alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,185 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _inverseupdate_h
|
34
|
+
#define _inverseupdate_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
/*************************************************************************
|
40
|
+
Inverse matrix update by the Sherman-Morrison formula
|
41
|
+
|
42
|
+
The algorithm updates matrix A^-1 when adding a number to an element
|
43
|
+
of matrix A.
|
44
|
+
|
45
|
+
Input parameters:
|
46
|
+
InvA - inverse of matrix A.
|
47
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
48
|
+
N - size of matrix A.
|
49
|
+
UpdRow - row where the element to be updated is stored.
|
50
|
+
UpdColumn - column where the element to be updated is stored.
|
51
|
+
UpdVal - a number to be added to the element.
|
52
|
+
|
53
|
+
|
54
|
+
Output parameters:
|
55
|
+
InvA - inverse of modified matrix A.
|
56
|
+
|
57
|
+
-- ALGLIB --
|
58
|
+
Copyright 2005 by Bochkanov Sergey
|
59
|
+
*************************************************************************/
|
60
|
+
void rmatrixinvupdatesimple(ap::real_2d_array& inva,
|
61
|
+
int n,
|
62
|
+
int updrow,
|
63
|
+
int updcolumn,
|
64
|
+
double updval);
|
65
|
+
|
66
|
+
|
67
|
+
/*************************************************************************
|
68
|
+
Inverse matrix update by the Sherman-Morrison formula
|
69
|
+
|
70
|
+
The algorithm updates matrix A^-1 when adding a vector to a row
|
71
|
+
of matrix A.
|
72
|
+
|
73
|
+
Input parameters:
|
74
|
+
InvA - inverse of matrix A.
|
75
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
76
|
+
N - size of matrix A.
|
77
|
+
UpdRow - the row of A whose vector V was added.
|
78
|
+
0 <= Row <= N-1
|
79
|
+
V - the vector to be added to a row.
|
80
|
+
Array whose index ranges within [0..N-1].
|
81
|
+
|
82
|
+
Output parameters:
|
83
|
+
InvA - inverse of modified matrix A.
|
84
|
+
|
85
|
+
-- ALGLIB --
|
86
|
+
Copyright 2005 by Bochkanov Sergey
|
87
|
+
*************************************************************************/
|
88
|
+
void rmatrixinvupdaterow(ap::real_2d_array& inva,
|
89
|
+
int n,
|
90
|
+
int updrow,
|
91
|
+
const ap::real_1d_array& v);
|
92
|
+
|
93
|
+
|
94
|
+
/*************************************************************************
|
95
|
+
Inverse matrix update by the Sherman-Morrison formula
|
96
|
+
|
97
|
+
The algorithm updates matrix A^-1 when adding a vector to a column
|
98
|
+
of matrix A.
|
99
|
+
|
100
|
+
Input parameters:
|
101
|
+
InvA - inverse of matrix A.
|
102
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
103
|
+
N - size of matrix A.
|
104
|
+
UpdColumn - the column of A whose vector U was added.
|
105
|
+
0 <= UpdColumn <= N-1
|
106
|
+
U - the vector to be added to a column.
|
107
|
+
Array whose index ranges within [0..N-1].
|
108
|
+
|
109
|
+
Output parameters:
|
110
|
+
InvA - inverse of modified matrix A.
|
111
|
+
|
112
|
+
-- ALGLIB --
|
113
|
+
Copyright 2005 by Bochkanov Sergey
|
114
|
+
*************************************************************************/
|
115
|
+
void rmatrixinvupdatecolumn(ap::real_2d_array& inva,
|
116
|
+
int n,
|
117
|
+
int updcolumn,
|
118
|
+
const ap::real_1d_array& u);
|
119
|
+
|
120
|
+
|
121
|
+
/*************************************************************************
|
122
|
+
Inverse matrix update by the Sherman-Morrison formula
|
123
|
+
|
124
|
+
The algorithm computes the inverse of matrix A+u*v� by using the given matrix
|
125
|
+
A^-1 and the vectors u and v.
|
126
|
+
|
127
|
+
Input parameters:
|
128
|
+
InvA - inverse of matrix A.
|
129
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
130
|
+
N - size of matrix A.
|
131
|
+
U - the vector modifying the matrix.
|
132
|
+
Array whose index ranges within [0..N-1].
|
133
|
+
V - the vector modifying the matrix.
|
134
|
+
Array whose index ranges within [0..N-1].
|
135
|
+
|
136
|
+
Output parameters:
|
137
|
+
InvA - inverse of matrix A + u*v'.
|
138
|
+
|
139
|
+
-- ALGLIB --
|
140
|
+
Copyright 2005 by Bochkanov Sergey
|
141
|
+
*************************************************************************/
|
142
|
+
void rmatrixinvupdateuv(ap::real_2d_array& inva,
|
143
|
+
int n,
|
144
|
+
const ap::real_1d_array& u,
|
145
|
+
const ap::real_1d_array& v);
|
146
|
+
|
147
|
+
|
148
|
+
/*************************************************************************
|
149
|
+
Obsolete 1-based subroutine
|
150
|
+
*************************************************************************/
|
151
|
+
void shermanmorrisonsimpleupdate(ap::real_2d_array& inva,
|
152
|
+
int n,
|
153
|
+
int updrow,
|
154
|
+
int updcolumn,
|
155
|
+
double updval);
|
156
|
+
|
157
|
+
|
158
|
+
/*************************************************************************
|
159
|
+
Obsolete 1-based subroutine
|
160
|
+
*************************************************************************/
|
161
|
+
void shermanmorrisonupdaterow(ap::real_2d_array& inva,
|
162
|
+
int n,
|
163
|
+
int updrow,
|
164
|
+
const ap::real_1d_array& v);
|
165
|
+
|
166
|
+
|
167
|
+
/*************************************************************************
|
168
|
+
Obsolete 1-based subroutine
|
169
|
+
*************************************************************************/
|
170
|
+
void shermanmorrisonupdatecolumn(ap::real_2d_array& inva,
|
171
|
+
int n,
|
172
|
+
int updcolumn,
|
173
|
+
const ap::real_1d_array& u);
|
174
|
+
|
175
|
+
|
176
|
+
/*************************************************************************
|
177
|
+
Obsolete 1-based subroutine
|
178
|
+
*************************************************************************/
|
179
|
+
void shermanmorrisonupdateuv(ap::real_2d_array& inva,
|
180
|
+
int n,
|
181
|
+
const ap::real_1d_array& u,
|
182
|
+
const ap::real_1d_array& v);
|
183
|
+
|
184
|
+
|
185
|
+
#endif
|
@@ -0,0 +1,164 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Cephes Math Library Release 2.8: June, 2000
|
3
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
* Sergey Bochkanov (ALGLIB project). Translation from C to
|
7
|
+
pseudocode.
|
8
|
+
|
9
|
+
See subroutines comments for additional copyrights.
|
10
|
+
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
12
|
+
modification, are permitted provided that the following conditions are
|
13
|
+
met:
|
14
|
+
|
15
|
+
- Redistributions of source code must retain the above copyright
|
16
|
+
notice, this list of conditions and the following disclaimer.
|
17
|
+
|
18
|
+
- Redistributions in binary form must reproduce the above copyright
|
19
|
+
notice, this list of conditions and the following disclaimer listed
|
20
|
+
in this license in the documentation and/or other materials
|
21
|
+
provided with the distribution.
|
22
|
+
|
23
|
+
- Neither the name of the copyright holders nor the names of its
|
24
|
+
contributors may be used to endorse or promote products derived from
|
25
|
+
this software without specific prior written permission.
|
26
|
+
|
27
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
|
+
*************************************************************************/
|
39
|
+
|
40
|
+
#include <stdafx.h>
|
41
|
+
#include "jacobianelliptic.h"
|
42
|
+
|
43
|
+
/*************************************************************************
|
44
|
+
Jacobian Elliptic Functions
|
45
|
+
|
46
|
+
Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
|
47
|
+
and dn(u|m) of parameter m between 0 and 1, and real
|
48
|
+
argument u.
|
49
|
+
|
50
|
+
These functions are periodic, with quarter-period on the
|
51
|
+
real axis equal to the complete elliptic integral
|
52
|
+
ellpk(1.0-m).
|
53
|
+
|
54
|
+
Relation to incomplete elliptic integral:
|
55
|
+
If u = ellik(phi,m), then sn(u|m) = sin(phi),
|
56
|
+
and cn(u|m) = cos(phi). Phi is called the amplitude of u.
|
57
|
+
|
58
|
+
Computation is by means of the arithmetic-geometric mean
|
59
|
+
algorithm, except when m is within 1e-9 of 0 or 1. In the
|
60
|
+
latter case with m close to 1, the approximation applies
|
61
|
+
only for phi < pi/2.
|
62
|
+
|
63
|
+
ACCURACY:
|
64
|
+
|
65
|
+
Tested at random points with u between 0 and 10, m between
|
66
|
+
0 and 1.
|
67
|
+
|
68
|
+
Absolute error (* = relative error):
|
69
|
+
arithmetic function # trials peak rms
|
70
|
+
IEEE phi 10000 9.2e-16* 1.4e-16*
|
71
|
+
IEEE sn 50000 4.1e-15 4.6e-16
|
72
|
+
IEEE cn 40000 3.6e-15 4.4e-16
|
73
|
+
IEEE dn 10000 1.3e-12 1.8e-14
|
74
|
+
|
75
|
+
Peak error observed in consistency check using addition
|
76
|
+
theorem for sn(u+v) was 4e-16 (absolute). Also tested by
|
77
|
+
the above relation to the incomplete elliptic integral.
|
78
|
+
Accuracy deteriorates when u is large.
|
79
|
+
|
80
|
+
Cephes Math Library Release 2.8: June, 2000
|
81
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
82
|
+
*************************************************************************/
|
83
|
+
void jacobianellipticfunctions(double u,
|
84
|
+
double m,
|
85
|
+
double& sn,
|
86
|
+
double& cn,
|
87
|
+
double& dn,
|
88
|
+
double& ph)
|
89
|
+
{
|
90
|
+
double ai;
|
91
|
+
double b;
|
92
|
+
double phi;
|
93
|
+
double t;
|
94
|
+
double twon;
|
95
|
+
ap::real_1d_array a;
|
96
|
+
ap::real_1d_array c;
|
97
|
+
int i;
|
98
|
+
|
99
|
+
ap::ap_error::make_assertion(m>=0&&m<=1, "Domain error in JacobianEllipticFunctions: m<0 or m>1");
|
100
|
+
a.setbounds(0, 8);
|
101
|
+
c.setbounds(0, 8);
|
102
|
+
if( m<1.0e-9 )
|
103
|
+
{
|
104
|
+
t = sin(u);
|
105
|
+
b = cos(u);
|
106
|
+
ai = 0.25*m*(u-t*b);
|
107
|
+
sn = t-ai*b;
|
108
|
+
cn = b+ai*t;
|
109
|
+
ph = u-ai;
|
110
|
+
dn = 1.0-0.5*m*t*t;
|
111
|
+
return;
|
112
|
+
}
|
113
|
+
if( m>=0.9999999999 )
|
114
|
+
{
|
115
|
+
ai = 0.25*(1.0-m);
|
116
|
+
b = cosh(u);
|
117
|
+
t = tanh(u);
|
118
|
+
phi = 1.0/b;
|
119
|
+
twon = b*sinh(u);
|
120
|
+
sn = t+ai*(twon-u)/(b*b);
|
121
|
+
ph = 2.0*atan(exp(u))-1.57079632679489661923+ai*(twon-u)/b;
|
122
|
+
ai = ai*t*phi;
|
123
|
+
cn = phi-ai*(twon-u);
|
124
|
+
dn = phi+ai*(twon+u);
|
125
|
+
return;
|
126
|
+
}
|
127
|
+
a(0) = 1.0;
|
128
|
+
b = sqrt(1.0-m);
|
129
|
+
c(0) = sqrt(m);
|
130
|
+
twon = 1.0;
|
131
|
+
i = 0;
|
132
|
+
while(fabs(c(i)/a(i))>ap::machineepsilon)
|
133
|
+
{
|
134
|
+
if( i>7 )
|
135
|
+
{
|
136
|
+
ap::ap_error::make_assertion(false, "Overflow in JacobianEllipticFunctions");
|
137
|
+
break;
|
138
|
+
}
|
139
|
+
ai = a(i);
|
140
|
+
i = i+1;
|
141
|
+
c(i) = 0.5*(ai-b);
|
142
|
+
t = sqrt(ai*b);
|
143
|
+
a(i) = 0.5*(ai+b);
|
144
|
+
b = t;
|
145
|
+
twon = twon*2.0;
|
146
|
+
}
|
147
|
+
phi = twon*a(i)*u;
|
148
|
+
do
|
149
|
+
{
|
150
|
+
t = c(i)*sin(phi)/a(i);
|
151
|
+
b = phi;
|
152
|
+
phi = (asin(t)+phi)/2.0;
|
153
|
+
i = i-1;
|
154
|
+
}
|
155
|
+
while(i!=0);
|
156
|
+
sn = sin(phi);
|
157
|
+
t = cos(phi);
|
158
|
+
cn = t;
|
159
|
+
dn = t/cos(phi-b);
|
160
|
+
ph = phi;
|
161
|
+
}
|
162
|
+
|
163
|
+
|
164
|
+
|
@@ -0,0 +1,94 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Cephes Math Library Release 2.8: June, 2000
|
3
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
* Sergey Bochkanov (ALGLIB project). Translation from C to
|
7
|
+
pseudocode.
|
8
|
+
|
9
|
+
See subroutines comments for additional copyrights.
|
10
|
+
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
12
|
+
modification, are permitted provided that the following conditions are
|
13
|
+
met:
|
14
|
+
|
15
|
+
- Redistributions of source code must retain the above copyright
|
16
|
+
notice, this list of conditions and the following disclaimer.
|
17
|
+
|
18
|
+
- Redistributions in binary form must reproduce the above copyright
|
19
|
+
notice, this list of conditions and the following disclaimer listed
|
20
|
+
in this license in the documentation and/or other materials
|
21
|
+
provided with the distribution.
|
22
|
+
|
23
|
+
- Neither the name of the copyright holders nor the names of its
|
24
|
+
contributors may be used to endorse or promote products derived from
|
25
|
+
this software without specific prior written permission.
|
26
|
+
|
27
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
|
+
*************************************************************************/
|
39
|
+
|
40
|
+
#ifndef _jacobianelliptic_h
|
41
|
+
#define _jacobianelliptic_h
|
42
|
+
|
43
|
+
#include "ap.h"
|
44
|
+
#include "ialglib.h"
|
45
|
+
|
46
|
+
/*************************************************************************
|
47
|
+
Jacobian Elliptic Functions
|
48
|
+
|
49
|
+
Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
|
50
|
+
and dn(u|m) of parameter m between 0 and 1, and real
|
51
|
+
argument u.
|
52
|
+
|
53
|
+
These functions are periodic, with quarter-period on the
|
54
|
+
real axis equal to the complete elliptic integral
|
55
|
+
ellpk(1.0-m).
|
56
|
+
|
57
|
+
Relation to incomplete elliptic integral:
|
58
|
+
If u = ellik(phi,m), then sn(u|m) = sin(phi),
|
59
|
+
and cn(u|m) = cos(phi). Phi is called the amplitude of u.
|
60
|
+
|
61
|
+
Computation is by means of the arithmetic-geometric mean
|
62
|
+
algorithm, except when m is within 1e-9 of 0 or 1. In the
|
63
|
+
latter case with m close to 1, the approximation applies
|
64
|
+
only for phi < pi/2.
|
65
|
+
|
66
|
+
ACCURACY:
|
67
|
+
|
68
|
+
Tested at random points with u between 0 and 10, m between
|
69
|
+
0 and 1.
|
70
|
+
|
71
|
+
Absolute error (* = relative error):
|
72
|
+
arithmetic function # trials peak rms
|
73
|
+
IEEE phi 10000 9.2e-16* 1.4e-16*
|
74
|
+
IEEE sn 50000 4.1e-15 4.6e-16
|
75
|
+
IEEE cn 40000 3.6e-15 4.4e-16
|
76
|
+
IEEE dn 10000 1.3e-12 1.8e-14
|
77
|
+
|
78
|
+
Peak error observed in consistency check using addition
|
79
|
+
theorem for sn(u+v) was 4e-16 (absolute). Also tested by
|
80
|
+
the above relation to the incomplete elliptic integral.
|
81
|
+
Accuracy deteriorates when u is large.
|
82
|
+
|
83
|
+
Cephes Math Library Release 2.8: June, 2000
|
84
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
85
|
+
*************************************************************************/
|
86
|
+
void jacobianellipticfunctions(double u,
|
87
|
+
double m,
|
88
|
+
double& sn,
|
89
|
+
double& cn,
|
90
|
+
double& dn,
|
91
|
+
double& ph);
|
92
|
+
|
93
|
+
|
94
|
+
#endif
|
@@ -0,0 +1,2271 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "jarquebera.h"
|
35
|
+
|
36
|
+
static void jarqueberastatistic(const ap::real_1d_array& x, int n, double& s);
|
37
|
+
static double jarqueberaapprox(int n, double s);
|
38
|
+
static double jbtbl5(double s);
|
39
|
+
static double jbtbl6(double s);
|
40
|
+
static double jbtbl7(double s);
|
41
|
+
static double jbtbl8(double s);
|
42
|
+
static double jbtbl9(double s);
|
43
|
+
static double jbtbl10(double s);
|
44
|
+
static double jbtbl11(double s);
|
45
|
+
static double jbtbl12(double s);
|
46
|
+
static double jbtbl13(double s);
|
47
|
+
static double jbtbl14(double s);
|
48
|
+
static double jbtbl15(double s);
|
49
|
+
static double jbtbl16(double s);
|
50
|
+
static double jbtbl17(double s);
|
51
|
+
static double jbtbl18(double s);
|
52
|
+
static double jbtbl19(double s);
|
53
|
+
static double jbtbl20(double s);
|
54
|
+
static double jbtbl30(double s);
|
55
|
+
static double jbtbl50(double s);
|
56
|
+
static double jbtbl65(double s);
|
57
|
+
static double jbtbl100(double s);
|
58
|
+
static double jbtbl130(double s);
|
59
|
+
static double jbtbl200(double s);
|
60
|
+
static double jbtbl301(double s);
|
61
|
+
static double jbtbl501(double s);
|
62
|
+
static double jbtbl701(double s);
|
63
|
+
static double jbtbl1401(double s);
|
64
|
+
static void jbcheb(double x, double c, double& tj, double& tj1, double& r);
|
65
|
+
|
66
|
+
/*************************************************************************
|
67
|
+
Jarque-Bera test
|
68
|
+
|
69
|
+
This test checks hypotheses about the fact that a given sample X is a
|
70
|
+
sample of normal random variable.
|
71
|
+
|
72
|
+
Requirements:
|
73
|
+
* the number of elements in the sample is not less than 5.
|
74
|
+
|
75
|
+
Input parameters:
|
76
|
+
X - sample. Array whose index goes from 0 to N-1.
|
77
|
+
N - size of the sample. N>=5
|
78
|
+
|
79
|
+
Output parameters:
|
80
|
+
BothTails - p-value for two-tailed test.
|
81
|
+
If BothTails is less than the given significance level
|
82
|
+
the null hypothesis is rejected.
|
83
|
+
LeftTail - p-value for left-tailed test.
|
84
|
+
If LeftTail is less than the given significance level,
|
85
|
+
the null hypothesis is rejected.
|
86
|
+
RightTail - p-value for right-tailed test.
|
87
|
+
If RightTail is less than the given significance level
|
88
|
+
the null hypothesis is rejected.
|
89
|
+
|
90
|
+
Accuracy of the approximation used (5<=N<=1951):
|
91
|
+
|
92
|
+
p-value relative error (5<=N<=1951)
|
93
|
+
[1, 0.1] < 1%
|
94
|
+
[0.1, 0.01] < 2%
|
95
|
+
[0.01, 0.001] < 6%
|
96
|
+
[0.001, 0] wasn't measured
|
97
|
+
|
98
|
+
For N>1951 accuracy wasn't measured but it shouldn't be sharply different
|
99
|
+
from table values.
|
100
|
+
|
101
|
+
-- ALGLIB --
|
102
|
+
Copyright 09.04.2007 by Bochkanov Sergey
|
103
|
+
*************************************************************************/
|
104
|
+
void jarqueberatest(const ap::real_1d_array& x, int n, double& p)
|
105
|
+
{
|
106
|
+
double s;
|
107
|
+
|
108
|
+
|
109
|
+
//
|
110
|
+
// N is too small
|
111
|
+
//
|
112
|
+
if( n<5 )
|
113
|
+
{
|
114
|
+
p = 1.0;
|
115
|
+
return;
|
116
|
+
}
|
117
|
+
|
118
|
+
//
|
119
|
+
// N is large enough
|
120
|
+
//
|
121
|
+
jarqueberastatistic(x, n, s);
|
122
|
+
p = jarqueberaapprox(n, s);
|
123
|
+
}
|
124
|
+
|
125
|
+
|
126
|
+
static void jarqueberastatistic(const ap::real_1d_array& x, int n, double& s)
|
127
|
+
{
|
128
|
+
int i;
|
129
|
+
double v;
|
130
|
+
double v1;
|
131
|
+
double v2;
|
132
|
+
double stddev;
|
133
|
+
double mean;
|
134
|
+
double variance;
|
135
|
+
double skewness;
|
136
|
+
double kurtosis;
|
137
|
+
|
138
|
+
mean = 0;
|
139
|
+
variance = 0;
|
140
|
+
skewness = 0;
|
141
|
+
kurtosis = 0;
|
142
|
+
stddev = 0;
|
143
|
+
ap::ap_error::make_assertion(n>1, "");
|
144
|
+
|
145
|
+
//
|
146
|
+
// Mean
|
147
|
+
//
|
148
|
+
for(i = 0; i <= n-1; i++)
|
149
|
+
{
|
150
|
+
mean = mean+x(i);
|
151
|
+
}
|
152
|
+
mean = mean/n;
|
153
|
+
|
154
|
+
//
|
155
|
+
// Variance (using corrected two-pass algorithm)
|
156
|
+
//
|
157
|
+
if( n!=1 )
|
158
|
+
{
|
159
|
+
v1 = 0;
|
160
|
+
for(i = 0; i <= n-1; i++)
|
161
|
+
{
|
162
|
+
v1 = v1+ap::sqr(x(i)-mean);
|
163
|
+
}
|
164
|
+
v2 = 0;
|
165
|
+
for(i = 0; i <= n-1; i++)
|
166
|
+
{
|
167
|
+
v2 = v2+(x(i)-mean);
|
168
|
+
}
|
169
|
+
v2 = ap::sqr(v2)/n;
|
170
|
+
variance = (v1-v2)/(n-1);
|
171
|
+
if( variance<0 )
|
172
|
+
{
|
173
|
+
variance = 0;
|
174
|
+
}
|
175
|
+
stddev = sqrt(variance);
|
176
|
+
}
|
177
|
+
|
178
|
+
//
|
179
|
+
// Skewness and kurtosis
|
180
|
+
//
|
181
|
+
if( stddev!=0 )
|
182
|
+
{
|
183
|
+
for(i = 0; i <= n-1; i++)
|
184
|
+
{
|
185
|
+
v = (x(i)-mean)/stddev;
|
186
|
+
v2 = ap::sqr(v);
|
187
|
+
skewness = skewness+v2*v;
|
188
|
+
kurtosis = kurtosis+ap::sqr(v2);
|
189
|
+
}
|
190
|
+
skewness = skewness/n;
|
191
|
+
kurtosis = kurtosis/n-3;
|
192
|
+
}
|
193
|
+
|
194
|
+
//
|
195
|
+
// Statistic
|
196
|
+
//
|
197
|
+
s = double(n)/double(6)*(ap::sqr(skewness)+ap::sqr(kurtosis)/4);
|
198
|
+
}
|
199
|
+
|
200
|
+
|
201
|
+
static double jarqueberaapprox(int n, double s)
|
202
|
+
{
|
203
|
+
double result;
|
204
|
+
ap::real_1d_array vx;
|
205
|
+
ap::real_1d_array vy;
|
206
|
+
ap::real_2d_array ctbl;
|
207
|
+
double t1;
|
208
|
+
double t2;
|
209
|
+
double t3;
|
210
|
+
double t;
|
211
|
+
double f1;
|
212
|
+
double f2;
|
213
|
+
double f3;
|
214
|
+
double f;
|
215
|
+
double f12;
|
216
|
+
double f23;
|
217
|
+
double x;
|
218
|
+
|
219
|
+
result = 1;
|
220
|
+
x = s;
|
221
|
+
if( n<5 )
|
222
|
+
{
|
223
|
+
return result;
|
224
|
+
}
|
225
|
+
|
226
|
+
//
|
227
|
+
// N = 5..20 are tabulated
|
228
|
+
//
|
229
|
+
if( n>=5&&n<=20 )
|
230
|
+
{
|
231
|
+
if( n==5 )
|
232
|
+
{
|
233
|
+
result = exp(jbtbl5(x));
|
234
|
+
}
|
235
|
+
if( n==6 )
|
236
|
+
{
|
237
|
+
result = exp(jbtbl6(x));
|
238
|
+
}
|
239
|
+
if( n==7 )
|
240
|
+
{
|
241
|
+
result = exp(jbtbl7(x));
|
242
|
+
}
|
243
|
+
if( n==8 )
|
244
|
+
{
|
245
|
+
result = exp(jbtbl8(x));
|
246
|
+
}
|
247
|
+
if( n==9 )
|
248
|
+
{
|
249
|
+
result = exp(jbtbl9(x));
|
250
|
+
}
|
251
|
+
if( n==10 )
|
252
|
+
{
|
253
|
+
result = exp(jbtbl10(x));
|
254
|
+
}
|
255
|
+
if( n==11 )
|
256
|
+
{
|
257
|
+
result = exp(jbtbl11(x));
|
258
|
+
}
|
259
|
+
if( n==12 )
|
260
|
+
{
|
261
|
+
result = exp(jbtbl12(x));
|
262
|
+
}
|
263
|
+
if( n==13 )
|
264
|
+
{
|
265
|
+
result = exp(jbtbl13(x));
|
266
|
+
}
|
267
|
+
if( n==14 )
|
268
|
+
{
|
269
|
+
result = exp(jbtbl14(x));
|
270
|
+
}
|
271
|
+
if( n==15 )
|
272
|
+
{
|
273
|
+
result = exp(jbtbl15(x));
|
274
|
+
}
|
275
|
+
if( n==16 )
|
276
|
+
{
|
277
|
+
result = exp(jbtbl16(x));
|
278
|
+
}
|
279
|
+
if( n==17 )
|
280
|
+
{
|
281
|
+
result = exp(jbtbl17(x));
|
282
|
+
}
|
283
|
+
if( n==18 )
|
284
|
+
{
|
285
|
+
result = exp(jbtbl18(x));
|
286
|
+
}
|
287
|
+
if( n==19 )
|
288
|
+
{
|
289
|
+
result = exp(jbtbl19(x));
|
290
|
+
}
|
291
|
+
if( n==20 )
|
292
|
+
{
|
293
|
+
result = exp(jbtbl20(x));
|
294
|
+
}
|
295
|
+
return result;
|
296
|
+
}
|
297
|
+
|
298
|
+
//
|
299
|
+
// N = 20, 30, 50 are tabulated.
|
300
|
+
// In-between values are interpolated
|
301
|
+
// using interpolating polynomial of the second degree.
|
302
|
+
//
|
303
|
+
if( n>20&&n<=50 )
|
304
|
+
{
|
305
|
+
t1 = -1.0/20.0;
|
306
|
+
t2 = -1.0/30.0;
|
307
|
+
t3 = -1.0/50.0;
|
308
|
+
t = -1.0/n;
|
309
|
+
f1 = jbtbl20(x);
|
310
|
+
f2 = jbtbl30(x);
|
311
|
+
f3 = jbtbl50(x);
|
312
|
+
f12 = ((t-t2)*f1+(t1-t)*f2)/(t1-t2);
|
313
|
+
f23 = ((t-t3)*f2+(t2-t)*f3)/(t2-t3);
|
314
|
+
result = ((t-t3)*f12+(t1-t)*f23)/(t1-t3);
|
315
|
+
if( result>0 )
|
316
|
+
{
|
317
|
+
result = 0;
|
318
|
+
}
|
319
|
+
result = exp(result);
|
320
|
+
return result;
|
321
|
+
}
|
322
|
+
|
323
|
+
//
|
324
|
+
// N = 50, 65, 100 are tabulated.
|
325
|
+
// In-between values are interpolated
|
326
|
+
// using interpolating polynomial of the second degree.
|
327
|
+
//
|
328
|
+
if( n>50&&n<=100 )
|
329
|
+
{
|
330
|
+
t1 = -1.0/50.0;
|
331
|
+
t2 = -1.0/65.0;
|
332
|
+
t3 = -1.0/100.0;
|
333
|
+
t = -1.0/n;
|
334
|
+
f1 = jbtbl50(x);
|
335
|
+
f2 = jbtbl65(x);
|
336
|
+
f3 = jbtbl100(x);
|
337
|
+
f12 = ((t-t2)*f1+(t1-t)*f2)/(t1-t2);
|
338
|
+
f23 = ((t-t3)*f2+(t2-t)*f3)/(t2-t3);
|
339
|
+
result = ((t-t3)*f12+(t1-t)*f23)/(t1-t3);
|
340
|
+
if( result>0 )
|
341
|
+
{
|
342
|
+
result = 0;
|
343
|
+
}
|
344
|
+
result = exp(result);
|
345
|
+
return result;
|
346
|
+
}
|
347
|
+
|
348
|
+
//
|
349
|
+
// N = 100, 130, 200 are tabulated.
|
350
|
+
// In-between values are interpolated
|
351
|
+
// using interpolating polynomial of the second degree.
|
352
|
+
//
|
353
|
+
if( n>100&&n<=200 )
|
354
|
+
{
|
355
|
+
t1 = -1.0/100.0;
|
356
|
+
t2 = -1.0/130.0;
|
357
|
+
t3 = -1.0/200.0;
|
358
|
+
t = -1.0/n;
|
359
|
+
f1 = jbtbl100(x);
|
360
|
+
f2 = jbtbl130(x);
|
361
|
+
f3 = jbtbl200(x);
|
362
|
+
f12 = ((t-t2)*f1+(t1-t)*f2)/(t1-t2);
|
363
|
+
f23 = ((t-t3)*f2+(t2-t)*f3)/(t2-t3);
|
364
|
+
result = ((t-t3)*f12+(t1-t)*f23)/(t1-t3);
|
365
|
+
if( result>0 )
|
366
|
+
{
|
367
|
+
result = 0;
|
368
|
+
}
|
369
|
+
result = exp(result);
|
370
|
+
return result;
|
371
|
+
}
|
372
|
+
|
373
|
+
//
|
374
|
+
// N = 200, 301, 501 are tabulated.
|
375
|
+
// In-between values are interpolated
|
376
|
+
// using interpolating polynomial of the second degree.
|
377
|
+
//
|
378
|
+
if( n>200&&n<=501 )
|
379
|
+
{
|
380
|
+
t1 = -1.0/200.0;
|
381
|
+
t2 = -1.0/301.0;
|
382
|
+
t3 = -1.0/501.0;
|
383
|
+
t = -1.0/n;
|
384
|
+
f1 = jbtbl200(x);
|
385
|
+
f2 = jbtbl301(x);
|
386
|
+
f3 = jbtbl501(x);
|
387
|
+
f12 = ((t-t2)*f1+(t1-t)*f2)/(t1-t2);
|
388
|
+
f23 = ((t-t3)*f2+(t2-t)*f3)/(t2-t3);
|
389
|
+
result = ((t-t3)*f12+(t1-t)*f23)/(t1-t3);
|
390
|
+
if( result>0 )
|
391
|
+
{
|
392
|
+
result = 0;
|
393
|
+
}
|
394
|
+
result = exp(result);
|
395
|
+
return result;
|
396
|
+
}
|
397
|
+
|
398
|
+
//
|
399
|
+
// N = 501, 701, 1401 are tabulated.
|
400
|
+
// In-between values are interpolated
|
401
|
+
// using interpolating polynomial of the second degree.
|
402
|
+
//
|
403
|
+
if( n>501&&n<=1401 )
|
404
|
+
{
|
405
|
+
t1 = -1.0/501.0;
|
406
|
+
t2 = -1.0/701.0;
|
407
|
+
t3 = -1.0/1401.0;
|
408
|
+
t = -1.0/n;
|
409
|
+
f1 = jbtbl501(x);
|
410
|
+
f2 = jbtbl701(x);
|
411
|
+
f3 = jbtbl1401(x);
|
412
|
+
f12 = ((t-t2)*f1+(t1-t)*f2)/(t1-t2);
|
413
|
+
f23 = ((t-t3)*f2+(t2-t)*f3)/(t2-t3);
|
414
|
+
result = ((t-t3)*f12+(t1-t)*f23)/(t1-t3);
|
415
|
+
if( result>0 )
|
416
|
+
{
|
417
|
+
result = 0;
|
418
|
+
}
|
419
|
+
result = exp(result);
|
420
|
+
return result;
|
421
|
+
}
|
422
|
+
|
423
|
+
//
|
424
|
+
// Asymptotic expansion
|
425
|
+
//
|
426
|
+
if( n>1401 )
|
427
|
+
{
|
428
|
+
result = -0.5*x+(jbtbl1401(x)+0.5*x)*sqrt(double(1401)/double(n));
|
429
|
+
if( result>0 )
|
430
|
+
{
|
431
|
+
result = 0;
|
432
|
+
}
|
433
|
+
result = exp(result);
|
434
|
+
return result;
|
435
|
+
}
|
436
|
+
return result;
|
437
|
+
}
|
438
|
+
|
439
|
+
|
440
|
+
static double jbtbl5(double s)
|
441
|
+
{
|
442
|
+
double result;
|
443
|
+
double x;
|
444
|
+
double tj;
|
445
|
+
double tj1;
|
446
|
+
|
447
|
+
result = 0;
|
448
|
+
if( s<=0.4000 )
|
449
|
+
{
|
450
|
+
x = 2*(s-0.000000)/0.400000-1;
|
451
|
+
tj = 1;
|
452
|
+
tj1 = x;
|
453
|
+
jbcheb(x, -1.097885e-20, tj, tj1, result);
|
454
|
+
jbcheb(x, -2.854501e-20, tj, tj1, result);
|
455
|
+
jbcheb(x, -1.756616e-20, tj, tj1, result);
|
456
|
+
if( result>0 )
|
457
|
+
{
|
458
|
+
result = 0;
|
459
|
+
}
|
460
|
+
return result;
|
461
|
+
}
|
462
|
+
if( s<=1.1000 )
|
463
|
+
{
|
464
|
+
x = 2*(s-0.400000)/0.700000-1;
|
465
|
+
tj = 1;
|
466
|
+
tj1 = x;
|
467
|
+
jbcheb(x, -1.324545e+00, tj, tj1, result);
|
468
|
+
jbcheb(x, -1.075941e+00, tj, tj1, result);
|
469
|
+
jbcheb(x, -9.772272e-01, tj, tj1, result);
|
470
|
+
jbcheb(x, 3.175686e-01, tj, tj1, result);
|
471
|
+
jbcheb(x, -1.576162e-01, tj, tj1, result);
|
472
|
+
jbcheb(x, 1.126861e-01, tj, tj1, result);
|
473
|
+
jbcheb(x, -3.434425e-02, tj, tj1, result);
|
474
|
+
jbcheb(x, -2.790359e-01, tj, tj1, result);
|
475
|
+
jbcheb(x, 2.809178e-02, tj, tj1, result);
|
476
|
+
jbcheb(x, -5.479704e-01, tj, tj1, result);
|
477
|
+
jbcheb(x, 3.717040e-02, tj, tj1, result);
|
478
|
+
jbcheb(x, -5.294170e-01, tj, tj1, result);
|
479
|
+
jbcheb(x, 2.880632e-02, tj, tj1, result);
|
480
|
+
jbcheb(x, -3.023344e-01, tj, tj1, result);
|
481
|
+
jbcheb(x, 1.601531e-02, tj, tj1, result);
|
482
|
+
jbcheb(x, -7.920403e-02, tj, tj1, result);
|
483
|
+
if( result>0 )
|
484
|
+
{
|
485
|
+
result = 0;
|
486
|
+
}
|
487
|
+
return result;
|
488
|
+
}
|
489
|
+
result = -5.188419e+02*(s-1.100000e+00)-4.767297e+00;
|
490
|
+
return result;
|
491
|
+
}
|
492
|
+
|
493
|
+
|
494
|
+
static double jbtbl6(double s)
|
495
|
+
{
|
496
|
+
double result;
|
497
|
+
double x;
|
498
|
+
double tj;
|
499
|
+
double tj1;
|
500
|
+
|
501
|
+
result = 0;
|
502
|
+
if( s<=0.2500 )
|
503
|
+
{
|
504
|
+
x = 2*(s-0.000000)/0.250000-1;
|
505
|
+
tj = 1;
|
506
|
+
tj1 = x;
|
507
|
+
jbcheb(x, -2.274707e-04, tj, tj1, result);
|
508
|
+
jbcheb(x, -5.700471e-04, tj, tj1, result);
|
509
|
+
jbcheb(x, -3.425764e-04, tj, tj1, result);
|
510
|
+
if( result>0 )
|
511
|
+
{
|
512
|
+
result = 0;
|
513
|
+
}
|
514
|
+
return result;
|
515
|
+
}
|
516
|
+
if( s<=1.3000 )
|
517
|
+
{
|
518
|
+
x = 2*(s-0.250000)/1.050000-1;
|
519
|
+
tj = 1;
|
520
|
+
tj1 = x;
|
521
|
+
jbcheb(x, -1.339000e+00, tj, tj1, result);
|
522
|
+
jbcheb(x, -2.011104e+00, tj, tj1, result);
|
523
|
+
jbcheb(x, -8.168177e-01, tj, tj1, result);
|
524
|
+
jbcheb(x, -1.085666e-01, tj, tj1, result);
|
525
|
+
jbcheb(x, 7.738606e-02, tj, tj1, result);
|
526
|
+
jbcheb(x, 7.022876e-02, tj, tj1, result);
|
527
|
+
jbcheb(x, 3.462402e-02, tj, tj1, result);
|
528
|
+
jbcheb(x, 6.908270e-03, tj, tj1, result);
|
529
|
+
jbcheb(x, -8.230772e-03, tj, tj1, result);
|
530
|
+
jbcheb(x, -1.006996e-02, tj, tj1, result);
|
531
|
+
jbcheb(x, -5.410222e-03, tj, tj1, result);
|
532
|
+
jbcheb(x, -2.893768e-03, tj, tj1, result);
|
533
|
+
jbcheb(x, 8.114564e-04, tj, tj1, result);
|
534
|
+
if( result>0 )
|
535
|
+
{
|
536
|
+
result = 0;
|
537
|
+
}
|
538
|
+
return result;
|
539
|
+
}
|
540
|
+
if( s<=1.8500 )
|
541
|
+
{
|
542
|
+
x = 2*(s-1.300000)/0.550000-1;
|
543
|
+
tj = 1;
|
544
|
+
tj1 = x;
|
545
|
+
jbcheb(x, -6.794311e+00, tj, tj1, result);
|
546
|
+
jbcheb(x, -3.578700e+00, tj, tj1, result);
|
547
|
+
jbcheb(x, -1.394664e+00, tj, tj1, result);
|
548
|
+
jbcheb(x, -7.928290e-01, tj, tj1, result);
|
549
|
+
jbcheb(x, -4.813273e-01, tj, tj1, result);
|
550
|
+
jbcheb(x, -3.076063e-01, tj, tj1, result);
|
551
|
+
jbcheb(x, -1.835380e-01, tj, tj1, result);
|
552
|
+
jbcheb(x, -1.013013e-01, tj, tj1, result);
|
553
|
+
jbcheb(x, -5.058903e-02, tj, tj1, result);
|
554
|
+
jbcheb(x, -1.856915e-02, tj, tj1, result);
|
555
|
+
jbcheb(x, -6.710887e-03, tj, tj1, result);
|
556
|
+
if( result>0 )
|
557
|
+
{
|
558
|
+
result = 0;
|
559
|
+
}
|
560
|
+
return result;
|
561
|
+
}
|
562
|
+
result = -1.770029e+02*(s-1.850000e+00)-1.371015e+01;
|
563
|
+
return result;
|
564
|
+
}
|
565
|
+
|
566
|
+
|
567
|
+
static double jbtbl7(double s)
|
568
|
+
{
|
569
|
+
double result;
|
570
|
+
double x;
|
571
|
+
double tj;
|
572
|
+
double tj1;
|
573
|
+
|
574
|
+
result = 0;
|
575
|
+
if( s<=1.4000 )
|
576
|
+
{
|
577
|
+
x = 2*(s-0.000000)/1.400000-1;
|
578
|
+
tj = 1;
|
579
|
+
tj1 = x;
|
580
|
+
jbcheb(x, -1.093681e+00, tj, tj1, result);
|
581
|
+
jbcheb(x, -1.695911e+00, tj, tj1, result);
|
582
|
+
jbcheb(x, -7.473192e-01, tj, tj1, result);
|
583
|
+
jbcheb(x, -1.203236e-01, tj, tj1, result);
|
584
|
+
jbcheb(x, 6.590379e-02, tj, tj1, result);
|
585
|
+
jbcheb(x, 6.291876e-02, tj, tj1, result);
|
586
|
+
jbcheb(x, 3.132007e-02, tj, tj1, result);
|
587
|
+
jbcheb(x, 9.411147e-03, tj, tj1, result);
|
588
|
+
jbcheb(x, -1.180067e-03, tj, tj1, result);
|
589
|
+
jbcheb(x, -3.487610e-03, tj, tj1, result);
|
590
|
+
jbcheb(x, -2.436561e-03, tj, tj1, result);
|
591
|
+
if( result>0 )
|
592
|
+
{
|
593
|
+
result = 0;
|
594
|
+
}
|
595
|
+
return result;
|
596
|
+
}
|
597
|
+
if( s<=3.0000 )
|
598
|
+
{
|
599
|
+
x = 2*(s-1.400000)/1.600000-1;
|
600
|
+
tj = 1;
|
601
|
+
tj1 = x;
|
602
|
+
jbcheb(x, -5.947854e+00, tj, tj1, result);
|
603
|
+
jbcheb(x, -2.772675e+00, tj, tj1, result);
|
604
|
+
jbcheb(x, -4.707912e-01, tj, tj1, result);
|
605
|
+
jbcheb(x, -1.691171e-01, tj, tj1, result);
|
606
|
+
jbcheb(x, -4.132795e-02, tj, tj1, result);
|
607
|
+
jbcheb(x, -1.481310e-02, tj, tj1, result);
|
608
|
+
jbcheb(x, 2.867536e-03, tj, tj1, result);
|
609
|
+
jbcheb(x, 8.772327e-04, tj, tj1, result);
|
610
|
+
jbcheb(x, 5.033387e-03, tj, tj1, result);
|
611
|
+
jbcheb(x, -1.378277e-03, tj, tj1, result);
|
612
|
+
jbcheb(x, -2.497964e-03, tj, tj1, result);
|
613
|
+
jbcheb(x, -3.636814e-03, tj, tj1, result);
|
614
|
+
jbcheb(x, -9.581640e-04, tj, tj1, result);
|
615
|
+
if( result>0 )
|
616
|
+
{
|
617
|
+
result = 0;
|
618
|
+
}
|
619
|
+
return result;
|
620
|
+
}
|
621
|
+
if( s<=3.2000 )
|
622
|
+
{
|
623
|
+
x = 2*(s-3.000000)/0.200000-1;
|
624
|
+
tj = 1;
|
625
|
+
tj1 = x;
|
626
|
+
jbcheb(x, -7.511008e+00, tj, tj1, result);
|
627
|
+
jbcheb(x, -8.140472e-01, tj, tj1, result);
|
628
|
+
jbcheb(x, 1.682053e+00, tj, tj1, result);
|
629
|
+
jbcheb(x, -2.568561e-02, tj, tj1, result);
|
630
|
+
jbcheb(x, -1.933930e+00, tj, tj1, result);
|
631
|
+
jbcheb(x, -8.140472e-01, tj, tj1, result);
|
632
|
+
jbcheb(x, -3.895025e+00, tj, tj1, result);
|
633
|
+
jbcheb(x, -8.140472e-01, tj, tj1, result);
|
634
|
+
jbcheb(x, -1.933930e+00, tj, tj1, result);
|
635
|
+
jbcheb(x, -2.568561e-02, tj, tj1, result);
|
636
|
+
jbcheb(x, 1.682053e+00, tj, tj1, result);
|
637
|
+
if( result>0 )
|
638
|
+
{
|
639
|
+
result = 0;
|
640
|
+
}
|
641
|
+
return result;
|
642
|
+
}
|
643
|
+
result = -1.824116e+03*(s-3.200000e+00)-1.440330e+01;
|
644
|
+
return result;
|
645
|
+
}
|
646
|
+
|
647
|
+
|
648
|
+
static double jbtbl8(double s)
|
649
|
+
{
|
650
|
+
double result;
|
651
|
+
double x;
|
652
|
+
double tj;
|
653
|
+
double tj1;
|
654
|
+
|
655
|
+
result = 0;
|
656
|
+
if( s<=1.3000 )
|
657
|
+
{
|
658
|
+
x = 2*(s-0.000000)/1.300000-1;
|
659
|
+
tj = 1;
|
660
|
+
tj1 = x;
|
661
|
+
jbcheb(x, -7.199015e-01, tj, tj1, result);
|
662
|
+
jbcheb(x, -1.095921e+00, tj, tj1, result);
|
663
|
+
jbcheb(x, -4.736828e-01, tj, tj1, result);
|
664
|
+
jbcheb(x, -1.047438e-01, tj, tj1, result);
|
665
|
+
jbcheb(x, -2.484320e-03, tj, tj1, result);
|
666
|
+
jbcheb(x, 7.937923e-03, tj, tj1, result);
|
667
|
+
jbcheb(x, 4.810470e-03, tj, tj1, result);
|
668
|
+
jbcheb(x, 2.139780e-03, tj, tj1, result);
|
669
|
+
jbcheb(x, 6.708443e-04, tj, tj1, result);
|
670
|
+
if( result>0 )
|
671
|
+
{
|
672
|
+
result = 0;
|
673
|
+
}
|
674
|
+
return result;
|
675
|
+
}
|
676
|
+
if( s<=2.0000 )
|
677
|
+
{
|
678
|
+
x = 2*(s-1.300000)/0.700000-1;
|
679
|
+
tj = 1;
|
680
|
+
tj1 = x;
|
681
|
+
jbcheb(x, -3.378966e+00, tj, tj1, result);
|
682
|
+
jbcheb(x, -7.802461e-01, tj, tj1, result);
|
683
|
+
jbcheb(x, 1.547593e-01, tj, tj1, result);
|
684
|
+
jbcheb(x, -6.241042e-02, tj, tj1, result);
|
685
|
+
jbcheb(x, 1.203274e-02, tj, tj1, result);
|
686
|
+
jbcheb(x, 5.201990e-03, tj, tj1, result);
|
687
|
+
jbcheb(x, -5.125597e-03, tj, tj1, result);
|
688
|
+
jbcheb(x, 1.584426e-03, tj, tj1, result);
|
689
|
+
jbcheb(x, 2.546069e-04, tj, tj1, result);
|
690
|
+
if( result>0 )
|
691
|
+
{
|
692
|
+
result = 0;
|
693
|
+
}
|
694
|
+
return result;
|
695
|
+
}
|
696
|
+
if( s<=5.0000 )
|
697
|
+
{
|
698
|
+
x = 2*(s-2.000000)/3.000000-1;
|
699
|
+
tj = 1;
|
700
|
+
tj1 = x;
|
701
|
+
jbcheb(x, -6.828366e+00, tj, tj1, result);
|
702
|
+
jbcheb(x, -3.137533e+00, tj, tj1, result);
|
703
|
+
jbcheb(x, -5.016671e-01, tj, tj1, result);
|
704
|
+
jbcheb(x, -1.745637e-01, tj, tj1, result);
|
705
|
+
jbcheb(x, -5.189801e-02, tj, tj1, result);
|
706
|
+
jbcheb(x, -1.621610e-02, tj, tj1, result);
|
707
|
+
jbcheb(x, -6.741122e-03, tj, tj1, result);
|
708
|
+
jbcheb(x, -4.516368e-03, tj, tj1, result);
|
709
|
+
jbcheb(x, 3.552085e-04, tj, tj1, result);
|
710
|
+
jbcheb(x, 2.787029e-03, tj, tj1, result);
|
711
|
+
jbcheb(x, 5.359774e-03, tj, tj1, result);
|
712
|
+
if( result>0 )
|
713
|
+
{
|
714
|
+
result = 0;
|
715
|
+
}
|
716
|
+
return result;
|
717
|
+
}
|
718
|
+
result = -5.087028e+00*(s-5.000000e+00)-1.071300e+01;
|
719
|
+
return result;
|
720
|
+
}
|
721
|
+
|
722
|
+
|
723
|
+
static double jbtbl9(double s)
|
724
|
+
{
|
725
|
+
double result;
|
726
|
+
double x;
|
727
|
+
double tj;
|
728
|
+
double tj1;
|
729
|
+
|
730
|
+
result = 0;
|
731
|
+
if( s<=1.3000 )
|
732
|
+
{
|
733
|
+
x = 2*(s-0.000000)/1.300000-1;
|
734
|
+
tj = 1;
|
735
|
+
tj1 = x;
|
736
|
+
jbcheb(x, -6.279320e-01, tj, tj1, result);
|
737
|
+
jbcheb(x, -9.277151e-01, tj, tj1, result);
|
738
|
+
jbcheb(x, -3.669339e-01, tj, tj1, result);
|
739
|
+
jbcheb(x, -7.086149e-02, tj, tj1, result);
|
740
|
+
jbcheb(x, -1.333816e-03, tj, tj1, result);
|
741
|
+
jbcheb(x, 3.871249e-03, tj, tj1, result);
|
742
|
+
jbcheb(x, 2.007048e-03, tj, tj1, result);
|
743
|
+
jbcheb(x, 7.482245e-04, tj, tj1, result);
|
744
|
+
jbcheb(x, 2.355615e-04, tj, tj1, result);
|
745
|
+
if( result>0 )
|
746
|
+
{
|
747
|
+
result = 0;
|
748
|
+
}
|
749
|
+
return result;
|
750
|
+
}
|
751
|
+
if( s<=2.0000 )
|
752
|
+
{
|
753
|
+
x = 2*(s-1.300000)/0.700000-1;
|
754
|
+
tj = 1;
|
755
|
+
tj1 = x;
|
756
|
+
jbcheb(x, -2.981430e+00, tj, tj1, result);
|
757
|
+
jbcheb(x, -7.972248e-01, tj, tj1, result);
|
758
|
+
jbcheb(x, 1.747737e-01, tj, tj1, result);
|
759
|
+
jbcheb(x, -3.808530e-02, tj, tj1, result);
|
760
|
+
jbcheb(x, -7.888305e-03, tj, tj1, result);
|
761
|
+
jbcheb(x, 9.001302e-03, tj, tj1, result);
|
762
|
+
jbcheb(x, -1.378767e-03, tj, tj1, result);
|
763
|
+
jbcheb(x, -1.108510e-03, tj, tj1, result);
|
764
|
+
jbcheb(x, 5.915372e-04, tj, tj1, result);
|
765
|
+
if( result>0 )
|
766
|
+
{
|
767
|
+
result = 0;
|
768
|
+
}
|
769
|
+
return result;
|
770
|
+
}
|
771
|
+
if( s<=7.0000 )
|
772
|
+
{
|
773
|
+
x = 2*(s-2.000000)/5.000000-1;
|
774
|
+
tj = 1;
|
775
|
+
tj1 = x;
|
776
|
+
jbcheb(x, -6.387463e+00, tj, tj1, result);
|
777
|
+
jbcheb(x, -2.845231e+00, tj, tj1, result);
|
778
|
+
jbcheb(x, -1.809956e-01, tj, tj1, result);
|
779
|
+
jbcheb(x, -7.543461e-02, tj, tj1, result);
|
780
|
+
jbcheb(x, -4.880397e-03, tj, tj1, result);
|
781
|
+
jbcheb(x, -1.160074e-02, tj, tj1, result);
|
782
|
+
jbcheb(x, -7.356527e-03, tj, tj1, result);
|
783
|
+
jbcheb(x, -4.394428e-03, tj, tj1, result);
|
784
|
+
jbcheb(x, 9.619892e-04, tj, tj1, result);
|
785
|
+
jbcheb(x, -2.758763e-04, tj, tj1, result);
|
786
|
+
jbcheb(x, 4.790977e-05, tj, tj1, result);
|
787
|
+
if( result>0 )
|
788
|
+
{
|
789
|
+
result = 0;
|
790
|
+
}
|
791
|
+
return result;
|
792
|
+
}
|
793
|
+
result = -2.020952e+00*(s-7.000000e+00)-9.516623e+00;
|
794
|
+
return result;
|
795
|
+
}
|
796
|
+
|
797
|
+
|
798
|
+
static double jbtbl10(double s)
|
799
|
+
{
|
800
|
+
double result;
|
801
|
+
double x;
|
802
|
+
double tj;
|
803
|
+
double tj1;
|
804
|
+
|
805
|
+
result = 0;
|
806
|
+
if( s<=1.2000 )
|
807
|
+
{
|
808
|
+
x = 2*(s-0.000000)/1.200000-1;
|
809
|
+
tj = 1;
|
810
|
+
tj1 = x;
|
811
|
+
jbcheb(x, -4.590993e-01, tj, tj1, result);
|
812
|
+
jbcheb(x, -6.562730e-01, tj, tj1, result);
|
813
|
+
jbcheb(x, -2.353934e-01, tj, tj1, result);
|
814
|
+
jbcheb(x, -4.069933e-02, tj, tj1, result);
|
815
|
+
jbcheb(x, -1.849151e-03, tj, tj1, result);
|
816
|
+
jbcheb(x, 8.931406e-04, tj, tj1, result);
|
817
|
+
jbcheb(x, 3.636295e-04, tj, tj1, result);
|
818
|
+
jbcheb(x, 1.178340e-05, tj, tj1, result);
|
819
|
+
jbcheb(x, -8.917749e-05, tj, tj1, result);
|
820
|
+
if( result>0 )
|
821
|
+
{
|
822
|
+
result = 0;
|
823
|
+
}
|
824
|
+
return result;
|
825
|
+
}
|
826
|
+
if( s<=2.0000 )
|
827
|
+
{
|
828
|
+
x = 2*(s-1.200000)/0.800000-1;
|
829
|
+
tj = 1;
|
830
|
+
tj1 = x;
|
831
|
+
jbcheb(x, -2.537658e+00, tj, tj1, result);
|
832
|
+
jbcheb(x, -9.962401e-01, tj, tj1, result);
|
833
|
+
jbcheb(x, 1.838715e-01, tj, tj1, result);
|
834
|
+
jbcheb(x, 1.055792e-02, tj, tj1, result);
|
835
|
+
jbcheb(x, -2.580316e-02, tj, tj1, result);
|
836
|
+
jbcheb(x, 1.781701e-03, tj, tj1, result);
|
837
|
+
jbcheb(x, 3.770362e-03, tj, tj1, result);
|
838
|
+
jbcheb(x, -4.838983e-04, tj, tj1, result);
|
839
|
+
jbcheb(x, -6.999052e-04, tj, tj1, result);
|
840
|
+
if( result>0 )
|
841
|
+
{
|
842
|
+
result = 0;
|
843
|
+
}
|
844
|
+
return result;
|
845
|
+
}
|
846
|
+
if( s<=7.0000 )
|
847
|
+
{
|
848
|
+
x = 2*(s-2.000000)/5.000000-1;
|
849
|
+
tj = 1;
|
850
|
+
tj1 = x;
|
851
|
+
jbcheb(x, -5.337524e+00, tj, tj1, result);
|
852
|
+
jbcheb(x, -1.877029e+00, tj, tj1, result);
|
853
|
+
jbcheb(x, 4.734650e-02, tj, tj1, result);
|
854
|
+
jbcheb(x, -4.249254e-02, tj, tj1, result);
|
855
|
+
jbcheb(x, 3.320250e-03, tj, tj1, result);
|
856
|
+
jbcheb(x, -6.432266e-03, tj, tj1, result);
|
857
|
+
if( result>0 )
|
858
|
+
{
|
859
|
+
result = 0;
|
860
|
+
}
|
861
|
+
return result;
|
862
|
+
}
|
863
|
+
result = -8.711035e-01*(s-7.000000e+00)-7.212811e+00;
|
864
|
+
return result;
|
865
|
+
}
|
866
|
+
|
867
|
+
|
868
|
+
static double jbtbl11(double s)
|
869
|
+
{
|
870
|
+
double result;
|
871
|
+
double x;
|
872
|
+
double tj;
|
873
|
+
double tj1;
|
874
|
+
|
875
|
+
result = 0;
|
876
|
+
if( s<=1.2000 )
|
877
|
+
{
|
878
|
+
x = 2*(s-0.000000)/1.200000-1;
|
879
|
+
tj = 1;
|
880
|
+
tj1 = x;
|
881
|
+
jbcheb(x, -4.339517e-01, tj, tj1, result);
|
882
|
+
jbcheb(x, -6.051558e-01, tj, tj1, result);
|
883
|
+
jbcheb(x, -2.000992e-01, tj, tj1, result);
|
884
|
+
jbcheb(x, -3.022547e-02, tj, tj1, result);
|
885
|
+
jbcheb(x, -9.808401e-04, tj, tj1, result);
|
886
|
+
jbcheb(x, 5.592870e-04, tj, tj1, result);
|
887
|
+
jbcheb(x, 3.575081e-04, tj, tj1, result);
|
888
|
+
jbcheb(x, 2.086173e-04, tj, tj1, result);
|
889
|
+
jbcheb(x, 6.089011e-05, tj, tj1, result);
|
890
|
+
if( result>0 )
|
891
|
+
{
|
892
|
+
result = 0;
|
893
|
+
}
|
894
|
+
return result;
|
895
|
+
}
|
896
|
+
if( s<=2.2500 )
|
897
|
+
{
|
898
|
+
x = 2*(s-1.200000)/1.050000-1;
|
899
|
+
tj = 1;
|
900
|
+
tj1 = x;
|
901
|
+
jbcheb(x, -2.523221e+00, tj, tj1, result);
|
902
|
+
jbcheb(x, -1.068388e+00, tj, tj1, result);
|
903
|
+
jbcheb(x, 2.179661e-01, tj, tj1, result);
|
904
|
+
jbcheb(x, -1.555524e-03, tj, tj1, result);
|
905
|
+
jbcheb(x, -3.238964e-02, tj, tj1, result);
|
906
|
+
jbcheb(x, 7.364320e-03, tj, tj1, result);
|
907
|
+
jbcheb(x, 4.895771e-03, tj, tj1, result);
|
908
|
+
jbcheb(x, -1.762774e-03, tj, tj1, result);
|
909
|
+
jbcheb(x, -8.201340e-04, tj, tj1, result);
|
910
|
+
if( result>0 )
|
911
|
+
{
|
912
|
+
result = 0;
|
913
|
+
}
|
914
|
+
return result;
|
915
|
+
}
|
916
|
+
if( s<=8.0000 )
|
917
|
+
{
|
918
|
+
x = 2*(s-2.250000)/5.750000-1;
|
919
|
+
tj = 1;
|
920
|
+
tj1 = x;
|
921
|
+
jbcheb(x, -5.212179e+00, tj, tj1, result);
|
922
|
+
jbcheb(x, -1.684579e+00, tj, tj1, result);
|
923
|
+
jbcheb(x, 8.299519e-02, tj, tj1, result);
|
924
|
+
jbcheb(x, -3.606261e-02, tj, tj1, result);
|
925
|
+
jbcheb(x, 7.310869e-03, tj, tj1, result);
|
926
|
+
jbcheb(x, -3.320115e-03, tj, tj1, result);
|
927
|
+
if( result>0 )
|
928
|
+
{
|
929
|
+
result = 0;
|
930
|
+
}
|
931
|
+
return result;
|
932
|
+
}
|
933
|
+
result = -5.715445e-01*(s-8.000000e+00)-6.845834e+00;
|
934
|
+
return result;
|
935
|
+
}
|
936
|
+
|
937
|
+
|
938
|
+
static double jbtbl12(double s)
|
939
|
+
{
|
940
|
+
double result;
|
941
|
+
double x;
|
942
|
+
double tj;
|
943
|
+
double tj1;
|
944
|
+
|
945
|
+
result = 0;
|
946
|
+
if( s<=1.0000 )
|
947
|
+
{
|
948
|
+
x = 2*(s-0.000000)/1.000000-1;
|
949
|
+
tj = 1;
|
950
|
+
tj1 = x;
|
951
|
+
jbcheb(x, -2.736742e-01, tj, tj1, result);
|
952
|
+
jbcheb(x, -3.657836e-01, tj, tj1, result);
|
953
|
+
jbcheb(x, -1.047209e-01, tj, tj1, result);
|
954
|
+
jbcheb(x, -1.319599e-02, tj, tj1, result);
|
955
|
+
jbcheb(x, -5.545631e-04, tj, tj1, result);
|
956
|
+
jbcheb(x, 9.280445e-05, tj, tj1, result);
|
957
|
+
jbcheb(x, 2.815679e-05, tj, tj1, result);
|
958
|
+
jbcheb(x, -2.213519e-05, tj, tj1, result);
|
959
|
+
jbcheb(x, 1.256838e-05, tj, tj1, result);
|
960
|
+
if( result>0 )
|
961
|
+
{
|
962
|
+
result = 0;
|
963
|
+
}
|
964
|
+
return result;
|
965
|
+
}
|
966
|
+
if( s<=3.0000 )
|
967
|
+
{
|
968
|
+
x = 2*(s-1.000000)/2.000000-1;
|
969
|
+
tj = 1;
|
970
|
+
tj1 = x;
|
971
|
+
jbcheb(x, -2.573947e+00, tj, tj1, result);
|
972
|
+
jbcheb(x, -1.515287e+00, tj, tj1, result);
|
973
|
+
jbcheb(x, 3.611880e-01, tj, tj1, result);
|
974
|
+
jbcheb(x, -3.271311e-02, tj, tj1, result);
|
975
|
+
jbcheb(x, -6.495815e-02, tj, tj1, result);
|
976
|
+
jbcheb(x, 4.141186e-02, tj, tj1, result);
|
977
|
+
jbcheb(x, 7.180886e-04, tj, tj1, result);
|
978
|
+
jbcheb(x, -1.388211e-02, tj, tj1, result);
|
979
|
+
jbcheb(x, 4.890761e-03, tj, tj1, result);
|
980
|
+
jbcheb(x, 3.233175e-03, tj, tj1, result);
|
981
|
+
jbcheb(x, -2.946156e-03, tj, tj1, result);
|
982
|
+
if( result>0 )
|
983
|
+
{
|
984
|
+
result = 0;
|
985
|
+
}
|
986
|
+
return result;
|
987
|
+
}
|
988
|
+
if( s<=12.0000 )
|
989
|
+
{
|
990
|
+
x = 2*(s-3.000000)/9.000000-1;
|
991
|
+
tj = 1;
|
992
|
+
tj1 = x;
|
993
|
+
jbcheb(x, -5.947819e+00, tj, tj1, result);
|
994
|
+
jbcheb(x, -2.034157e+00, tj, tj1, result);
|
995
|
+
jbcheb(x, 6.878986e-02, tj, tj1, result);
|
996
|
+
jbcheb(x, -4.078603e-02, tj, tj1, result);
|
997
|
+
jbcheb(x, 6.990977e-03, tj, tj1, result);
|
998
|
+
jbcheb(x, -2.866215e-03, tj, tj1, result);
|
999
|
+
jbcheb(x, 3.897866e-03, tj, tj1, result);
|
1000
|
+
jbcheb(x, 2.512252e-03, tj, tj1, result);
|
1001
|
+
jbcheb(x, 2.073743e-03, tj, tj1, result);
|
1002
|
+
jbcheb(x, 3.022621e-03, tj, tj1, result);
|
1003
|
+
jbcheb(x, 1.501343e-03, tj, tj1, result);
|
1004
|
+
if( result>0 )
|
1005
|
+
{
|
1006
|
+
result = 0;
|
1007
|
+
}
|
1008
|
+
return result;
|
1009
|
+
}
|
1010
|
+
result = -2.877243e-01*(s-1.200000e+01)-7.936839e+00;
|
1011
|
+
return result;
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
|
1015
|
+
static double jbtbl13(double s)
|
1016
|
+
{
|
1017
|
+
double result;
|
1018
|
+
double x;
|
1019
|
+
double tj;
|
1020
|
+
double tj1;
|
1021
|
+
|
1022
|
+
result = 0;
|
1023
|
+
if( s<=1.0000 )
|
1024
|
+
{
|
1025
|
+
x = 2*(s-0.000000)/1.000000-1;
|
1026
|
+
tj = 1;
|
1027
|
+
tj1 = x;
|
1028
|
+
jbcheb(x, -2.713276e-01, tj, tj1, result);
|
1029
|
+
jbcheb(x, -3.557541e-01, tj, tj1, result);
|
1030
|
+
jbcheb(x, -9.459092e-02, tj, tj1, result);
|
1031
|
+
jbcheb(x, -1.044145e-02, tj, tj1, result);
|
1032
|
+
jbcheb(x, -2.546132e-04, tj, tj1, result);
|
1033
|
+
jbcheb(x, 1.002374e-04, tj, tj1, result);
|
1034
|
+
jbcheb(x, 2.349456e-05, tj, tj1, result);
|
1035
|
+
jbcheb(x, -7.025669e-05, tj, tj1, result);
|
1036
|
+
jbcheb(x, -1.590242e-05, tj, tj1, result);
|
1037
|
+
if( result>0 )
|
1038
|
+
{
|
1039
|
+
result = 0;
|
1040
|
+
}
|
1041
|
+
return result;
|
1042
|
+
}
|
1043
|
+
if( s<=3.0000 )
|
1044
|
+
{
|
1045
|
+
x = 2*(s-1.000000)/2.000000-1;
|
1046
|
+
tj = 1;
|
1047
|
+
tj1 = x;
|
1048
|
+
jbcheb(x, -2.454383e+00, tj, tj1, result);
|
1049
|
+
jbcheb(x, -1.467539e+00, tj, tj1, result);
|
1050
|
+
jbcheb(x, 3.270774e-01, tj, tj1, result);
|
1051
|
+
jbcheb(x, -8.075763e-03, tj, tj1, result);
|
1052
|
+
jbcheb(x, -6.611647e-02, tj, tj1, result);
|
1053
|
+
jbcheb(x, 2.990785e-02, tj, tj1, result);
|
1054
|
+
jbcheb(x, 8.109212e-03, tj, tj1, result);
|
1055
|
+
jbcheb(x, -1.135031e-02, tj, tj1, result);
|
1056
|
+
jbcheb(x, 5.915919e-04, tj, tj1, result);
|
1057
|
+
jbcheb(x, 3.522390e-03, tj, tj1, result);
|
1058
|
+
jbcheb(x, -1.144701e-03, tj, tj1, result);
|
1059
|
+
if( result>0 )
|
1060
|
+
{
|
1061
|
+
result = 0;
|
1062
|
+
}
|
1063
|
+
return result;
|
1064
|
+
}
|
1065
|
+
if( s<=13.0000 )
|
1066
|
+
{
|
1067
|
+
x = 2*(s-3.000000)/10.000000-1;
|
1068
|
+
tj = 1;
|
1069
|
+
tj1 = x;
|
1070
|
+
jbcheb(x, -5.736127e+00, tj, tj1, result);
|
1071
|
+
jbcheb(x, -1.920809e+00, tj, tj1, result);
|
1072
|
+
jbcheb(x, 1.175858e-01, tj, tj1, result);
|
1073
|
+
jbcheb(x, -4.002049e-02, tj, tj1, result);
|
1074
|
+
jbcheb(x, 1.158966e-02, tj, tj1, result);
|
1075
|
+
jbcheb(x, -3.157781e-03, tj, tj1, result);
|
1076
|
+
jbcheb(x, 2.762172e-03, tj, tj1, result);
|
1077
|
+
jbcheb(x, 5.780347e-04, tj, tj1, result);
|
1078
|
+
jbcheb(x, -1.193310e-03, tj, tj1, result);
|
1079
|
+
jbcheb(x, -2.442421e-05, tj, tj1, result);
|
1080
|
+
jbcheb(x, 2.547756e-03, tj, tj1, result);
|
1081
|
+
if( result>0 )
|
1082
|
+
{
|
1083
|
+
result = 0;
|
1084
|
+
}
|
1085
|
+
return result;
|
1086
|
+
}
|
1087
|
+
result = -2.799944e-01*(s-1.300000e+01)-7.566269e+00;
|
1088
|
+
return result;
|
1089
|
+
}
|
1090
|
+
|
1091
|
+
|
1092
|
+
static double jbtbl14(double s)
|
1093
|
+
{
|
1094
|
+
double result;
|
1095
|
+
double x;
|
1096
|
+
double tj;
|
1097
|
+
double tj1;
|
1098
|
+
|
1099
|
+
result = 0;
|
1100
|
+
if( s<=1.0000 )
|
1101
|
+
{
|
1102
|
+
x = 2*(s-0.000000)/1.000000-1;
|
1103
|
+
tj = 1;
|
1104
|
+
tj1 = x;
|
1105
|
+
jbcheb(x, -2.698527e-01, tj, tj1, result);
|
1106
|
+
jbcheb(x, -3.479081e-01, tj, tj1, result);
|
1107
|
+
jbcheb(x, -8.640733e-02, tj, tj1, result);
|
1108
|
+
jbcheb(x, -8.466899e-03, tj, tj1, result);
|
1109
|
+
jbcheb(x, -1.469485e-04, tj, tj1, result);
|
1110
|
+
jbcheb(x, 2.150009e-05, tj, tj1, result);
|
1111
|
+
jbcheb(x, 1.965975e-05, tj, tj1, result);
|
1112
|
+
jbcheb(x, -4.710210e-05, tj, tj1, result);
|
1113
|
+
jbcheb(x, -1.327808e-05, tj, tj1, result);
|
1114
|
+
if( result>0 )
|
1115
|
+
{
|
1116
|
+
result = 0;
|
1117
|
+
}
|
1118
|
+
return result;
|
1119
|
+
}
|
1120
|
+
if( s<=3.0000 )
|
1121
|
+
{
|
1122
|
+
x = 2*(s-1.000000)/2.000000-1;
|
1123
|
+
tj = 1;
|
1124
|
+
tj1 = x;
|
1125
|
+
jbcheb(x, -2.350359e+00, tj, tj1, result);
|
1126
|
+
jbcheb(x, -1.421365e+00, tj, tj1, result);
|
1127
|
+
jbcheb(x, 2.960468e-01, tj, tj1, result);
|
1128
|
+
jbcheb(x, 1.149167e-02, tj, tj1, result);
|
1129
|
+
jbcheb(x, -6.361109e-02, tj, tj1, result);
|
1130
|
+
jbcheb(x, 1.976022e-02, tj, tj1, result);
|
1131
|
+
jbcheb(x, 1.082700e-02, tj, tj1, result);
|
1132
|
+
jbcheb(x, -8.563328e-03, tj, tj1, result);
|
1133
|
+
jbcheb(x, -1.453123e-03, tj, tj1, result);
|
1134
|
+
jbcheb(x, 2.917559e-03, tj, tj1, result);
|
1135
|
+
jbcheb(x, -1.151067e-05, tj, tj1, result);
|
1136
|
+
if( result>0 )
|
1137
|
+
{
|
1138
|
+
result = 0;
|
1139
|
+
}
|
1140
|
+
return result;
|
1141
|
+
}
|
1142
|
+
if( s<=15.0000 )
|
1143
|
+
{
|
1144
|
+
x = 2*(s-3.000000)/12.000000-1;
|
1145
|
+
tj = 1;
|
1146
|
+
tj1 = x;
|
1147
|
+
jbcheb(x, -5.746892e+00, tj, tj1, result);
|
1148
|
+
jbcheb(x, -2.010441e+00, tj, tj1, result);
|
1149
|
+
jbcheb(x, 1.566146e-01, tj, tj1, result);
|
1150
|
+
jbcheb(x, -5.129690e-02, tj, tj1, result);
|
1151
|
+
jbcheb(x, 1.929724e-02, tj, tj1, result);
|
1152
|
+
jbcheb(x, -2.524227e-03, tj, tj1, result);
|
1153
|
+
jbcheb(x, 3.192933e-03, tj, tj1, result);
|
1154
|
+
jbcheb(x, -4.254730e-04, tj, tj1, result);
|
1155
|
+
jbcheb(x, 1.620685e-03, tj, tj1, result);
|
1156
|
+
jbcheb(x, 7.289618e-04, tj, tj1, result);
|
1157
|
+
jbcheb(x, -2.112350e-03, tj, tj1, result);
|
1158
|
+
if( result>0 )
|
1159
|
+
{
|
1160
|
+
result = 0;
|
1161
|
+
}
|
1162
|
+
return result;
|
1163
|
+
}
|
1164
|
+
result = -2.590621e-01*(s-1.500000e+01)-7.632238e+00;
|
1165
|
+
return result;
|
1166
|
+
}
|
1167
|
+
|
1168
|
+
|
1169
|
+
static double jbtbl15(double s)
|
1170
|
+
{
|
1171
|
+
double result;
|
1172
|
+
double x;
|
1173
|
+
double tj;
|
1174
|
+
double tj1;
|
1175
|
+
|
1176
|
+
result = 0;
|
1177
|
+
if( s<=2.0000 )
|
1178
|
+
{
|
1179
|
+
x = 2*(s-0.000000)/2.000000-1;
|
1180
|
+
tj = 1;
|
1181
|
+
tj1 = x;
|
1182
|
+
jbcheb(x, -1.043660e+00, tj, tj1, result);
|
1183
|
+
jbcheb(x, -1.361653e+00, tj, tj1, result);
|
1184
|
+
jbcheb(x, -3.009497e-01, tj, tj1, result);
|
1185
|
+
jbcheb(x, 4.951784e-02, tj, tj1, result);
|
1186
|
+
jbcheb(x, 4.377903e-02, tj, tj1, result);
|
1187
|
+
jbcheb(x, 1.003253e-02, tj, tj1, result);
|
1188
|
+
jbcheb(x, -1.271309e-03, tj, tj1, result);
|
1189
|
+
if( result>0 )
|
1190
|
+
{
|
1191
|
+
result = 0;
|
1192
|
+
}
|
1193
|
+
return result;
|
1194
|
+
}
|
1195
|
+
if( s<=5.0000 )
|
1196
|
+
{
|
1197
|
+
x = 2*(s-2.000000)/3.000000-1;
|
1198
|
+
tj = 1;
|
1199
|
+
tj1 = x;
|
1200
|
+
jbcheb(x, -3.582778e+00, tj, tj1, result);
|
1201
|
+
jbcheb(x, -8.349578e-01, tj, tj1, result);
|
1202
|
+
jbcheb(x, 9.476514e-02, tj, tj1, result);
|
1203
|
+
jbcheb(x, -2.717385e-02, tj, tj1, result);
|
1204
|
+
jbcheb(x, 1.222591e-02, tj, tj1, result);
|
1205
|
+
jbcheb(x, -6.635124e-03, tj, tj1, result);
|
1206
|
+
jbcheb(x, 2.815993e-03, tj, tj1, result);
|
1207
|
+
if( result>0 )
|
1208
|
+
{
|
1209
|
+
result = 0;
|
1210
|
+
}
|
1211
|
+
return result;
|
1212
|
+
}
|
1213
|
+
if( s<=17.0000 )
|
1214
|
+
{
|
1215
|
+
x = 2*(s-5.000000)/12.000000-1;
|
1216
|
+
tj = 1;
|
1217
|
+
tj1 = x;
|
1218
|
+
jbcheb(x, -6.115476e+00, tj, tj1, result);
|
1219
|
+
jbcheb(x, -1.655936e+00, tj, tj1, result);
|
1220
|
+
jbcheb(x, 8.404310e-02, tj, tj1, result);
|
1221
|
+
jbcheb(x, -2.663794e-02, tj, tj1, result);
|
1222
|
+
jbcheb(x, 8.868618e-03, tj, tj1, result);
|
1223
|
+
jbcheb(x, 1.381447e-03, tj, tj1, result);
|
1224
|
+
jbcheb(x, 9.444801e-04, tj, tj1, result);
|
1225
|
+
jbcheb(x, -1.581503e-04, tj, tj1, result);
|
1226
|
+
jbcheb(x, -9.468696e-04, tj, tj1, result);
|
1227
|
+
jbcheb(x, 1.728509e-03, tj, tj1, result);
|
1228
|
+
jbcheb(x, 1.206470e-03, tj, tj1, result);
|
1229
|
+
if( result>0 )
|
1230
|
+
{
|
1231
|
+
result = 0;
|
1232
|
+
}
|
1233
|
+
return result;
|
1234
|
+
}
|
1235
|
+
result = -1.927937e-01*(s-1.700000e+01)-7.700983e+00;
|
1236
|
+
return result;
|
1237
|
+
}
|
1238
|
+
|
1239
|
+
|
1240
|
+
static double jbtbl16(double s)
|
1241
|
+
{
|
1242
|
+
double result;
|
1243
|
+
double x;
|
1244
|
+
double tj;
|
1245
|
+
double tj1;
|
1246
|
+
|
1247
|
+
result = 0;
|
1248
|
+
if( s<=2.0000 )
|
1249
|
+
{
|
1250
|
+
x = 2*(s-0.000000)/2.000000-1;
|
1251
|
+
tj = 1;
|
1252
|
+
tj1 = x;
|
1253
|
+
jbcheb(x, -1.002570e+00, tj, tj1, result);
|
1254
|
+
jbcheb(x, -1.298141e+00, tj, tj1, result);
|
1255
|
+
jbcheb(x, -2.832803e-01, tj, tj1, result);
|
1256
|
+
jbcheb(x, 3.877026e-02, tj, tj1, result);
|
1257
|
+
jbcheb(x, 3.539436e-02, tj, tj1, result);
|
1258
|
+
jbcheb(x, 8.439658e-03, tj, tj1, result);
|
1259
|
+
jbcheb(x, -4.756911e-04, tj, tj1, result);
|
1260
|
+
if( result>0 )
|
1261
|
+
{
|
1262
|
+
result = 0;
|
1263
|
+
}
|
1264
|
+
return result;
|
1265
|
+
}
|
1266
|
+
if( s<=5.0000 )
|
1267
|
+
{
|
1268
|
+
x = 2*(s-2.000000)/3.000000-1;
|
1269
|
+
tj = 1;
|
1270
|
+
tj1 = x;
|
1271
|
+
jbcheb(x, -3.486198e+00, tj, tj1, result);
|
1272
|
+
jbcheb(x, -8.242944e-01, tj, tj1, result);
|
1273
|
+
jbcheb(x, 1.020002e-01, tj, tj1, result);
|
1274
|
+
jbcheb(x, -3.130531e-02, tj, tj1, result);
|
1275
|
+
jbcheb(x, 1.512373e-02, tj, tj1, result);
|
1276
|
+
jbcheb(x, -8.054876e-03, tj, tj1, result);
|
1277
|
+
jbcheb(x, 3.556839e-03, tj, tj1, result);
|
1278
|
+
if( result>0 )
|
1279
|
+
{
|
1280
|
+
result = 0;
|
1281
|
+
}
|
1282
|
+
return result;
|
1283
|
+
}
|
1284
|
+
if( s<=20.0000 )
|
1285
|
+
{
|
1286
|
+
x = 2*(s-5.000000)/15.000000-1;
|
1287
|
+
tj = 1;
|
1288
|
+
tj1 = x;
|
1289
|
+
jbcheb(x, -6.241608e+00, tj, tj1, result);
|
1290
|
+
jbcheb(x, -1.832655e+00, tj, tj1, result);
|
1291
|
+
jbcheb(x, 1.340545e-01, tj, tj1, result);
|
1292
|
+
jbcheb(x, -3.361143e-02, tj, tj1, result);
|
1293
|
+
jbcheb(x, 1.283219e-02, tj, tj1, result);
|
1294
|
+
jbcheb(x, 3.484549e-03, tj, tj1, result);
|
1295
|
+
jbcheb(x, 1.805968e-03, tj, tj1, result);
|
1296
|
+
jbcheb(x, -2.057243e-03, tj, tj1, result);
|
1297
|
+
jbcheb(x, -1.454439e-03, tj, tj1, result);
|
1298
|
+
jbcheb(x, -2.177513e-03, tj, tj1, result);
|
1299
|
+
jbcheb(x, -1.819209e-03, tj, tj1, result);
|
1300
|
+
if( result>0 )
|
1301
|
+
{
|
1302
|
+
result = 0;
|
1303
|
+
}
|
1304
|
+
return result;
|
1305
|
+
}
|
1306
|
+
result = -2.391580e-01*(s-2.000000e+01)-7.963205e+00;
|
1307
|
+
return result;
|
1308
|
+
}
|
1309
|
+
|
1310
|
+
|
1311
|
+
static double jbtbl17(double s)
|
1312
|
+
{
|
1313
|
+
double result;
|
1314
|
+
double x;
|
1315
|
+
double tj;
|
1316
|
+
double tj1;
|
1317
|
+
|
1318
|
+
result = 0;
|
1319
|
+
if( s<=3.0000 )
|
1320
|
+
{
|
1321
|
+
x = 2*(s-0.000000)/3.000000-1;
|
1322
|
+
tj = 1;
|
1323
|
+
tj1 = x;
|
1324
|
+
jbcheb(x, -1.566973e+00, tj, tj1, result);
|
1325
|
+
jbcheb(x, -1.810330e+00, tj, tj1, result);
|
1326
|
+
jbcheb(x, -4.840039e-02, tj, tj1, result);
|
1327
|
+
jbcheb(x, 2.337294e-01, tj, tj1, result);
|
1328
|
+
jbcheb(x, -5.383549e-04, tj, tj1, result);
|
1329
|
+
jbcheb(x, -5.556515e-02, tj, tj1, result);
|
1330
|
+
jbcheb(x, -8.656965e-03, tj, tj1, result);
|
1331
|
+
jbcheb(x, 1.404569e-02, tj, tj1, result);
|
1332
|
+
jbcheb(x, 6.447867e-03, tj, tj1, result);
|
1333
|
+
if( result>0 )
|
1334
|
+
{
|
1335
|
+
result = 0;
|
1336
|
+
}
|
1337
|
+
return result;
|
1338
|
+
}
|
1339
|
+
if( s<=6.0000 )
|
1340
|
+
{
|
1341
|
+
x = 2*(s-3.000000)/3.000000-1;
|
1342
|
+
tj = 1;
|
1343
|
+
tj1 = x;
|
1344
|
+
jbcheb(x, -3.905684e+00, tj, tj1, result);
|
1345
|
+
jbcheb(x, -6.222920e-01, tj, tj1, result);
|
1346
|
+
jbcheb(x, 4.146667e-02, tj, tj1, result);
|
1347
|
+
jbcheb(x, -4.809176e-03, tj, tj1, result);
|
1348
|
+
jbcheb(x, 1.057028e-03, tj, tj1, result);
|
1349
|
+
jbcheb(x, -1.211838e-04, tj, tj1, result);
|
1350
|
+
jbcheb(x, -4.099683e-04, tj, tj1, result);
|
1351
|
+
jbcheb(x, 1.161105e-04, tj, tj1, result);
|
1352
|
+
jbcheb(x, 2.225465e-04, tj, tj1, result);
|
1353
|
+
if( result>0 )
|
1354
|
+
{
|
1355
|
+
result = 0;
|
1356
|
+
}
|
1357
|
+
return result;
|
1358
|
+
}
|
1359
|
+
if( s<=24.0000 )
|
1360
|
+
{
|
1361
|
+
x = 2*(s-6.000000)/18.000000-1;
|
1362
|
+
tj = 1;
|
1363
|
+
tj1 = x;
|
1364
|
+
jbcheb(x, -6.594282e+00, tj, tj1, result);
|
1365
|
+
jbcheb(x, -1.917838e+00, tj, tj1, result);
|
1366
|
+
jbcheb(x, 1.455980e-01, tj, tj1, result);
|
1367
|
+
jbcheb(x, -2.999589e-02, tj, tj1, result);
|
1368
|
+
jbcheb(x, 5.604263e-03, tj, tj1, result);
|
1369
|
+
jbcheb(x, -3.484445e-03, tj, tj1, result);
|
1370
|
+
jbcheb(x, -1.819937e-03, tj, tj1, result);
|
1371
|
+
jbcheb(x, -2.930390e-03, tj, tj1, result);
|
1372
|
+
jbcheb(x, 2.771761e-04, tj, tj1, result);
|
1373
|
+
jbcheb(x, -6.232581e-04, tj, tj1, result);
|
1374
|
+
jbcheb(x, -7.029083e-04, tj, tj1, result);
|
1375
|
+
if( result>0 )
|
1376
|
+
{
|
1377
|
+
result = 0;
|
1378
|
+
}
|
1379
|
+
return result;
|
1380
|
+
}
|
1381
|
+
result = -2.127771e-01*(s-2.400000e+01)-8.400197e+00;
|
1382
|
+
return result;
|
1383
|
+
}
|
1384
|
+
|
1385
|
+
|
1386
|
+
static double jbtbl18(double s)
|
1387
|
+
{
|
1388
|
+
double result;
|
1389
|
+
double x;
|
1390
|
+
double tj;
|
1391
|
+
double tj1;
|
1392
|
+
|
1393
|
+
result = 0;
|
1394
|
+
if( s<=3.0000 )
|
1395
|
+
{
|
1396
|
+
x = 2*(s-0.000000)/3.000000-1;
|
1397
|
+
tj = 1;
|
1398
|
+
tj1 = x;
|
1399
|
+
jbcheb(x, -1.526802e+00, tj, tj1, result);
|
1400
|
+
jbcheb(x, -1.762373e+00, tj, tj1, result);
|
1401
|
+
jbcheb(x, -5.598890e-02, tj, tj1, result);
|
1402
|
+
jbcheb(x, 2.189437e-01, tj, tj1, result);
|
1403
|
+
jbcheb(x, 5.971721e-03, tj, tj1, result);
|
1404
|
+
jbcheb(x, -4.823067e-02, tj, tj1, result);
|
1405
|
+
jbcheb(x, -1.064501e-02, tj, tj1, result);
|
1406
|
+
jbcheb(x, 1.014932e-02, tj, tj1, result);
|
1407
|
+
jbcheb(x, 5.953513e-03, tj, tj1, result);
|
1408
|
+
if( result>0 )
|
1409
|
+
{
|
1410
|
+
result = 0;
|
1411
|
+
}
|
1412
|
+
return result;
|
1413
|
+
}
|
1414
|
+
if( s<=6.0000 )
|
1415
|
+
{
|
1416
|
+
x = 2*(s-3.000000)/3.000000-1;
|
1417
|
+
tj = 1;
|
1418
|
+
tj1 = x;
|
1419
|
+
jbcheb(x, -3.818669e+00, tj, tj1, result);
|
1420
|
+
jbcheb(x, -6.070918e-01, tj, tj1, result);
|
1421
|
+
jbcheb(x, 4.277196e-02, tj, tj1, result);
|
1422
|
+
jbcheb(x, -4.879817e-03, tj, tj1, result);
|
1423
|
+
jbcheb(x, 6.887357e-04, tj, tj1, result);
|
1424
|
+
jbcheb(x, 1.638451e-05, tj, tj1, result);
|
1425
|
+
jbcheb(x, 1.502800e-04, tj, tj1, result);
|
1426
|
+
jbcheb(x, -3.165796e-05, tj, tj1, result);
|
1427
|
+
jbcheb(x, 5.034960e-05, tj, tj1, result);
|
1428
|
+
if( result>0 )
|
1429
|
+
{
|
1430
|
+
result = 0;
|
1431
|
+
}
|
1432
|
+
return result;
|
1433
|
+
}
|
1434
|
+
if( s<=20.0000 )
|
1435
|
+
{
|
1436
|
+
x = 2*(s-6.000000)/14.000000-1;
|
1437
|
+
tj = 1;
|
1438
|
+
tj1 = x;
|
1439
|
+
jbcheb(x, -6.010656e+00, tj, tj1, result);
|
1440
|
+
jbcheb(x, -1.496296e+00, tj, tj1, result);
|
1441
|
+
jbcheb(x, 1.002227e-01, tj, tj1, result);
|
1442
|
+
jbcheb(x, -2.338250e-02, tj, tj1, result);
|
1443
|
+
jbcheb(x, 4.137036e-03, tj, tj1, result);
|
1444
|
+
jbcheb(x, -2.586202e-03, tj, tj1, result);
|
1445
|
+
jbcheb(x, -9.736384e-04, tj, tj1, result);
|
1446
|
+
jbcheb(x, 1.332251e-03, tj, tj1, result);
|
1447
|
+
jbcheb(x, 1.877982e-03, tj, tj1, result);
|
1448
|
+
jbcheb(x, -1.160963e-05, tj, tj1, result);
|
1449
|
+
jbcheb(x, -2.547247e-03, tj, tj1, result);
|
1450
|
+
if( result>0 )
|
1451
|
+
{
|
1452
|
+
result = 0;
|
1453
|
+
}
|
1454
|
+
return result;
|
1455
|
+
}
|
1456
|
+
result = -1.684623e-01*(s-2.000000e+01)-7.428883e+00;
|
1457
|
+
return result;
|
1458
|
+
}
|
1459
|
+
|
1460
|
+
|
1461
|
+
static double jbtbl19(double s)
|
1462
|
+
{
|
1463
|
+
double result;
|
1464
|
+
double x;
|
1465
|
+
double tj;
|
1466
|
+
double tj1;
|
1467
|
+
|
1468
|
+
result = 0;
|
1469
|
+
if( s<=3.0000 )
|
1470
|
+
{
|
1471
|
+
x = 2*(s-0.000000)/3.000000-1;
|
1472
|
+
tj = 1;
|
1473
|
+
tj1 = x;
|
1474
|
+
jbcheb(x, -1.490213e+00, tj, tj1, result);
|
1475
|
+
jbcheb(x, -1.719633e+00, tj, tj1, result);
|
1476
|
+
jbcheb(x, -6.459123e-02, tj, tj1, result);
|
1477
|
+
jbcheb(x, 2.034878e-01, tj, tj1, result);
|
1478
|
+
jbcheb(x, 1.113868e-02, tj, tj1, result);
|
1479
|
+
jbcheb(x, -4.030922e-02, tj, tj1, result);
|
1480
|
+
jbcheb(x, -1.054022e-02, tj, tj1, result);
|
1481
|
+
jbcheb(x, 7.525623e-03, tj, tj1, result);
|
1482
|
+
jbcheb(x, 5.277360e-03, tj, tj1, result);
|
1483
|
+
if( result>0 )
|
1484
|
+
{
|
1485
|
+
result = 0;
|
1486
|
+
}
|
1487
|
+
return result;
|
1488
|
+
}
|
1489
|
+
if( s<=6.0000 )
|
1490
|
+
{
|
1491
|
+
x = 2*(s-3.000000)/3.000000-1;
|
1492
|
+
tj = 1;
|
1493
|
+
tj1 = x;
|
1494
|
+
jbcheb(x, -3.744750e+00, tj, tj1, result);
|
1495
|
+
jbcheb(x, -5.977749e-01, tj, tj1, result);
|
1496
|
+
jbcheb(x, 4.223716e-02, tj, tj1, result);
|
1497
|
+
jbcheb(x, -5.363889e-03, tj, tj1, result);
|
1498
|
+
jbcheb(x, 5.711774e-04, tj, tj1, result);
|
1499
|
+
jbcheb(x, -5.557257e-04, tj, tj1, result);
|
1500
|
+
jbcheb(x, 4.254794e-04, tj, tj1, result);
|
1501
|
+
jbcheb(x, 9.034207e-05, tj, tj1, result);
|
1502
|
+
jbcheb(x, 5.498107e-05, tj, tj1, result);
|
1503
|
+
if( result>0 )
|
1504
|
+
{
|
1505
|
+
result = 0;
|
1506
|
+
}
|
1507
|
+
return result;
|
1508
|
+
}
|
1509
|
+
if( s<=20.0000 )
|
1510
|
+
{
|
1511
|
+
x = 2*(s-6.000000)/14.000000-1;
|
1512
|
+
tj = 1;
|
1513
|
+
tj1 = x;
|
1514
|
+
jbcheb(x, -5.872768e+00, tj, tj1, result);
|
1515
|
+
jbcheb(x, -1.430689e+00, tj, tj1, result);
|
1516
|
+
jbcheb(x, 1.136575e-01, tj, tj1, result);
|
1517
|
+
jbcheb(x, -1.726627e-02, tj, tj1, result);
|
1518
|
+
jbcheb(x, 3.421110e-03, tj, tj1, result);
|
1519
|
+
jbcheb(x, -1.581510e-03, tj, tj1, result);
|
1520
|
+
jbcheb(x, -5.559520e-04, tj, tj1, result);
|
1521
|
+
jbcheb(x, -6.838208e-04, tj, tj1, result);
|
1522
|
+
jbcheb(x, 8.428839e-04, tj, tj1, result);
|
1523
|
+
jbcheb(x, -7.170682e-04, tj, tj1, result);
|
1524
|
+
jbcheb(x, -6.006647e-04, tj, tj1, result);
|
1525
|
+
if( result>0 )
|
1526
|
+
{
|
1527
|
+
result = 0;
|
1528
|
+
}
|
1529
|
+
return result;
|
1530
|
+
}
|
1531
|
+
result = -1.539373e-01*(s-2.000000e+01)-7.206941e+00;
|
1532
|
+
return result;
|
1533
|
+
}
|
1534
|
+
|
1535
|
+
|
1536
|
+
static double jbtbl20(double s)
|
1537
|
+
{
|
1538
|
+
double result;
|
1539
|
+
double x;
|
1540
|
+
double tj;
|
1541
|
+
double tj1;
|
1542
|
+
|
1543
|
+
result = 0;
|
1544
|
+
if( s<=4.0000 )
|
1545
|
+
{
|
1546
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1547
|
+
tj = 1;
|
1548
|
+
tj1 = x;
|
1549
|
+
jbcheb(x, -1.854794e+00, tj, tj1, result);
|
1550
|
+
jbcheb(x, -1.948947e+00, tj, tj1, result);
|
1551
|
+
jbcheb(x, 1.632184e-01, tj, tj1, result);
|
1552
|
+
jbcheb(x, 2.139397e-01, tj, tj1, result);
|
1553
|
+
jbcheb(x, -1.006237e-01, tj, tj1, result);
|
1554
|
+
jbcheb(x, -3.810031e-02, tj, tj1, result);
|
1555
|
+
jbcheb(x, 3.573620e-02, tj, tj1, result);
|
1556
|
+
jbcheb(x, 9.951242e-03, tj, tj1, result);
|
1557
|
+
jbcheb(x, -1.274092e-02, tj, tj1, result);
|
1558
|
+
jbcheb(x, -3.464196e-03, tj, tj1, result);
|
1559
|
+
jbcheb(x, 4.882139e-03, tj, tj1, result);
|
1560
|
+
jbcheb(x, 1.575144e-03, tj, tj1, result);
|
1561
|
+
jbcheb(x, -1.822804e-03, tj, tj1, result);
|
1562
|
+
jbcheb(x, -7.061348e-04, tj, tj1, result);
|
1563
|
+
jbcheb(x, 5.908404e-04, tj, tj1, result);
|
1564
|
+
jbcheb(x, 1.978353e-04, tj, tj1, result);
|
1565
|
+
if( result>0 )
|
1566
|
+
{
|
1567
|
+
result = 0;
|
1568
|
+
}
|
1569
|
+
return result;
|
1570
|
+
}
|
1571
|
+
if( s<=15.0000 )
|
1572
|
+
{
|
1573
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1574
|
+
tj = 1;
|
1575
|
+
tj1 = x;
|
1576
|
+
jbcheb(x, -5.030989e+00, tj, tj1, result);
|
1577
|
+
jbcheb(x, -1.327151e+00, tj, tj1, result);
|
1578
|
+
jbcheb(x, 1.346404e-01, tj, tj1, result);
|
1579
|
+
jbcheb(x, -2.840051e-02, tj, tj1, result);
|
1580
|
+
jbcheb(x, 7.578551e-03, tj, tj1, result);
|
1581
|
+
jbcheb(x, -9.813886e-04, tj, tj1, result);
|
1582
|
+
jbcheb(x, 5.905973e-05, tj, tj1, result);
|
1583
|
+
jbcheb(x, -5.358489e-04, tj, tj1, result);
|
1584
|
+
jbcheb(x, -3.450795e-04, tj, tj1, result);
|
1585
|
+
jbcheb(x, -6.941157e-04, tj, tj1, result);
|
1586
|
+
jbcheb(x, -7.432418e-04, tj, tj1, result);
|
1587
|
+
jbcheb(x, -2.070537e-04, tj, tj1, result);
|
1588
|
+
jbcheb(x, 9.375654e-04, tj, tj1, result);
|
1589
|
+
jbcheb(x, 5.367378e-04, tj, tj1, result);
|
1590
|
+
jbcheb(x, 9.890859e-04, tj, tj1, result);
|
1591
|
+
jbcheb(x, 6.679782e-04, tj, tj1, result);
|
1592
|
+
if( result>0 )
|
1593
|
+
{
|
1594
|
+
result = 0;
|
1595
|
+
}
|
1596
|
+
return result;
|
1597
|
+
}
|
1598
|
+
if( s<=25.0000 )
|
1599
|
+
{
|
1600
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1601
|
+
tj = 1;
|
1602
|
+
tj1 = x;
|
1603
|
+
jbcheb(x, -7.015854e+00, tj, tj1, result);
|
1604
|
+
jbcheb(x, -7.487737e-01, tj, tj1, result);
|
1605
|
+
jbcheb(x, 2.244254e-02, tj, tj1, result);
|
1606
|
+
if( result>0 )
|
1607
|
+
{
|
1608
|
+
result = 0;
|
1609
|
+
}
|
1610
|
+
return result;
|
1611
|
+
}
|
1612
|
+
result = -1.318007e-01*(s-2.500000e+01)-7.742185e+00;
|
1613
|
+
return result;
|
1614
|
+
}
|
1615
|
+
|
1616
|
+
|
1617
|
+
static double jbtbl30(double s)
|
1618
|
+
{
|
1619
|
+
double result;
|
1620
|
+
double x;
|
1621
|
+
double tj;
|
1622
|
+
double tj1;
|
1623
|
+
|
1624
|
+
result = 0;
|
1625
|
+
if( s<=4.0000 )
|
1626
|
+
{
|
1627
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1628
|
+
tj = 1;
|
1629
|
+
tj1 = x;
|
1630
|
+
jbcheb(x, -1.630822e+00, tj, tj1, result);
|
1631
|
+
jbcheb(x, -1.724298e+00, tj, tj1, result);
|
1632
|
+
jbcheb(x, 7.872756e-02, tj, tj1, result);
|
1633
|
+
jbcheb(x, 1.658268e-01, tj, tj1, result);
|
1634
|
+
jbcheb(x, -3.573597e-02, tj, tj1, result);
|
1635
|
+
jbcheb(x, -2.994157e-02, tj, tj1, result);
|
1636
|
+
jbcheb(x, 5.994825e-03, tj, tj1, result);
|
1637
|
+
jbcheb(x, 7.394303e-03, tj, tj1, result);
|
1638
|
+
jbcheb(x, -5.785029e-04, tj, tj1, result);
|
1639
|
+
jbcheb(x, -1.990264e-03, tj, tj1, result);
|
1640
|
+
jbcheb(x, -1.037838e-04, tj, tj1, result);
|
1641
|
+
jbcheb(x, 6.755546e-04, tj, tj1, result);
|
1642
|
+
jbcheb(x, 1.774473e-04, tj, tj1, result);
|
1643
|
+
jbcheb(x, -2.821395e-04, tj, tj1, result);
|
1644
|
+
jbcheb(x, -1.392603e-04, tj, tj1, result);
|
1645
|
+
jbcheb(x, 1.353313e-04, tj, tj1, result);
|
1646
|
+
if( result>0 )
|
1647
|
+
{
|
1648
|
+
result = 0;
|
1649
|
+
}
|
1650
|
+
return result;
|
1651
|
+
}
|
1652
|
+
if( s<=15.0000 )
|
1653
|
+
{
|
1654
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1655
|
+
tj = 1;
|
1656
|
+
tj1 = x;
|
1657
|
+
jbcheb(x, -4.539322e+00, tj, tj1, result);
|
1658
|
+
jbcheb(x, -1.197018e+00, tj, tj1, result);
|
1659
|
+
jbcheb(x, 1.396848e-01, tj, tj1, result);
|
1660
|
+
jbcheb(x, -2.804293e-02, tj, tj1, result);
|
1661
|
+
jbcheb(x, 6.867928e-03, tj, tj1, result);
|
1662
|
+
jbcheb(x, -2.768758e-03, tj, tj1, result);
|
1663
|
+
jbcheb(x, 5.211792e-04, tj, tj1, result);
|
1664
|
+
jbcheb(x, 4.925799e-04, tj, tj1, result);
|
1665
|
+
jbcheb(x, 5.046235e-04, tj, tj1, result);
|
1666
|
+
jbcheb(x, -9.536469e-05, tj, tj1, result);
|
1667
|
+
jbcheb(x, -6.489642e-04, tj, tj1, result);
|
1668
|
+
if( result>0 )
|
1669
|
+
{
|
1670
|
+
result = 0;
|
1671
|
+
}
|
1672
|
+
return result;
|
1673
|
+
}
|
1674
|
+
if( s<=25.0000 )
|
1675
|
+
{
|
1676
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1677
|
+
tj = 1;
|
1678
|
+
tj1 = x;
|
1679
|
+
jbcheb(x, -6.263462e+00, tj, tj1, result);
|
1680
|
+
jbcheb(x, -6.177316e-01, tj, tj1, result);
|
1681
|
+
jbcheb(x, 2.590637e-02, tj, tj1, result);
|
1682
|
+
if( result>0 )
|
1683
|
+
{
|
1684
|
+
result = 0;
|
1685
|
+
}
|
1686
|
+
return result;
|
1687
|
+
}
|
1688
|
+
result = -1.028212e-01*(s-2.500000e+01)-6.855288e+00;
|
1689
|
+
return result;
|
1690
|
+
}
|
1691
|
+
|
1692
|
+
|
1693
|
+
static double jbtbl50(double s)
|
1694
|
+
{
|
1695
|
+
double result;
|
1696
|
+
double x;
|
1697
|
+
double tj;
|
1698
|
+
double tj1;
|
1699
|
+
|
1700
|
+
result = 0;
|
1701
|
+
if( s<=4.0000 )
|
1702
|
+
{
|
1703
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1704
|
+
tj = 1;
|
1705
|
+
tj1 = x;
|
1706
|
+
jbcheb(x, -1.436279e+00, tj, tj1, result);
|
1707
|
+
jbcheb(x, -1.519711e+00, tj, tj1, result);
|
1708
|
+
jbcheb(x, 1.148699e-02, tj, tj1, result);
|
1709
|
+
jbcheb(x, 1.001204e-01, tj, tj1, result);
|
1710
|
+
jbcheb(x, -3.207620e-03, tj, tj1, result);
|
1711
|
+
jbcheb(x, -1.034778e-02, tj, tj1, result);
|
1712
|
+
jbcheb(x, -1.220322e-03, tj, tj1, result);
|
1713
|
+
jbcheb(x, 1.033260e-03, tj, tj1, result);
|
1714
|
+
jbcheb(x, 2.588280e-04, tj, tj1, result);
|
1715
|
+
jbcheb(x, -1.851653e-04, tj, tj1, result);
|
1716
|
+
jbcheb(x, -1.287733e-04, tj, tj1, result);
|
1717
|
+
if( result>0 )
|
1718
|
+
{
|
1719
|
+
result = 0;
|
1720
|
+
}
|
1721
|
+
return result;
|
1722
|
+
}
|
1723
|
+
if( s<=15.0000 )
|
1724
|
+
{
|
1725
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1726
|
+
tj = 1;
|
1727
|
+
tj1 = x;
|
1728
|
+
jbcheb(x, -4.234645e+00, tj, tj1, result);
|
1729
|
+
jbcheb(x, -1.189127e+00, tj, tj1, result);
|
1730
|
+
jbcheb(x, 1.429738e-01, tj, tj1, result);
|
1731
|
+
jbcheb(x, -3.058822e-02, tj, tj1, result);
|
1732
|
+
jbcheb(x, 9.086776e-03, tj, tj1, result);
|
1733
|
+
jbcheb(x, -1.445783e-03, tj, tj1, result);
|
1734
|
+
jbcheb(x, 1.311671e-03, tj, tj1, result);
|
1735
|
+
jbcheb(x, -7.261298e-04, tj, tj1, result);
|
1736
|
+
jbcheb(x, 6.496987e-04, tj, tj1, result);
|
1737
|
+
jbcheb(x, 2.605249e-04, tj, tj1, result);
|
1738
|
+
jbcheb(x, 8.162282e-04, tj, tj1, result);
|
1739
|
+
if( result>0 )
|
1740
|
+
{
|
1741
|
+
result = 0;
|
1742
|
+
}
|
1743
|
+
return result;
|
1744
|
+
}
|
1745
|
+
if( s<=25.0000 )
|
1746
|
+
{
|
1747
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1748
|
+
tj = 1;
|
1749
|
+
tj1 = x;
|
1750
|
+
jbcheb(x, -5.921095e+00, tj, tj1, result);
|
1751
|
+
jbcheb(x, -5.888603e-01, tj, tj1, result);
|
1752
|
+
jbcheb(x, 3.080113e-02, tj, tj1, result);
|
1753
|
+
if( result>0 )
|
1754
|
+
{
|
1755
|
+
result = 0;
|
1756
|
+
}
|
1757
|
+
return result;
|
1758
|
+
}
|
1759
|
+
result = -9.313116e-02*(s-2.500000e+01)-6.479154e+00;
|
1760
|
+
return result;
|
1761
|
+
}
|
1762
|
+
|
1763
|
+
|
1764
|
+
static double jbtbl65(double s)
|
1765
|
+
{
|
1766
|
+
double result;
|
1767
|
+
double x;
|
1768
|
+
double tj;
|
1769
|
+
double tj1;
|
1770
|
+
|
1771
|
+
result = 0;
|
1772
|
+
if( s<=4.0000 )
|
1773
|
+
{
|
1774
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1775
|
+
tj = 1;
|
1776
|
+
tj1 = x;
|
1777
|
+
jbcheb(x, -1.360024e+00, tj, tj1, result);
|
1778
|
+
jbcheb(x, -1.434631e+00, tj, tj1, result);
|
1779
|
+
jbcheb(x, -6.514580e-03, tj, tj1, result);
|
1780
|
+
jbcheb(x, 7.332038e-02, tj, tj1, result);
|
1781
|
+
jbcheb(x, 1.158197e-03, tj, tj1, result);
|
1782
|
+
jbcheb(x, -5.121233e-03, tj, tj1, result);
|
1783
|
+
jbcheb(x, -1.051056e-03, tj, tj1, result);
|
1784
|
+
if( result>0 )
|
1785
|
+
{
|
1786
|
+
result = 0;
|
1787
|
+
}
|
1788
|
+
return result;
|
1789
|
+
}
|
1790
|
+
if( s<=15.0000 )
|
1791
|
+
{
|
1792
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1793
|
+
tj = 1;
|
1794
|
+
tj1 = x;
|
1795
|
+
jbcheb(x, -4.148601e+00, tj, tj1, result);
|
1796
|
+
jbcheb(x, -1.214233e+00, tj, tj1, result);
|
1797
|
+
jbcheb(x, 1.487977e-01, tj, tj1, result);
|
1798
|
+
jbcheb(x, -3.424720e-02, tj, tj1, result);
|
1799
|
+
jbcheb(x, 1.116715e-02, tj, tj1, result);
|
1800
|
+
jbcheb(x, -4.043152e-03, tj, tj1, result);
|
1801
|
+
jbcheb(x, 1.718149e-03, tj, tj1, result);
|
1802
|
+
jbcheb(x, -1.313701e-03, tj, tj1, result);
|
1803
|
+
jbcheb(x, 3.097305e-04, tj, tj1, result);
|
1804
|
+
jbcheb(x, 2.181031e-04, tj, tj1, result);
|
1805
|
+
jbcheb(x, 1.256975e-04, tj, tj1, result);
|
1806
|
+
if( result>0 )
|
1807
|
+
{
|
1808
|
+
result = 0;
|
1809
|
+
}
|
1810
|
+
return result;
|
1811
|
+
}
|
1812
|
+
if( s<=25.0000 )
|
1813
|
+
{
|
1814
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1815
|
+
tj = 1;
|
1816
|
+
tj1 = x;
|
1817
|
+
jbcheb(x, -5.858951e+00, tj, tj1, result);
|
1818
|
+
jbcheb(x, -5.895179e-01, tj, tj1, result);
|
1819
|
+
jbcheb(x, 2.933237e-02, tj, tj1, result);
|
1820
|
+
if( result>0 )
|
1821
|
+
{
|
1822
|
+
result = 0;
|
1823
|
+
}
|
1824
|
+
return result;
|
1825
|
+
}
|
1826
|
+
result = -9.443768e-02*(s-2.500000e+01)-6.419137e+00;
|
1827
|
+
return result;
|
1828
|
+
}
|
1829
|
+
|
1830
|
+
|
1831
|
+
static double jbtbl100(double s)
|
1832
|
+
{
|
1833
|
+
double result;
|
1834
|
+
double x;
|
1835
|
+
double tj;
|
1836
|
+
double tj1;
|
1837
|
+
|
1838
|
+
result = 0;
|
1839
|
+
if( s<=4.0000 )
|
1840
|
+
{
|
1841
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1842
|
+
tj = 1;
|
1843
|
+
tj1 = x;
|
1844
|
+
jbcheb(x, -1.257021e+00, tj, tj1, result);
|
1845
|
+
jbcheb(x, -1.313418e+00, tj, tj1, result);
|
1846
|
+
jbcheb(x, -1.628931e-02, tj, tj1, result);
|
1847
|
+
jbcheb(x, 4.264287e-02, tj, tj1, result);
|
1848
|
+
jbcheb(x, 1.518487e-03, tj, tj1, result);
|
1849
|
+
jbcheb(x, -1.499826e-03, tj, tj1, result);
|
1850
|
+
jbcheb(x, -4.836044e-04, tj, tj1, result);
|
1851
|
+
if( result>0 )
|
1852
|
+
{
|
1853
|
+
result = 0;
|
1854
|
+
}
|
1855
|
+
return result;
|
1856
|
+
}
|
1857
|
+
if( s<=15.0000 )
|
1858
|
+
{
|
1859
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1860
|
+
tj = 1;
|
1861
|
+
tj1 = x;
|
1862
|
+
jbcheb(x, -4.056508e+00, tj, tj1, result);
|
1863
|
+
jbcheb(x, -1.279690e+00, tj, tj1, result);
|
1864
|
+
jbcheb(x, 1.665746e-01, tj, tj1, result);
|
1865
|
+
jbcheb(x, -4.290012e-02, tj, tj1, result);
|
1866
|
+
jbcheb(x, 1.487632e-02, tj, tj1, result);
|
1867
|
+
jbcheb(x, -5.704465e-03, tj, tj1, result);
|
1868
|
+
jbcheb(x, 2.211669e-03, tj, tj1, result);
|
1869
|
+
if( result>0 )
|
1870
|
+
{
|
1871
|
+
result = 0;
|
1872
|
+
}
|
1873
|
+
return result;
|
1874
|
+
}
|
1875
|
+
if( s<=25.0000 )
|
1876
|
+
{
|
1877
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1878
|
+
tj = 1;
|
1879
|
+
tj1 = x;
|
1880
|
+
jbcheb(x, -5.866099e+00, tj, tj1, result);
|
1881
|
+
jbcheb(x, -6.399767e-01, tj, tj1, result);
|
1882
|
+
jbcheb(x, 2.498208e-02, tj, tj1, result);
|
1883
|
+
if( result>0 )
|
1884
|
+
{
|
1885
|
+
result = 0;
|
1886
|
+
}
|
1887
|
+
return result;
|
1888
|
+
}
|
1889
|
+
result = -1.080097e-01*(s-2.500000e+01)-6.481094e+00;
|
1890
|
+
return result;
|
1891
|
+
}
|
1892
|
+
|
1893
|
+
|
1894
|
+
static double jbtbl130(double s)
|
1895
|
+
{
|
1896
|
+
double result;
|
1897
|
+
double x;
|
1898
|
+
double tj;
|
1899
|
+
double tj1;
|
1900
|
+
|
1901
|
+
result = 0;
|
1902
|
+
if( s<=4.0000 )
|
1903
|
+
{
|
1904
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1905
|
+
tj = 1;
|
1906
|
+
tj1 = x;
|
1907
|
+
jbcheb(x, -1.207999e+00, tj, tj1, result);
|
1908
|
+
jbcheb(x, -1.253864e+00, tj, tj1, result);
|
1909
|
+
jbcheb(x, -1.618032e-02, tj, tj1, result);
|
1910
|
+
jbcheb(x, 3.112729e-02, tj, tj1, result);
|
1911
|
+
jbcheb(x, 1.210546e-03, tj, tj1, result);
|
1912
|
+
jbcheb(x, -4.732602e-04, tj, tj1, result);
|
1913
|
+
jbcheb(x, -2.410527e-04, tj, tj1, result);
|
1914
|
+
if( result>0 )
|
1915
|
+
{
|
1916
|
+
result = 0;
|
1917
|
+
}
|
1918
|
+
return result;
|
1919
|
+
}
|
1920
|
+
if( s<=15.0000 )
|
1921
|
+
{
|
1922
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1923
|
+
tj = 1;
|
1924
|
+
tj1 = x;
|
1925
|
+
jbcheb(x, -4.026324e+00, tj, tj1, result);
|
1926
|
+
jbcheb(x, -1.331990e+00, tj, tj1, result);
|
1927
|
+
jbcheb(x, 1.779129e-01, tj, tj1, result);
|
1928
|
+
jbcheb(x, -4.674749e-02, tj, tj1, result);
|
1929
|
+
jbcheb(x, 1.669077e-02, tj, tj1, result);
|
1930
|
+
jbcheb(x, -5.679136e-03, tj, tj1, result);
|
1931
|
+
jbcheb(x, 8.833221e-04, tj, tj1, result);
|
1932
|
+
if( result>0 )
|
1933
|
+
{
|
1934
|
+
result = 0;
|
1935
|
+
}
|
1936
|
+
return result;
|
1937
|
+
}
|
1938
|
+
if( s<=25.0000 )
|
1939
|
+
{
|
1940
|
+
x = 2*(s-15.000000)/10.000000-1;
|
1941
|
+
tj = 1;
|
1942
|
+
tj1 = x;
|
1943
|
+
jbcheb(x, -5.893951e+00, tj, tj1, result);
|
1944
|
+
jbcheb(x, -6.475304e-01, tj, tj1, result);
|
1945
|
+
jbcheb(x, 3.116734e-02, tj, tj1, result);
|
1946
|
+
if( result>0 )
|
1947
|
+
{
|
1948
|
+
result = 0;
|
1949
|
+
}
|
1950
|
+
return result;
|
1951
|
+
}
|
1952
|
+
result = -1.045722e-01*(s-2.500000e+01)-6.510314e+00;
|
1953
|
+
return result;
|
1954
|
+
}
|
1955
|
+
|
1956
|
+
|
1957
|
+
static double jbtbl200(double s)
|
1958
|
+
{
|
1959
|
+
double result;
|
1960
|
+
double x;
|
1961
|
+
double tj;
|
1962
|
+
double tj1;
|
1963
|
+
|
1964
|
+
result = 0;
|
1965
|
+
if( s<=4.0000 )
|
1966
|
+
{
|
1967
|
+
x = 2*(s-0.000000)/4.000000-1;
|
1968
|
+
tj = 1;
|
1969
|
+
tj1 = x;
|
1970
|
+
jbcheb(x, -1.146155e+00, tj, tj1, result);
|
1971
|
+
jbcheb(x, -1.177398e+00, tj, tj1, result);
|
1972
|
+
jbcheb(x, -1.297970e-02, tj, tj1, result);
|
1973
|
+
jbcheb(x, 1.869745e-02, tj, tj1, result);
|
1974
|
+
jbcheb(x, 1.717288e-04, tj, tj1, result);
|
1975
|
+
jbcheb(x, -1.982108e-04, tj, tj1, result);
|
1976
|
+
jbcheb(x, 6.427636e-05, tj, tj1, result);
|
1977
|
+
if( result>0 )
|
1978
|
+
{
|
1979
|
+
result = 0;
|
1980
|
+
}
|
1981
|
+
return result;
|
1982
|
+
}
|
1983
|
+
if( s<=15.0000 )
|
1984
|
+
{
|
1985
|
+
x = 2*(s-4.000000)/11.000000-1;
|
1986
|
+
tj = 1;
|
1987
|
+
tj1 = x;
|
1988
|
+
jbcheb(x, -4.034235e+00, tj, tj1, result);
|
1989
|
+
jbcheb(x, -1.455006e+00, tj, tj1, result);
|
1990
|
+
jbcheb(x, 1.942996e-01, tj, tj1, result);
|
1991
|
+
jbcheb(x, -4.973795e-02, tj, tj1, result);
|
1992
|
+
jbcheb(x, 1.418812e-02, tj, tj1, result);
|
1993
|
+
jbcheb(x, -3.156778e-03, tj, tj1, result);
|
1994
|
+
jbcheb(x, 4.896705e-05, tj, tj1, result);
|
1995
|
+
if( result>0 )
|
1996
|
+
{
|
1997
|
+
result = 0;
|
1998
|
+
}
|
1999
|
+
return result;
|
2000
|
+
}
|
2001
|
+
if( s<=25.0000 )
|
2002
|
+
{
|
2003
|
+
x = 2*(s-15.000000)/10.000000-1;
|
2004
|
+
tj = 1;
|
2005
|
+
tj1 = x;
|
2006
|
+
jbcheb(x, -6.086071e+00, tj, tj1, result);
|
2007
|
+
jbcheb(x, -7.152176e-01, tj, tj1, result);
|
2008
|
+
jbcheb(x, 3.725393e-02, tj, tj1, result);
|
2009
|
+
if( result>0 )
|
2010
|
+
{
|
2011
|
+
result = 0;
|
2012
|
+
}
|
2013
|
+
return result;
|
2014
|
+
}
|
2015
|
+
result = -1.132404e-01*(s-2.500000e+01)-6.764034e+00;
|
2016
|
+
return result;
|
2017
|
+
}
|
2018
|
+
|
2019
|
+
|
2020
|
+
static double jbtbl301(double s)
|
2021
|
+
{
|
2022
|
+
double result;
|
2023
|
+
double x;
|
2024
|
+
double tj;
|
2025
|
+
double tj1;
|
2026
|
+
|
2027
|
+
result = 0;
|
2028
|
+
if( s<=4.0000 )
|
2029
|
+
{
|
2030
|
+
x = 2*(s-0.000000)/4.000000-1;
|
2031
|
+
tj = 1;
|
2032
|
+
tj1 = x;
|
2033
|
+
jbcheb(x, -1.104290e+00, tj, tj1, result);
|
2034
|
+
jbcheb(x, -1.125800e+00, tj, tj1, result);
|
2035
|
+
jbcheb(x, -9.595847e-03, tj, tj1, result);
|
2036
|
+
jbcheb(x, 1.219666e-02, tj, tj1, result);
|
2037
|
+
jbcheb(x, 1.502210e-04, tj, tj1, result);
|
2038
|
+
jbcheb(x, -6.414543e-05, tj, tj1, result);
|
2039
|
+
jbcheb(x, 6.754115e-05, tj, tj1, result);
|
2040
|
+
if( result>0 )
|
2041
|
+
{
|
2042
|
+
result = 0;
|
2043
|
+
}
|
2044
|
+
return result;
|
2045
|
+
}
|
2046
|
+
if( s<=15.0000 )
|
2047
|
+
{
|
2048
|
+
x = 2*(s-4.000000)/11.000000-1;
|
2049
|
+
tj = 1;
|
2050
|
+
tj1 = x;
|
2051
|
+
jbcheb(x, -4.065955e+00, tj, tj1, result);
|
2052
|
+
jbcheb(x, -1.582060e+00, tj, tj1, result);
|
2053
|
+
jbcheb(x, 2.004472e-01, tj, tj1, result);
|
2054
|
+
jbcheb(x, -4.709092e-02, tj, tj1, result);
|
2055
|
+
jbcheb(x, 1.105779e-02, tj, tj1, result);
|
2056
|
+
jbcheb(x, 1.197391e-03, tj, tj1, result);
|
2057
|
+
jbcheb(x, -8.386780e-04, tj, tj1, result);
|
2058
|
+
if( result>0 )
|
2059
|
+
{
|
2060
|
+
result = 0;
|
2061
|
+
}
|
2062
|
+
return result;
|
2063
|
+
}
|
2064
|
+
if( s<=25.0000 )
|
2065
|
+
{
|
2066
|
+
x = 2*(s-15.000000)/10.000000-1;
|
2067
|
+
tj = 1;
|
2068
|
+
tj1 = x;
|
2069
|
+
jbcheb(x, -6.311384e+00, tj, tj1, result);
|
2070
|
+
jbcheb(x, -7.918763e-01, tj, tj1, result);
|
2071
|
+
jbcheb(x, 3.626584e-02, tj, tj1, result);
|
2072
|
+
if( result>0 )
|
2073
|
+
{
|
2074
|
+
result = 0;
|
2075
|
+
}
|
2076
|
+
return result;
|
2077
|
+
}
|
2078
|
+
result = -1.293626e-01*(s-2.500000e+01)-7.066995e+00;
|
2079
|
+
return result;
|
2080
|
+
}
|
2081
|
+
|
2082
|
+
|
2083
|
+
static double jbtbl501(double s)
|
2084
|
+
{
|
2085
|
+
double result;
|
2086
|
+
double x;
|
2087
|
+
double tj;
|
2088
|
+
double tj1;
|
2089
|
+
|
2090
|
+
result = 0;
|
2091
|
+
if( s<=4.0000 )
|
2092
|
+
{
|
2093
|
+
x = 2*(s-0.000000)/4.000000-1;
|
2094
|
+
tj = 1;
|
2095
|
+
tj1 = x;
|
2096
|
+
jbcheb(x, -1.067426e+00, tj, tj1, result);
|
2097
|
+
jbcheb(x, -1.079765e+00, tj, tj1, result);
|
2098
|
+
jbcheb(x, -5.463005e-03, tj, tj1, result);
|
2099
|
+
jbcheb(x, 6.875659e-03, tj, tj1, result);
|
2100
|
+
if( result>0 )
|
2101
|
+
{
|
2102
|
+
result = 0;
|
2103
|
+
}
|
2104
|
+
return result;
|
2105
|
+
}
|
2106
|
+
if( s<=15.0000 )
|
2107
|
+
{
|
2108
|
+
x = 2*(s-4.000000)/11.000000-1;
|
2109
|
+
tj = 1;
|
2110
|
+
tj1 = x;
|
2111
|
+
jbcheb(x, -4.127574e+00, tj, tj1, result);
|
2112
|
+
jbcheb(x, -1.740694e+00, tj, tj1, result);
|
2113
|
+
jbcheb(x, 2.044502e-01, tj, tj1, result);
|
2114
|
+
jbcheb(x, -3.746714e-02, tj, tj1, result);
|
2115
|
+
jbcheb(x, 3.810594e-04, tj, tj1, result);
|
2116
|
+
jbcheb(x, 1.197111e-03, tj, tj1, result);
|
2117
|
+
if( result>0 )
|
2118
|
+
{
|
2119
|
+
result = 0;
|
2120
|
+
}
|
2121
|
+
return result;
|
2122
|
+
}
|
2123
|
+
if( s<=25.0000 )
|
2124
|
+
{
|
2125
|
+
x = 2*(s-15.000000)/10.000000-1;
|
2126
|
+
tj = 1;
|
2127
|
+
tj1 = x;
|
2128
|
+
jbcheb(x, -6.628194e+00, tj, tj1, result);
|
2129
|
+
jbcheb(x, -8.846221e-01, tj, tj1, result);
|
2130
|
+
jbcheb(x, 4.386405e-02, tj, tj1, result);
|
2131
|
+
if( result>0 )
|
2132
|
+
{
|
2133
|
+
result = 0;
|
2134
|
+
}
|
2135
|
+
return result;
|
2136
|
+
}
|
2137
|
+
result = -1.418332e-01*(s-2.500000e+01)-7.468952e+00;
|
2138
|
+
return result;
|
2139
|
+
}
|
2140
|
+
|
2141
|
+
|
2142
|
+
static double jbtbl701(double s)
|
2143
|
+
{
|
2144
|
+
double result;
|
2145
|
+
double x;
|
2146
|
+
double tj;
|
2147
|
+
double tj1;
|
2148
|
+
|
2149
|
+
result = 0;
|
2150
|
+
if( s<=4.0000 )
|
2151
|
+
{
|
2152
|
+
x = 2*(s-0.000000)/4.000000-1;
|
2153
|
+
tj = 1;
|
2154
|
+
tj1 = x;
|
2155
|
+
jbcheb(x, -1.050999e+00, tj, tj1, result);
|
2156
|
+
jbcheb(x, -1.059769e+00, tj, tj1, result);
|
2157
|
+
jbcheb(x, -3.922680e-03, tj, tj1, result);
|
2158
|
+
jbcheb(x, 4.847054e-03, tj, tj1, result);
|
2159
|
+
if( result>0 )
|
2160
|
+
{
|
2161
|
+
result = 0;
|
2162
|
+
}
|
2163
|
+
return result;
|
2164
|
+
}
|
2165
|
+
if( s<=15.0000 )
|
2166
|
+
{
|
2167
|
+
x = 2*(s-4.000000)/11.000000-1;
|
2168
|
+
tj = 1;
|
2169
|
+
tj1 = x;
|
2170
|
+
jbcheb(x, -4.192182e+00, tj, tj1, result);
|
2171
|
+
jbcheb(x, -1.860007e+00, tj, tj1, result);
|
2172
|
+
jbcheb(x, 1.963942e-01, tj, tj1, result);
|
2173
|
+
jbcheb(x, -2.838711e-02, tj, tj1, result);
|
2174
|
+
jbcheb(x, -2.893112e-04, tj, tj1, result);
|
2175
|
+
jbcheb(x, 2.159788e-03, tj, tj1, result);
|
2176
|
+
if( result>0 )
|
2177
|
+
{
|
2178
|
+
result = 0;
|
2179
|
+
}
|
2180
|
+
return result;
|
2181
|
+
}
|
2182
|
+
if( s<=25.0000 )
|
2183
|
+
{
|
2184
|
+
x = 2*(s-15.000000)/10.000000-1;
|
2185
|
+
tj = 1;
|
2186
|
+
tj1 = x;
|
2187
|
+
jbcheb(x, -6.917851e+00, tj, tj1, result);
|
2188
|
+
jbcheb(x, -9.817020e-01, tj, tj1, result);
|
2189
|
+
jbcheb(x, 5.383727e-02, tj, tj1, result);
|
2190
|
+
if( result>0 )
|
2191
|
+
{
|
2192
|
+
result = 0;
|
2193
|
+
}
|
2194
|
+
return result;
|
2195
|
+
}
|
2196
|
+
result = -1.532706e-01*(s-2.500000e+01)-7.845715e+00;
|
2197
|
+
return result;
|
2198
|
+
}
|
2199
|
+
|
2200
|
+
|
2201
|
+
static double jbtbl1401(double s)
|
2202
|
+
{
|
2203
|
+
double result;
|
2204
|
+
double x;
|
2205
|
+
double tj;
|
2206
|
+
double tj1;
|
2207
|
+
|
2208
|
+
result = 0;
|
2209
|
+
if( s<=4.0000 )
|
2210
|
+
{
|
2211
|
+
x = 2*(s-0.000000)/4.000000-1;
|
2212
|
+
tj = 1;
|
2213
|
+
tj1 = x;
|
2214
|
+
jbcheb(x, -1.026266e+00, tj, tj1, result);
|
2215
|
+
jbcheb(x, -1.030061e+00, tj, tj1, result);
|
2216
|
+
jbcheb(x, -1.259222e-03, tj, tj1, result);
|
2217
|
+
jbcheb(x, 2.536254e-03, tj, tj1, result);
|
2218
|
+
if( result>0 )
|
2219
|
+
{
|
2220
|
+
result = 0;
|
2221
|
+
}
|
2222
|
+
return result;
|
2223
|
+
}
|
2224
|
+
if( s<=15.0000 )
|
2225
|
+
{
|
2226
|
+
x = 2*(s-4.000000)/11.000000-1;
|
2227
|
+
tj = 1;
|
2228
|
+
tj1 = x;
|
2229
|
+
jbcheb(x, -4.329849e+00, tj, tj1, result);
|
2230
|
+
jbcheb(x, -2.095443e+00, tj, tj1, result);
|
2231
|
+
jbcheb(x, 1.759363e-01, tj, tj1, result);
|
2232
|
+
jbcheb(x, -7.751359e-03, tj, tj1, result);
|
2233
|
+
jbcheb(x, -6.124368e-03, tj, tj1, result);
|
2234
|
+
jbcheb(x, -1.793114e-03, tj, tj1, result);
|
2235
|
+
if( result>0 )
|
2236
|
+
{
|
2237
|
+
result = 0;
|
2238
|
+
}
|
2239
|
+
return result;
|
2240
|
+
}
|
2241
|
+
if( s<=25.0000 )
|
2242
|
+
{
|
2243
|
+
x = 2*(s-15.000000)/10.000000-1;
|
2244
|
+
tj = 1;
|
2245
|
+
tj1 = x;
|
2246
|
+
jbcheb(x, -7.544330e+00, tj, tj1, result);
|
2247
|
+
jbcheb(x, -1.225382e+00, tj, tj1, result);
|
2248
|
+
jbcheb(x, 5.392349e-02, tj, tj1, result);
|
2249
|
+
if( result>0 )
|
2250
|
+
{
|
2251
|
+
result = 0;
|
2252
|
+
}
|
2253
|
+
return result;
|
2254
|
+
}
|
2255
|
+
result = -2.019375e-01*(s-2.500000e+01)-8.715788e+00;
|
2256
|
+
return result;
|
2257
|
+
}
|
2258
|
+
|
2259
|
+
|
2260
|
+
static void jbcheb(double x, double c, double& tj, double& tj1, double& r)
|
2261
|
+
{
|
2262
|
+
double t;
|
2263
|
+
|
2264
|
+
r = r+c*tj;
|
2265
|
+
t = 2*x*tj1-tj;
|
2266
|
+
tj = tj1;
|
2267
|
+
tj1 = t;
|
2268
|
+
}
|
2269
|
+
|
2270
|
+
|
2271
|
+
|