48
+ * 0, the eigenvectors are not returned;
49
+ * 1, the eigenvectors are returned.
50
+ IsUpperA - storage format of matrix A.
51
+ B1, B2 - half-interval (B1, B2] to search eigenvalues in.
52
+
53
+ Output parameters:
54
+ M - number of eigenvalues found in a given half-interval, M>=0
55
+ W - array of the eigenvalues found.
56
+ Array whose index ranges within [0..M-1].
57
+ Z - if ZNeeded is equal to:
58
+ * 0, Z hasn�t changed;
59
+ * 1, Z contains eigenvectors.
60
+ Array whose indexes range within [0..N-1, 0..M-1].
61
+ The eigenvectors are stored in the matrix columns.
62
+
63
+ Result:
64
+ True, if successful. M contains the number of eigenvalues in the given
65
+ half-interval (could be equal to 0), W contains the eigenvalues,
66
+ Z contains the eigenvectors (if needed).
67
+
68
+ False, if the bisection method subroutine wasn't able to find the
69
+ eigenvalues in the given interval or if the inverse iteration
70
+ subroutine wasn't able to find all the corresponding eigenvectors.
71
+ In that case, the eigenvalues and eigenvectors are not returned, M is
72
+ equal to 0.
73
+
74
+ Note:
75
+ eigen vectors of Hermitian matrix are defined up to multiplication by
76
+ a complex number L, such as |L|=1.
77
+
78
+ -- ALGLIB --
79
+ Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
80
+ *************************************************************************/
81
+ bool hmatrixevdr(ap::complex_2d_array a,
82
+ int n,
83
+ int zneeded,
84
+ bool isupper,
85
+ double b1,
86
+ double b2,
87
+ int& m,
88
+ ap::real_1d_array& w,
89
+ ap::complex_2d_array& z)
90
+ {
91
+ bool result;
92
+ ap::complex_2d_array q;
93
+ ap::real_2d_array t;
94
+ ap::complex_1d_array tau;
95
+ ap::real_1d_array e;
96
+ ap::real_1d_array work;
97
+ int i;
98
+ int k;
99
+ double v;
100
+
101
+ ap::ap_error::make_assertion(zneeded==0||zneeded==1, "HermitianEigenValuesAndVectorsInInterval: incorrect ZNeeded");
102
+
103
+ //
104
+ // Reduce to tridiagonal form
105
+ //
106
+ hmatrixtd(a, n, isupper, tau, w, e);
107
+ if( zneeded==1 )
108
+ {
109
+ hmatrixtdunpackq(a, n, isupper, tau, q);
110
+ zneeded = 2;
111
+ }
112
+
113
+ //
114
+ // Bisection and inverse iteration
115
+ //
116
+ result = smatrixtdevdr(w, e, n, zneeded, b1, b2, m, t);
117
+
118
+ //
119
+ // Eigenvectors are needed
120
+ // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
121
+ //
122
+ if( result&&zneeded!=0&&m!=0 )
123
+ {
124
+ work.setbounds(0, m-1);
125
+ z.setbounds(0, n-1, 0, m-1);
126
+ for(i = 0; i <= n-1; i++)
127
+ {
128
+
129
+ //
130
+ // Calculate real part
131
+ //
132
+ for(k = 0; k <= m-1; k++)
133
+ {
134
+ work(k) = 0;
135
+ }
136
+ for(k = 0; k <= n-1; k++)
137
+ {
138
+ v = q(i,k).x;
139
+ ap::vadd(&work(0), &t(k, 0), ap::vlen(0,m-1), v);
140
+ }
141
+ for(k = 0; k <= m-1; k++)
142
+ {
143
+ z(i,k).x = work(k);
144
+ }
145
+
146
+ //
147
+ // Calculate imaginary part
148
+ //
149
+ for(k = 0; k <= m-1; k++)
150
+ {
151
+ work(k) = 0;
152
+ }
153
+ for(k = 0; k <= n-1; k++)
154
+ {
155
+ v = q(i,k).y;
156
+ ap::vadd(&work(0), &t(k, 0), ap::vlen(0,m-1), v);
157
+ }
158
+ for(k = 0; k <= m-1; k++)
159
+ {
160
+ z(i,k).y = work(k);
161
+ }
162
+ }
163
+ }
164
+ return result;
165
+ }
166
+
167
+
168
+ /*************************************************************************
169
+ Subroutine for finding the eigenvalues and eigenvectors of a Hermitian
170
+ matrix with given indexes by using bisection and inverse iteration methods
171
+
172
+ Input parameters:
173
+ A - Hermitian matrix which is given by its upper or lower
174
+ triangular part.
175
+ Array whose indexes range within [0..N-1, 0..N-1].
176
+ N - size of matrix A.
177
+ ZNeeded - flag controlling whether the eigenvectors are needed or
178
+ not. If ZNeeded is equal to:
179
+ * 0, the eigenvectors are not returned;
180
+ * 1, the eigenvectors are returned.
181
+ IsUpperA - storage format of matrix A.
182
+ I1, I2 - index interval for searching (from I1 to I2).
183
+ 0 <= I1 <= I2 <= N-1.
184
+
185
+ Output parameters:
186
+ W - array of the eigenvalues found.
187
+ Array whose index ranges within [0..I2-I1].
188
+ Z - if ZNeeded is equal to:
189
+ * 0, Z hasn�t changed;
190
+ * 1, Z contains eigenvectors.
191
+ Array whose indexes range within [0..N-1, 0..I2-I1].
192
+ In that case, the eigenvectors are stored in the matrix
193
+ columns.
194
+
195
+ Result:
196
+ True, if successful. W contains the eigenvalues, Z contains the
197
+ eigenvectors (if needed).
198
+
199
+ False, if the bisection method subroutine wasn't able to find the
200
+ eigenvalues in the given interval or if the inverse iteration
201
+ subroutine wasn't able to find all the corresponding eigenvectors.
202
+ In that case, the eigenvalues and eigenvectors are not returned.
203
+
204
+ Note:
205
+ eigen vectors of Hermitian matrix are defined up to multiplication by
206
+ a complex number L, such as |L|=1.
207
+
208
+ -- ALGLIB --
209
+ Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
210
+ *************************************************************************/
211
+ bool hmatrixevdi(ap::complex_2d_array a,
212
+ int n,
213
+ int zneeded,
214
+ bool isupper,
215
+ int i1,
216
+ int i2,
217
+ ap::real_1d_array& w,
218
+ ap::complex_2d_array& z)
219
+ {
220
+ bool result;
221
+ ap::complex_2d_array q;
222
+ ap::real_2d_array t;
223
+ ap::complex_1d_array tau;
224
+ ap::real_1d_array e;
225
+ ap::real_1d_array work;
226
+ int i;
227
+ int k;
228
+ double v;
229
+ int m;
230
+
231
+ ap::ap_error::make_assertion(zneeded==0||zneeded==1, "HermitianEigenValuesAndVectorsByIndexes: incorrect ZNeeded");
232
+
233
+ //
234
+ // Reduce to tridiagonal form
235
+ //
236
+ hmatrixtd(a, n, isupper, tau, w, e);
237
+ if( zneeded==1 )
238
+ {
239
+ hmatrixtdunpackq(a, n, isupper, tau, q);
240
+ zneeded = 2;
241
+ }
242
+
243
+ //
244
+ // Bisection and inverse iteration
245
+ //
246
+ result = smatrixtdevdi(w, e, n, zneeded, i1, i2, t);
247
+
248
+ //
249
+ // Eigenvectors are needed
250
+ // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
251
+ //
252
+ m = i2-i1+1;
253
+ if( result&&zneeded!=0 )
254
+ {
255
+ work.setbounds(0, m-1);
256
+ z.setbounds(0, n-1, 0, m-1);
257
+ for(i = 0; i <= n-1; i++)
258
+ {
259
+
260
+ //
261
+ // Calculate real part
262
+ //
263
+ for(k = 0; k <= m-1; k++)
264
+ {
265
+ work(k) = 0;
266
+ }
267
+ for(k = 0; k <= n-1; k++)
268
+ {
269
+ v = q(i,k).x;
270
+ ap::vadd(&work(0), &t(k, 0), ap::vlen(0,m-1), v);
271
+ }
272
+ for(k = 0; k <= m-1; k++)
273
+ {
274
+ z(i,k).x = work(k);
275
+ }
276
+
277
+ //
278
+ // Calculate imaginary part
279
+ //
280
+ for(k = 0; k <= m-1; k++)
281
+ {
282
+ work(k) = 0;
283
+ }
284
+ for(k = 0; k <= n-1; k++)
285
+ {
286
+ v = q(i,k).y;
287
+ ap::vadd(&work(0), &t(k, 0), ap::vlen(0,m-1), v);
288
+ }
289
+ for(k = 0; k <= m-1; k++)
290
+ {
291
+ z(i,k).y = work(k);
292
+ }
293
+ }
294
+ }
295
+ return result;
296
+ }
297
+
298
+
299
+ /*************************************************************************
300
+ Obsolete 1-based subroutine
301
+ *************************************************************************/
302
+ bool hermitianeigenvaluesandvectorsininterval(ap::complex_2d_array a,
303
+ int n,
304
+ int zneeded,
305
+ bool isupper,
306
+ double b1,
307
+ double b2,
308
+ int& m,
309
+ ap::real_1d_array& w,
310
+ ap::complex_2d_array& z)
311
+ {
312
+ bool result;
313
+ ap::complex_2d_array q;
314
+ ap::real_2d_array t;
315
+ ap::complex_1d_array tau;
316
+ ap::real_1d_array e;
317
+ ap::real_1d_array work;
318
+ int i;
319
+ int k;
320
+ double v;
321
+
322
+ ap::ap_error::make_assertion(zneeded==0||zneeded==1, "HermitianEigenValuesAndVectorsInInterval: incorrect ZNeeded");
323
+
324
+ //
325
+ // Reduce to tridiagonal form
326
+ //
327
+ hermitiantotridiagonal(a, n, isupper, tau, w, e);
328
+ if( zneeded==1 )
329
+ {
330
+ unpackqfromhermitiantridiagonal(a, n, isupper, tau, q);
331
+ zneeded = 2;
332
+ }
333
+
334
+ //
335
+ // Bisection and inverse iteration
336
+ //
337
+ result = tridiagonaleigenvaluesandvectorsininterval(w, e, n, zneeded, b1, b2, m, t);
338
+
339
+ //
340
+ // Eigenvectors are needed
341
+ // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
342
+ //
343
+ if( result&&zneeded!=0&&m!=0 )
344
+ {
345
+ work.setbounds(1, m);
346
+ z.setbounds(1, n, 1, m);
347
+ for(i = 1; i <= n; i++)
348
+ {
349
+
350
+ //
351
+ // Calculate real part
352
+ //
353
+ for(k = 1; k <= m; k++)
354
+ {
355
+ work(k) = 0;
356
+ }
357
+ for(k = 1; k <= n; k++)
358
+ {
359
+ v = q(i,k).x;
360
+ ap::vadd(&work(1), &t(k, 1), ap::vlen(1,m), v);
361
+ }
362
+ for(k = 1; k <= m; k++)
363
+ {
364
+ z(i,k).x = work(k);
365
+ }
366
+
367
+ //
368
+ // Calculate imaginary part
369
+ //
370
+ for(k = 1; k <= m; k++)
371
+ {
372
+ work(k) = 0;
373
+ }
374
+ for(k = 1; k <= n; k++)
375
+ {
376
+ v = q(i,k).y;
377
+ ap::vadd(&work(1), &t(k, 1), ap::vlen(1,m), v);
378
+ }
379
+ for(k = 1; k <= m; k++)
380
+ {
381
+ z(i,k).y = work(k);
382
+ }
383
+ }
384
+ }
385
+ return result;
386
+ }
387
+
388
+
389
+ /*************************************************************************
390
+ Obsolete 1-based subroutine
391
+ *************************************************************************/
392
+ bool hermitianeigenvaluesandvectorsbyindexes(ap::complex_2d_array a,
393
+ int n,
394
+ int zneeded,
395
+ bool isupper,
396
+ int i1,
397
+ int i2,
398
+ ap::real_1d_array& w,
399
+ ap::complex_2d_array& z)
400
+ {
401
+ bool result;
402
+ ap::complex_2d_array q;
403
+ ap::real_2d_array t;
404
+ ap::complex_1d_array tau;
405
+ ap::real_1d_array e;
406
+ ap::real_1d_array work;
407
+ int i;
408
+ int k;
409
+ double v;
410
+ int m;
411
+
412
+ ap::ap_error::make_assertion(zneeded==0||zneeded==1, "HermitianEigenValuesAndVectorsByIndexes: incorrect ZNeeded");
413
+
414
+ //
415
+ // Reduce to tridiagonal form
416
+ //
417
+ hermitiantotridiagonal(a, n, isupper, tau, w, e);
418
+ if( zneeded==1 )
419
+ {
420
+ unpackqfromhermitiantridiagonal(a, n, isupper, tau, q);
421
+ zneeded = 2;
422
+ }
423
+
424
+ //
425
+ // Bisection and inverse iteration
426
+ //
427
+ result = tridiagonaleigenvaluesandvectorsbyindexes(w, e, n, zneeded, i1, i2, t);
428
+
429
+ //
430
+ // Eigenvectors are needed
431
+ // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
432
+ //
433
+ m = i2-i1+1;
434
+ if( result&&zneeded!=0 )
435
+ {
436
+ work.setbounds(1, m);
437
+ z.setbounds(1, n, 1, m);
438
+ for(i = 1; i <= n; i++)
439
+ {
440
+
441
+ //
442
+ // Calculate real part
443
+ //
444
+ for(k = 1; k <= m; k++)
445
+ {
446
+ work(k) = 0;
447
+ }
448
+ for(k = 1; k <= n; k++)
449
+ {
450
+ v = q(i,k).x;
451
+ ap::vadd(&work(1), &t(k, 1), ap::vlen(1,m), v);
452
+ }
453
+ for(k = 1; k <= m; k++)
454
+ {
455
+ z(i,k).x = work(k);
456
+ }
457
+
458
+ //
459
+ // Calculate imaginary part
460
+ //
461
+ for(k = 1; k <= m; k++)
462
+ {
463
+ work(k) = 0;
464
+ }
465
+ for(k = 1; k <= n; k++)
466
+ {
467
+ v = q(i,k).y;
468
+ ap::vadd(&work(1), &t(k, 1), ap::vlen(1,m), v);
469
+ }
470
+ for(k = 1; k <= m; k++)
471
+ {
472
+ z(i,k).y = work(k);
473
+ }
474
+ }
475
+ }
476
+ return result;
477
+ }
478
+
479
+
480
+