alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/lbfgs.h
ADDED
@@ -0,0 +1,218 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _lbfgs_h
|
34
|
+
#define _lbfgs_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
struct lbfgsstate
|
40
|
+
{
|
41
|
+
int n;
|
42
|
+
int m;
|
43
|
+
double epsg;
|
44
|
+
double epsf;
|
45
|
+
double epsx;
|
46
|
+
int maxits;
|
47
|
+
int flags;
|
48
|
+
int nfev;
|
49
|
+
int mcstage;
|
50
|
+
int k;
|
51
|
+
int q;
|
52
|
+
int p;
|
53
|
+
ap::real_1d_array rho;
|
54
|
+
ap::real_2d_array y;
|
55
|
+
ap::real_2d_array s;
|
56
|
+
ap::real_1d_array theta;
|
57
|
+
ap::real_1d_array d;
|
58
|
+
double stp;
|
59
|
+
ap::real_1d_array work;
|
60
|
+
double fold;
|
61
|
+
double gammak;
|
62
|
+
ap::real_1d_array x;
|
63
|
+
double f;
|
64
|
+
ap::real_1d_array g;
|
65
|
+
bool xupdated;
|
66
|
+
ap::rcommstate rstate;
|
67
|
+
int repiterationscount;
|
68
|
+
int repnfev;
|
69
|
+
int repterminationtype;
|
70
|
+
bool brackt;
|
71
|
+
bool stage1;
|
72
|
+
int infoc;
|
73
|
+
double dg;
|
74
|
+
double dgm;
|
75
|
+
double dginit;
|
76
|
+
double dgtest;
|
77
|
+
double dgx;
|
78
|
+
double dgxm;
|
79
|
+
double dgy;
|
80
|
+
double dgym;
|
81
|
+
double finit;
|
82
|
+
double ftest1;
|
83
|
+
double fm;
|
84
|
+
double fx;
|
85
|
+
double fxm;
|
86
|
+
double fy;
|
87
|
+
double fym;
|
88
|
+
double stx;
|
89
|
+
double sty;
|
90
|
+
double stmin;
|
91
|
+
double stmax;
|
92
|
+
double width;
|
93
|
+
double width1;
|
94
|
+
double xtrapf;
|
95
|
+
};
|
96
|
+
struct lbfgsreport
|
97
|
+
{
|
98
|
+
int iterationscount;
|
99
|
+
int nfev;
|
100
|
+
int terminationtype;
|
101
|
+
};
|
102
|
+
|
103
|
+
|
104
|
+
/*************************************************************************
|
105
|
+
LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OPTIMIZATION
|
106
|
+
|
107
|
+
The subroutine minimizes function F(x) of N arguments by using a quasi-
|
108
|
+
Newton method (LBFGS scheme) which is optimized to use a minimum amount
|
109
|
+
of memory.
|
110
|
+
|
111
|
+
The subroutine generates the approximation of an inverse Hessian matrix by
|
112
|
+
using information about the last M steps of the algorithm (instead of N).
|
113
|
+
It lessens a required amount of memory from a value of order N^2 to a
|
114
|
+
value of order 2*N*M.
|
115
|
+
|
116
|
+
Input parameters:
|
117
|
+
N - problem dimension. N>0
|
118
|
+
M - number of corrections in the BFGS scheme of Hessian
|
119
|
+
approximation update. Recommended value: 3<=M<=7. The smaller
|
120
|
+
value causes worse convergence, the bigger will not cause a
|
121
|
+
considerably better convergence, but will cause a fall in the
|
122
|
+
performance. M<=N.
|
123
|
+
X - initial solution approximation, array[0..N-1].
|
124
|
+
EpsG - positive number which defines a precision of search. The
|
125
|
+
subroutine finishes its work if the condition ||G|| < EpsG is
|
126
|
+
satisfied, where ||.|| means Euclidian norm, G - gradient, X -
|
127
|
+
current approximation.
|
128
|
+
EpsF - positive number which defines a precision of search. The
|
129
|
+
subroutine finishes its work if on iteration number k+1 the
|
130
|
+
condition |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1} is
|
131
|
+
satisfied.
|
132
|
+
EpsX - positive number which defines a precision of search. The
|
133
|
+
subroutine finishes its work if on iteration number k+1 the
|
134
|
+
condition |X(k+1)-X(k)| <= EpsX is fulfilled.
|
135
|
+
MaxIts- maximum number of iterations. If MaxIts=0, the number of
|
136
|
+
iterations is unlimited.
|
137
|
+
Flags - additional settings:
|
138
|
+
* Flags = 0 means no additional settings
|
139
|
+
* Flags = 1 "do not allocate memory". used when solving
|
140
|
+
a many subsequent tasks with same N/M values.
|
141
|
+
First call MUST be without this flag bit set,
|
142
|
+
subsequent calls of MinLBFGS with same LBFGSState
|
143
|
+
structure can set Flags to 1.
|
144
|
+
|
145
|
+
Output parameters:
|
146
|
+
State - structure used for reverse communication.
|
147
|
+
|
148
|
+
See also MinLBFGSIteration, MinLBFGSResults
|
149
|
+
|
150
|
+
-- ALGLIB --
|
151
|
+
Copyright 14.11.2007 by Bochkanov Sergey
|
152
|
+
*************************************************************************/
|
153
|
+
void minlbfgs(const int& n,
|
154
|
+
const int& m,
|
155
|
+
ap::real_1d_array& x,
|
156
|
+
const double& epsg,
|
157
|
+
const double& epsf,
|
158
|
+
const double& epsx,
|
159
|
+
const int& maxits,
|
160
|
+
int flags,
|
161
|
+
lbfgsstate& state);
|
162
|
+
|
163
|
+
|
164
|
+
/*************************************************************************
|
165
|
+
One L-BFGS iteration
|
166
|
+
|
167
|
+
Called after initialization with MinLBFGS.
|
168
|
+
See HTML documentation for examples.
|
169
|
+
|
170
|
+
Input parameters:
|
171
|
+
State - structure which stores algorithm state between calls and
|
172
|
+
which is used for reverse communication. Must be initialized
|
173
|
+
with MinLBFGS.
|
174
|
+
|
175
|
+
If suborutine returned False, iterative proces has converged.
|
176
|
+
|
177
|
+
If subroutine returned True, caller should calculate function value
|
178
|
+
State.F an gradient State.G[0..N-1] at State.X[0..N-1] and call
|
179
|
+
MinLBFGSIteration again.
|
180
|
+
|
181
|
+
-- ALGLIB --
|
182
|
+
Copyright 20.04.2009 by Bochkanov Sergey
|
183
|
+
*************************************************************************/
|
184
|
+
bool minlbfgsiteration(lbfgsstate& state);
|
185
|
+
|
186
|
+
|
187
|
+
/*************************************************************************
|
188
|
+
L-BFGS algorithm results
|
189
|
+
|
190
|
+
Called after MinLBFGSIteration returned False.
|
191
|
+
|
192
|
+
Input parameters:
|
193
|
+
State - algorithm state (used by MinLBFGSIteration).
|
194
|
+
|
195
|
+
Output parameters:
|
196
|
+
X - array[0..N-1], solution
|
197
|
+
Rep - optimization report:
|
198
|
+
* Rep.TerminationType completetion code:
|
199
|
+
* -2 rounding errors prevent further improvement.
|
200
|
+
X contains best point found.
|
201
|
+
* -1 incorrect parameters were specified
|
202
|
+
* 1 relative function improvement is no more than
|
203
|
+
EpsF.
|
204
|
+
* 2 relative step is no more than EpsX.
|
205
|
+
* 4 gradient norm is no more than EpsG
|
206
|
+
* 5 MaxIts steps was taken
|
207
|
+
* Rep.IterationsCount contains iterations count
|
208
|
+
* NFEV countains number of function calculations
|
209
|
+
|
210
|
+
-- ALGLIB --
|
211
|
+
Copyright 14.11.2007 by Bochkanov Sergey
|
212
|
+
*************************************************************************/
|
213
|
+
void minlbfgsresults(const lbfgsstate& state,
|
214
|
+
ap::real_1d_array& x,
|
215
|
+
lbfgsreport& rep);
|
216
|
+
|
217
|
+
|
218
|
+
#endif
|
data/ext/alglib/lda.cpp
ADDED
@@ -0,0 +1,434 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2008, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "lda.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Multiclass Fisher LDA
|
38
|
+
|
39
|
+
Subroutine finds coefficients of linear combination which optimally separates
|
40
|
+
training set on classes.
|
41
|
+
|
42
|
+
INPUT PARAMETERS:
|
43
|
+
XY - training set, array[0..NPoints-1,0..NVars].
|
44
|
+
First NVars columns store values of independent
|
45
|
+
variables, next column stores number of class (from 0
|
46
|
+
to NClasses-1) which dataset element belongs to. Fractional
|
47
|
+
values are rounded to nearest integer.
|
48
|
+
NPoints - training set size, NPoints>=0
|
49
|
+
NVars - number of independent variables, NVars>=1
|
50
|
+
NClasses - number of classes, NClasses>=2
|
51
|
+
|
52
|
+
|
53
|
+
OUTPUT PARAMETERS:
|
54
|
+
Info - return code:
|
55
|
+
* -4, if internal EVD subroutine hasn't converged
|
56
|
+
* -2, if there is a point with class number
|
57
|
+
outside of [0..NClasses-1].
|
58
|
+
* -1, if incorrect parameters was passed (NPoints<0,
|
59
|
+
NVars<1, NClasses<2)
|
60
|
+
* 1, if task has been solved
|
61
|
+
* 2, if there was a multicollinearity in training set,
|
62
|
+
but task has been solved.
|
63
|
+
W - linear combination coefficients, array[0..NVars-1]
|
64
|
+
|
65
|
+
-- ALGLIB --
|
66
|
+
Copyright 31.05.2008 by Bochkanov Sergey
|
67
|
+
*************************************************************************/
|
68
|
+
void fisherlda(const ap::real_2d_array& xy,
|
69
|
+
int npoints,
|
70
|
+
int nvars,
|
71
|
+
int nclasses,
|
72
|
+
int& info,
|
73
|
+
ap::real_1d_array& w)
|
74
|
+
{
|
75
|
+
ap::real_2d_array w2;
|
76
|
+
|
77
|
+
fisherldan(xy, npoints, nvars, nclasses, info, w2);
|
78
|
+
if( info>0 )
|
79
|
+
{
|
80
|
+
w.setbounds(0, nvars-1);
|
81
|
+
ap::vmove(w.getvector(0, nvars-1), w2.getcolumn(0, 0, nvars-1));
|
82
|
+
}
|
83
|
+
}
|
84
|
+
|
85
|
+
|
86
|
+
/*************************************************************************
|
87
|
+
N-dimensional multiclass Fisher LDA
|
88
|
+
|
89
|
+
Subroutine finds coefficients of linear combinations which optimally separates
|
90
|
+
training set on classes. It returns N-dimensional basis whose vector are sorted
|
91
|
+
by quality of training set separation (in descending order).
|
92
|
+
|
93
|
+
INPUT PARAMETERS:
|
94
|
+
XY - training set, array[0..NPoints-1,0..NVars].
|
95
|
+
First NVars columns store values of independent
|
96
|
+
variables, next column stores number of class (from 0
|
97
|
+
to NClasses-1) which dataset element belongs to. Fractional
|
98
|
+
values are rounded to nearest integer.
|
99
|
+
NPoints - training set size, NPoints>=0
|
100
|
+
NVars - number of independent variables, NVars>=1
|
101
|
+
NClasses - number of classes, NClasses>=2
|
102
|
+
|
103
|
+
|
104
|
+
OUTPUT PARAMETERS:
|
105
|
+
Info - return code:
|
106
|
+
* -4, if internal EVD subroutine hasn't converged
|
107
|
+
* -2, if there is a point with class number
|
108
|
+
outside of [0..NClasses-1].
|
109
|
+
* -1, if incorrect parameters was passed (NPoints<0,
|
110
|
+
NVars<1, NClasses<2)
|
111
|
+
* 1, if task has been solved
|
112
|
+
* 2, if there was a multicollinearity in training set,
|
113
|
+
but task has been solved.
|
114
|
+
W - basis, array[0..NVars-1,0..NVars-1]
|
115
|
+
columns of matrix stores basis vectors, sorted by
|
116
|
+
quality of training set separation (in descending order)
|
117
|
+
|
118
|
+
-- ALGLIB --
|
119
|
+
Copyright 31.05.2008 by Bochkanov Sergey
|
120
|
+
*************************************************************************/
|
121
|
+
void fisherldan(const ap::real_2d_array& xy,
|
122
|
+
int npoints,
|
123
|
+
int nvars,
|
124
|
+
int nclasses,
|
125
|
+
int& info,
|
126
|
+
ap::real_2d_array& w)
|
127
|
+
{
|
128
|
+
int i;
|
129
|
+
int j;
|
130
|
+
int k;
|
131
|
+
int m;
|
132
|
+
double v;
|
133
|
+
ap::integer_1d_array c;
|
134
|
+
ap::real_1d_array mu;
|
135
|
+
ap::real_2d_array muc;
|
136
|
+
ap::integer_1d_array nc;
|
137
|
+
ap::real_2d_array sw;
|
138
|
+
ap::real_2d_array st;
|
139
|
+
ap::real_2d_array z;
|
140
|
+
ap::real_2d_array z2;
|
141
|
+
ap::real_2d_array tm;
|
142
|
+
ap::real_2d_array sbroot;
|
143
|
+
ap::real_2d_array a;
|
144
|
+
ap::real_2d_array xyproj;
|
145
|
+
ap::real_2d_array wproj;
|
146
|
+
ap::real_1d_array tf;
|
147
|
+
ap::real_1d_array d;
|
148
|
+
ap::real_1d_array d2;
|
149
|
+
ap::real_1d_array work;
|
150
|
+
|
151
|
+
|
152
|
+
//
|
153
|
+
// Test data
|
154
|
+
//
|
155
|
+
if( npoints<0||nvars<1||nclasses<2 )
|
156
|
+
{
|
157
|
+
info = -1;
|
158
|
+
return;
|
159
|
+
}
|
160
|
+
for(i = 0; i <= npoints-1; i++)
|
161
|
+
{
|
162
|
+
if( ap::round(xy(i,nvars))<0||ap::round(xy(i,nvars))>=nclasses )
|
163
|
+
{
|
164
|
+
info = -2;
|
165
|
+
return;
|
166
|
+
}
|
167
|
+
}
|
168
|
+
info = 1;
|
169
|
+
|
170
|
+
//
|
171
|
+
// Special case: NPoints<=1
|
172
|
+
// Degenerate task.
|
173
|
+
//
|
174
|
+
if( npoints<=1 )
|
175
|
+
{
|
176
|
+
info = 2;
|
177
|
+
w.setbounds(0, nvars-1, 0, nvars-1);
|
178
|
+
for(i = 0; i <= nvars-1; i++)
|
179
|
+
{
|
180
|
+
for(j = 0; j <= nvars-1; j++)
|
181
|
+
{
|
182
|
+
if( i==j )
|
183
|
+
{
|
184
|
+
w(i,j) = 1;
|
185
|
+
}
|
186
|
+
else
|
187
|
+
{
|
188
|
+
w(i,j) = 0;
|
189
|
+
}
|
190
|
+
}
|
191
|
+
}
|
192
|
+
return;
|
193
|
+
}
|
194
|
+
|
195
|
+
//
|
196
|
+
// Prepare temporaries
|
197
|
+
//
|
198
|
+
tf.setbounds(0, nvars-1);
|
199
|
+
work.setbounds(1, ap::maxint(nvars, npoints));
|
200
|
+
|
201
|
+
//
|
202
|
+
// Convert class labels from reals to integers (just for convenience)
|
203
|
+
//
|
204
|
+
c.setbounds(0, npoints-1);
|
205
|
+
for(i = 0; i <= npoints-1; i++)
|
206
|
+
{
|
207
|
+
c(i) = ap::round(xy(i,nvars));
|
208
|
+
}
|
209
|
+
|
210
|
+
//
|
211
|
+
// Calculate class sizes and means
|
212
|
+
//
|
213
|
+
mu.setbounds(0, nvars-1);
|
214
|
+
muc.setbounds(0, nclasses-1, 0, nvars-1);
|
215
|
+
nc.setbounds(0, nclasses-1);
|
216
|
+
for(j = 0; j <= nvars-1; j++)
|
217
|
+
{
|
218
|
+
mu(j) = 0;
|
219
|
+
}
|
220
|
+
for(i = 0; i <= nclasses-1; i++)
|
221
|
+
{
|
222
|
+
nc(i) = 0;
|
223
|
+
for(j = 0; j <= nvars-1; j++)
|
224
|
+
{
|
225
|
+
muc(i,j) = 0;
|
226
|
+
}
|
227
|
+
}
|
228
|
+
for(i = 0; i <= npoints-1; i++)
|
229
|
+
{
|
230
|
+
ap::vadd(&mu(0), &xy(i, 0), ap::vlen(0,nvars-1));
|
231
|
+
ap::vadd(&muc(c(i), 0), &xy(i, 0), ap::vlen(0,nvars-1));
|
232
|
+
nc(c(i)) = nc(c(i))+1;
|
233
|
+
}
|
234
|
+
for(i = 0; i <= nclasses-1; i++)
|
235
|
+
{
|
236
|
+
v = double(1)/double(nc(i));
|
237
|
+
ap::vmul(&muc(i, 0), ap::vlen(0,nvars-1), v);
|
238
|
+
}
|
239
|
+
v = double(1)/double(npoints);
|
240
|
+
ap::vmul(&mu(0), ap::vlen(0,nvars-1), v);
|
241
|
+
|
242
|
+
//
|
243
|
+
// Create ST matrix
|
244
|
+
//
|
245
|
+
st.setbounds(0, nvars-1, 0, nvars-1);
|
246
|
+
for(i = 0; i <= nvars-1; i++)
|
247
|
+
{
|
248
|
+
for(j = 0; j <= nvars-1; j++)
|
249
|
+
{
|
250
|
+
st(i,j) = 0;
|
251
|
+
}
|
252
|
+
}
|
253
|
+
for(k = 0; k <= npoints-1; k++)
|
254
|
+
{
|
255
|
+
ap::vmove(&tf(0), &xy(k, 0), ap::vlen(0,nvars-1));
|
256
|
+
ap::vsub(&tf(0), &mu(0), ap::vlen(0,nvars-1));
|
257
|
+
for(i = 0; i <= nvars-1; i++)
|
258
|
+
{
|
259
|
+
v = tf(i);
|
260
|
+
ap::vadd(&st(i, 0), &tf(0), ap::vlen(0,nvars-1), v);
|
261
|
+
}
|
262
|
+
}
|
263
|
+
|
264
|
+
//
|
265
|
+
// Create SW matrix
|
266
|
+
//
|
267
|
+
sw.setbounds(0, nvars-1, 0, nvars-1);
|
268
|
+
for(i = 0; i <= nvars-1; i++)
|
269
|
+
{
|
270
|
+
for(j = 0; j <= nvars-1; j++)
|
271
|
+
{
|
272
|
+
sw(i,j) = 0;
|
273
|
+
}
|
274
|
+
}
|
275
|
+
for(k = 0; k <= npoints-1; k++)
|
276
|
+
{
|
277
|
+
ap::vmove(&tf(0), &xy(k, 0), ap::vlen(0,nvars-1));
|
278
|
+
ap::vsub(&tf(0), &muc(c(k), 0), ap::vlen(0,nvars-1));
|
279
|
+
for(i = 0; i <= nvars-1; i++)
|
280
|
+
{
|
281
|
+
v = tf(i);
|
282
|
+
ap::vadd(&sw(i, 0), &tf(0), ap::vlen(0,nvars-1), v);
|
283
|
+
}
|
284
|
+
}
|
285
|
+
|
286
|
+
//
|
287
|
+
// Maximize ratio J=(w'*ST*w)/(w'*SW*w).
|
288
|
+
//
|
289
|
+
// First, make transition from w to v such that w'*ST*w becomes v'*v:
|
290
|
+
// v = root(ST)*w = R*w
|
291
|
+
// R = root(D)*Z'
|
292
|
+
// w = (root(ST)^-1)*v = RI*v
|
293
|
+
// RI = Z*inv(root(D))
|
294
|
+
// J = (v'*v)/(v'*(RI'*SW*RI)*v)
|
295
|
+
// ST = Z*D*Z'
|
296
|
+
//
|
297
|
+
// so we have
|
298
|
+
//
|
299
|
+
// J = (v'*v) / (v'*(inv(root(D))*Z'*SW*Z*inv(root(D)))*v) =
|
300
|
+
// = (v'*v) / (v'*A*v)
|
301
|
+
//
|
302
|
+
if( !smatrixevd(st, nvars, 1, true, d, z) )
|
303
|
+
{
|
304
|
+
info = -4;
|
305
|
+
return;
|
306
|
+
}
|
307
|
+
w.setbounds(0, nvars-1, 0, nvars-1);
|
308
|
+
if( d(nvars-1)<=0||d(0)<=1000*ap::machineepsilon*d(nvars-1) )
|
309
|
+
{
|
310
|
+
|
311
|
+
//
|
312
|
+
// Special case: D[NVars-1]<=0
|
313
|
+
// Degenerate task (all variables takes the same value).
|
314
|
+
//
|
315
|
+
if( d(nvars-1)<=0 )
|
316
|
+
{
|
317
|
+
info = 2;
|
318
|
+
for(i = 0; i <= nvars-1; i++)
|
319
|
+
{
|
320
|
+
for(j = 0; j <= nvars-1; j++)
|
321
|
+
{
|
322
|
+
if( i==j )
|
323
|
+
{
|
324
|
+
w(i,j) = 1;
|
325
|
+
}
|
326
|
+
else
|
327
|
+
{
|
328
|
+
w(i,j) = 0;
|
329
|
+
}
|
330
|
+
}
|
331
|
+
}
|
332
|
+
return;
|
333
|
+
}
|
334
|
+
|
335
|
+
//
|
336
|
+
// Special case: degenerate ST matrix, multicollinearity found.
|
337
|
+
// Since we know ST eigenvalues/vectors we can translate task to
|
338
|
+
// non-degenerate form.
|
339
|
+
//
|
340
|
+
// Let WG is orthogonal basis of the non zero variance subspace
|
341
|
+
// of the ST and let WZ is orthogonal basis of the zero variance
|
342
|
+
// subspace.
|
343
|
+
//
|
344
|
+
// Projection on WG allows us to use LDA on reduced M-dimensional
|
345
|
+
// subspace, N-M vectors of WZ allows us to update reduced LDA
|
346
|
+
// factors to full N-dimensional subspace.
|
347
|
+
//
|
348
|
+
m = 0;
|
349
|
+
for(k = 0; k <= nvars-1; k++)
|
350
|
+
{
|
351
|
+
if( d(k)<=1000*ap::machineepsilon*d(nvars-1) )
|
352
|
+
{
|
353
|
+
m = k+1;
|
354
|
+
}
|
355
|
+
}
|
356
|
+
ap::ap_error::make_assertion(m!=0, "FisherLDAN: internal error #1");
|
357
|
+
xyproj.setbounds(0, npoints-1, 0, nvars-m);
|
358
|
+
matrixmatrixmultiply(xy, 0, npoints-1, 0, nvars-1, false, z, 0, nvars-1, m, nvars-1, false, 1.0, xyproj, 0, npoints-1, 0, nvars-m-1, 0.0, work);
|
359
|
+
for(i = 0; i <= npoints-1; i++)
|
360
|
+
{
|
361
|
+
xyproj(i,nvars-m) = xy(i,nvars);
|
362
|
+
}
|
363
|
+
fisherldan(xyproj, npoints, nvars-m, nclasses, info, wproj);
|
364
|
+
if( info<0 )
|
365
|
+
{
|
366
|
+
return;
|
367
|
+
}
|
368
|
+
matrixmatrixmultiply(z, 0, nvars-1, m, nvars-1, false, wproj, 0, nvars-m-1, 0, nvars-m-1, false, 1.0, w, 0, nvars-1, 0, nvars-m-1, 0.0, work);
|
369
|
+
for(k = nvars-m; k <= nvars-1; k++)
|
370
|
+
{
|
371
|
+
ap::vmove(w.getcolumn(k, 0, nvars-1), z.getcolumn(k-(nvars-m), 0, nvars-1));
|
372
|
+
}
|
373
|
+
info = 2;
|
374
|
+
}
|
375
|
+
else
|
376
|
+
{
|
377
|
+
|
378
|
+
//
|
379
|
+
// General case: no multicollinearity
|
380
|
+
//
|
381
|
+
tm.setbounds(0, nvars-1, 0, nvars-1);
|
382
|
+
a.setbounds(0, nvars-1, 0, nvars-1);
|
383
|
+
matrixmatrixmultiply(sw, 0, nvars-1, 0, nvars-1, false, z, 0, nvars-1, 0, nvars-1, false, 1.0, tm, 0, nvars-1, 0, nvars-1, 0.0, work);
|
384
|
+
matrixmatrixmultiply(z, 0, nvars-1, 0, nvars-1, true, tm, 0, nvars-1, 0, nvars-1, false, 1.0, a, 0, nvars-1, 0, nvars-1, 0.0, work);
|
385
|
+
for(i = 0; i <= nvars-1; i++)
|
386
|
+
{
|
387
|
+
for(j = 0; j <= nvars-1; j++)
|
388
|
+
{
|
389
|
+
a(i,j) = a(i,j)/sqrt(d(i)*d(j));
|
390
|
+
}
|
391
|
+
}
|
392
|
+
if( !smatrixevd(a, nvars, 1, true, d2, z2) )
|
393
|
+
{
|
394
|
+
info = -4;
|
395
|
+
return;
|
396
|
+
}
|
397
|
+
for(k = 0; k <= nvars-1; k++)
|
398
|
+
{
|
399
|
+
for(i = 0; i <= nvars-1; i++)
|
400
|
+
{
|
401
|
+
tf(i) = z2(i,k)/sqrt(d(i));
|
402
|
+
}
|
403
|
+
for(i = 0; i <= nvars-1; i++)
|
404
|
+
{
|
405
|
+
v = ap::vdotproduct(&z(i, 0), &tf(0), ap::vlen(0,nvars-1));
|
406
|
+
w(i,k) = v;
|
407
|
+
}
|
408
|
+
}
|
409
|
+
}
|
410
|
+
|
411
|
+
//
|
412
|
+
// Post-processing:
|
413
|
+
// * normalization
|
414
|
+
// * converting to non-negative form, if possible
|
415
|
+
//
|
416
|
+
for(k = 0; k <= nvars-1; k++)
|
417
|
+
{
|
418
|
+
v = ap::vdotproduct(w.getcolumn(k, 0, nvars-1), w.getcolumn(k, 0, nvars-1));
|
419
|
+
v = 1/sqrt(v);
|
420
|
+
ap::vmul(w.getcolumn(k, 0, nvars-1), v);
|
421
|
+
v = 0;
|
422
|
+
for(i = 0; i <= nvars-1; i++)
|
423
|
+
{
|
424
|
+
v = v+w(i,k);
|
425
|
+
}
|
426
|
+
if( v<0 )
|
427
|
+
{
|
428
|
+
ap::vmul(w.getcolumn(k, 0, nvars-1), -1);
|
429
|
+
}
|
430
|
+
}
|
431
|
+
}
|
432
|
+
|
433
|
+
|
434
|
+
|