alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,200 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _spdgevd_h
|
34
|
+
#define _spdgevd_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "cholesky.h"
|
40
|
+
#include "sblas.h"
|
41
|
+
#include "blas.h"
|
42
|
+
#include "trinverse.h"
|
43
|
+
#include "rotations.h"
|
44
|
+
#include "tdevd.h"
|
45
|
+
#include "reflections.h"
|
46
|
+
#include "tridiagonal.h"
|
47
|
+
#include "sevd.h"
|
48
|
+
|
49
|
+
|
50
|
+
/*************************************************************************
|
51
|
+
Algorithm for solving the following generalized symmetric positive-definite
|
52
|
+
eigenproblem:
|
53
|
+
A*x = lambda*B*x (1) or
|
54
|
+
A*B*x = lambda*x (2) or
|
55
|
+
B*A*x = lambda*x (3).
|
56
|
+
where A is a symmetric matrix, B - symmetric positive-definite matrix.
|
57
|
+
The problem is solved by reducing it to an ordinary symmetric eigenvalue
|
58
|
+
problem.
|
59
|
+
|
60
|
+
Input parameters:
|
61
|
+
A - symmetric matrix which is given by its upper or lower
|
62
|
+
triangular part.
|
63
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
64
|
+
N - size of matrices A and B.
|
65
|
+
IsUpperA - storage format of matrix A.
|
66
|
+
B - symmetric positive-definite matrix which is given by
|
67
|
+
its upper or lower triangular part.
|
68
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
69
|
+
IsUpperB - storage format of matrix B.
|
70
|
+
ZNeeded - if ZNeeded is equal to:
|
71
|
+
* 0, the eigenvectors are not returned;
|
72
|
+
* 1, the eigenvectors are returned.
|
73
|
+
ProblemType - if ProblemType is equal to:
|
74
|
+
* 1, the following problem is solved: A*x = lambda*B*x;
|
75
|
+
* 2, the following problem is solved: A*B*x = lambda*x;
|
76
|
+
* 3, the following problem is solved: B*A*x = lambda*x.
|
77
|
+
|
78
|
+
Output parameters:
|
79
|
+
D - eigenvalues in ascending order.
|
80
|
+
Array whose index ranges within [0..N-1].
|
81
|
+
Z - if ZNeeded is equal to:
|
82
|
+
* 0, Z hasn�t changed;
|
83
|
+
* 1, Z contains eigenvectors.
|
84
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
85
|
+
The eigenvectors are stored in matrix columns. It should
|
86
|
+
be noted that the eigenvectors in such problems do not
|
87
|
+
form an orthogonal system.
|
88
|
+
|
89
|
+
Result:
|
90
|
+
True, if the problem was solved successfully.
|
91
|
+
False, if the error occurred during the Cholesky decomposition of matrix
|
92
|
+
B (the matrix isn�t positive-definite) or during the work of the iterative
|
93
|
+
algorithm for solving the symmetric eigenproblem.
|
94
|
+
|
95
|
+
See also the GeneralizedSymmetricDefiniteEVDReduce subroutine.
|
96
|
+
|
97
|
+
-- ALGLIB --
|
98
|
+
Copyright 1.28.2006 by Bochkanov Sergey
|
99
|
+
*************************************************************************/
|
100
|
+
bool smatrixgevd(ap::real_2d_array a,
|
101
|
+
int n,
|
102
|
+
bool isuppera,
|
103
|
+
const ap::real_2d_array& b,
|
104
|
+
bool isupperb,
|
105
|
+
int zneeded,
|
106
|
+
int problemtype,
|
107
|
+
ap::real_1d_array& d,
|
108
|
+
ap::real_2d_array& z);
|
109
|
+
|
110
|
+
|
111
|
+
/*************************************************************************
|
112
|
+
Algorithm for reduction of the following generalized symmetric positive-
|
113
|
+
definite eigenvalue problem:
|
114
|
+
A*x = lambda*B*x (1) or
|
115
|
+
A*B*x = lambda*x (2) or
|
116
|
+
B*A*x = lambda*x (3)
|
117
|
+
to the symmetric eigenvalues problem C*y = lambda*y (eigenvalues of this and
|
118
|
+
the given problems are the same, and the eigenvectors of the given problem
|
119
|
+
could be obtained by multiplying the obtained eigenvectors by the
|
120
|
+
transformation matrix x = R*y).
|
121
|
+
|
122
|
+
Here A is a symmetric matrix, B - symmetric positive-definite matrix.
|
123
|
+
|
124
|
+
Input parameters:
|
125
|
+
A - symmetric matrix which is given by its upper or lower
|
126
|
+
triangular part.
|
127
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
128
|
+
N - size of matrices A and B.
|
129
|
+
IsUpperA - storage format of matrix A.
|
130
|
+
B - symmetric positive-definite matrix which is given by
|
131
|
+
its upper or lower triangular part.
|
132
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
133
|
+
IsUpperB - storage format of matrix B.
|
134
|
+
ProblemType - if ProblemType is equal to:
|
135
|
+
* 1, the following problem is solved: A*x = lambda*B*x;
|
136
|
+
* 2, the following problem is solved: A*B*x = lambda*x;
|
137
|
+
* 3, the following problem is solved: B*A*x = lambda*x.
|
138
|
+
|
139
|
+
Output parameters:
|
140
|
+
A - symmetric matrix which is given by its upper or lower
|
141
|
+
triangle depending on IsUpperA. Contains matrix C.
|
142
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
143
|
+
R - upper triangular or low triangular transformation matrix
|
144
|
+
which is used to obtain the eigenvectors of a given problem
|
145
|
+
as the product of eigenvectors of C (from the right) and
|
146
|
+
matrix R (from the left). If the matrix is upper
|
147
|
+
triangular, the elements below the main diagonal
|
148
|
+
are equal to 0 (and vice versa). Thus, we can perform
|
149
|
+
the multiplication without taking into account the
|
150
|
+
internal structure (which is an easier though less
|
151
|
+
effective way).
|
152
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
153
|
+
IsUpperR - type of matrix R (upper or lower triangular).
|
154
|
+
|
155
|
+
Result:
|
156
|
+
True, if the problem was reduced successfully.
|
157
|
+
False, if the error occurred during the Cholesky decomposition of
|
158
|
+
matrix B (the matrix is not positive-definite).
|
159
|
+
|
160
|
+
-- ALGLIB --
|
161
|
+
Copyright 1.28.2006 by Bochkanov Sergey
|
162
|
+
*************************************************************************/
|
163
|
+
bool smatrixgevdreduce(ap::real_2d_array& a,
|
164
|
+
int n,
|
165
|
+
bool isuppera,
|
166
|
+
const ap::real_2d_array& b,
|
167
|
+
bool isupperb,
|
168
|
+
int problemtype,
|
169
|
+
ap::real_2d_array& r,
|
170
|
+
bool& isupperr);
|
171
|
+
|
172
|
+
|
173
|
+
/*************************************************************************
|
174
|
+
Obsolete 1-based subroutine
|
175
|
+
*************************************************************************/
|
176
|
+
bool generalizedsymmetricdefiniteevd(ap::real_2d_array a,
|
177
|
+
int n,
|
178
|
+
bool isuppera,
|
179
|
+
const ap::real_2d_array& b,
|
180
|
+
bool isupperb,
|
181
|
+
int zneeded,
|
182
|
+
int problemtype,
|
183
|
+
ap::real_1d_array& d,
|
184
|
+
ap::real_2d_array& z);
|
185
|
+
|
186
|
+
|
187
|
+
/*************************************************************************
|
188
|
+
Obsolete 1-based subroutine
|
189
|
+
*************************************************************************/
|
190
|
+
bool generalizedsymmetricdefiniteevdreduce(ap::real_2d_array& a,
|
191
|
+
int n,
|
192
|
+
bool isuppera,
|
193
|
+
const ap::real_2d_array& b,
|
194
|
+
bool isupperb,
|
195
|
+
int problemtype,
|
196
|
+
ap::real_2d_array& r,
|
197
|
+
bool& isupperr);
|
198
|
+
|
199
|
+
|
200
|
+
#endif
|
@@ -0,0 +1,509 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include <stdio.h>
|
41
|
+
#include "spdinverse.h"
|
42
|
+
|
43
|
+
static void testinversecholesky();
|
44
|
+
|
45
|
+
/*************************************************************************
|
46
|
+
Inversion of a symmetric positive definite matrix which is given
|
47
|
+
by Cholesky decomposition.
|
48
|
+
|
49
|
+
Input parameters:
|
50
|
+
A - Cholesky decomposition of the matrix to be inverted:
|
51
|
+
A=U�*U or A = L*L'.
|
52
|
+
Output of CholeskyDecomposition subroutine.
|
53
|
+
Array with elements [0..N-1, 0..N-1].
|
54
|
+
N - size of matrix A.
|
55
|
+
IsUpper � storage format.
|
56
|
+
If IsUpper = True, then matrix A is given as A = U'*U
|
57
|
+
(matrix contains upper triangle).
|
58
|
+
Similarly, if IsUpper = False, then A = L*L'.
|
59
|
+
|
60
|
+
Output parameters:
|
61
|
+
A - upper or lower triangle of symmetric matrix A^-1, depending
|
62
|
+
on the value of IsUpper.
|
63
|
+
|
64
|
+
Result:
|
65
|
+
True, if the inversion succeeded.
|
66
|
+
False, if matrix A contains zero elements on its main diagonal.
|
67
|
+
Matrix A could not be inverted.
|
68
|
+
|
69
|
+
The algorithm is the modification of DPOTRI and DLAUU2 subroutines from
|
70
|
+
LAPACK library.
|
71
|
+
*************************************************************************/
|
72
|
+
bool spdmatrixcholeskyinverse(ap::real_2d_array& a, int n, bool isupper)
|
73
|
+
{
|
74
|
+
bool result;
|
75
|
+
int i;
|
76
|
+
int j;
|
77
|
+
int k;
|
78
|
+
double v;
|
79
|
+
double ajj;
|
80
|
+
double aii;
|
81
|
+
ap::real_1d_array t;
|
82
|
+
ap::real_2d_array a1;
|
83
|
+
|
84
|
+
result = true;
|
85
|
+
|
86
|
+
//
|
87
|
+
// Test the input parameters.
|
88
|
+
//
|
89
|
+
t.setbounds(0, n-1);
|
90
|
+
if( isupper )
|
91
|
+
{
|
92
|
+
|
93
|
+
//
|
94
|
+
// Compute inverse of upper triangular matrix.
|
95
|
+
//
|
96
|
+
for(j = 0; j <= n-1; j++)
|
97
|
+
{
|
98
|
+
if( a(j,j)==0 )
|
99
|
+
{
|
100
|
+
result = false;
|
101
|
+
return result;
|
102
|
+
}
|
103
|
+
a(j,j) = 1/a(j,j);
|
104
|
+
ajj = -a(j,j);
|
105
|
+
|
106
|
+
//
|
107
|
+
// Compute elements 1:j-1 of j-th column.
|
108
|
+
//
|
109
|
+
ap::vmove(t.getvector(0, j-1), a.getcolumn(j, 0, j-1));
|
110
|
+
for(i = 0; i <= j-1; i++)
|
111
|
+
{
|
112
|
+
v = ap::vdotproduct(&a(i, i), &t(i), ap::vlen(i,j-1));
|
113
|
+
a(i,j) = v;
|
114
|
+
}
|
115
|
+
ap::vmul(a.getcolumn(j, 0, j-1), ajj);
|
116
|
+
}
|
117
|
+
|
118
|
+
//
|
119
|
+
// InvA = InvU * InvU'
|
120
|
+
//
|
121
|
+
for(i = 0; i <= n-1; i++)
|
122
|
+
{
|
123
|
+
aii = a(i,i);
|
124
|
+
if( i<n-1 )
|
125
|
+
{
|
126
|
+
v = ap::vdotproduct(&a(i, i), &a(i, i), ap::vlen(i,n-1));
|
127
|
+
a(i,i) = v;
|
128
|
+
for(k = 0; k <= i-1; k++)
|
129
|
+
{
|
130
|
+
v = ap::vdotproduct(&a(k, i+1), &a(i, i+1), ap::vlen(i+1,n-1));
|
131
|
+
a(k,i) = a(k,i)*aii+v;
|
132
|
+
}
|
133
|
+
}
|
134
|
+
else
|
135
|
+
{
|
136
|
+
ap::vmul(a.getcolumn(i, 0, i), aii);
|
137
|
+
}
|
138
|
+
}
|
139
|
+
}
|
140
|
+
else
|
141
|
+
{
|
142
|
+
|
143
|
+
//
|
144
|
+
// Compute inverse of lower triangular matrix.
|
145
|
+
//
|
146
|
+
for(j = n-1; j >= 0; j--)
|
147
|
+
{
|
148
|
+
if( a(j,j)==0 )
|
149
|
+
{
|
150
|
+
result = false;
|
151
|
+
return result;
|
152
|
+
}
|
153
|
+
a(j,j) = 1/a(j,j);
|
154
|
+
ajj = -a(j,j);
|
155
|
+
if( j<n-1 )
|
156
|
+
{
|
157
|
+
|
158
|
+
//
|
159
|
+
// Compute elements j+1:n of j-th column.
|
160
|
+
//
|
161
|
+
ap::vmove(t.getvector(j+1, n-1), a.getcolumn(j, j+1, n-1));
|
162
|
+
for(i = j+1+1; i <= n; i++)
|
163
|
+
{
|
164
|
+
v = ap::vdotproduct(&a(i-1, j+1), &t(j+1), ap::vlen(j+1,i-1));
|
165
|
+
a(i-1,j) = v;
|
166
|
+
}
|
167
|
+
ap::vmul(a.getcolumn(j, j+1, n-1), ajj);
|
168
|
+
}
|
169
|
+
}
|
170
|
+
|
171
|
+
//
|
172
|
+
// InvA = InvL' * InvL
|
173
|
+
//
|
174
|
+
for(i = 0; i <= n-1; i++)
|
175
|
+
{
|
176
|
+
aii = a(i,i);
|
177
|
+
if( i<n-1 )
|
178
|
+
{
|
179
|
+
v = ap::vdotproduct(a.getcolumn(i, i, n-1), a.getcolumn(i, i, n-1));
|
180
|
+
a(i,i) = v;
|
181
|
+
for(k = 0; k <= i-1; k++)
|
182
|
+
{
|
183
|
+
v = ap::vdotproduct(a.getcolumn(k, i+1, n-1), a.getcolumn(i, i+1, n-1));
|
184
|
+
a(i,k) = aii*a(i,k)+v;
|
185
|
+
}
|
186
|
+
}
|
187
|
+
else
|
188
|
+
{
|
189
|
+
ap::vmul(&a(i, 0), ap::vlen(0,i), aii);
|
190
|
+
}
|
191
|
+
}
|
192
|
+
}
|
193
|
+
return result;
|
194
|
+
}
|
195
|
+
|
196
|
+
|
197
|
+
/*************************************************************************
|
198
|
+
Inversion of a symmetric positive definite matrix.
|
199
|
+
|
200
|
+
Given an upper or lower triangle of a symmetric positive definite matrix,
|
201
|
+
the algorithm generates matrix A^-1 and saves the upper or lower triangle
|
202
|
+
depending on the input.
|
203
|
+
|
204
|
+
Input parameters:
|
205
|
+
A - matrix to be inverted (upper or lower triangle).
|
206
|
+
Array with elements [0..N-1,0..N-1].
|
207
|
+
N - size of matrix A.
|
208
|
+
IsUpper - storage format.
|
209
|
+
If IsUpper = True, then the upper triangle of matrix A is
|
210
|
+
given, otherwise the lower triangle is given.
|
211
|
+
|
212
|
+
Output parameters:
|
213
|
+
A - inverse of matrix A.
|
214
|
+
Array with elements [0..N-1,0..N-1].
|
215
|
+
If IsUpper = True, then the upper triangle of matrix A^-1
|
216
|
+
is used, and the elements below the main diagonal are not
|
217
|
+
used nor changed. The same applies if IsUpper = False.
|
218
|
+
|
219
|
+
Result:
|
220
|
+
True, if the matrix is positive definite.
|
221
|
+
False, if the matrix is not positive definite (and it could not be
|
222
|
+
inverted by this algorithm).
|
223
|
+
*************************************************************************/
|
224
|
+
bool spdmatrixinverse(ap::real_2d_array& a, int n, bool isupper)
|
225
|
+
{
|
226
|
+
bool result;
|
227
|
+
|
228
|
+
result = false;
|
229
|
+
if( spdmatrixcholesky(a, n, isupper) )
|
230
|
+
{
|
231
|
+
if( spdmatrixcholeskyinverse(a, n, isupper) )
|
232
|
+
{
|
233
|
+
result = true;
|
234
|
+
}
|
235
|
+
}
|
236
|
+
return result;
|
237
|
+
}
|
238
|
+
|
239
|
+
|
240
|
+
/*************************************************************************
|
241
|
+
Obsolete subroutine.
|
242
|
+
*************************************************************************/
|
243
|
+
bool inversecholesky(ap::real_2d_array& a, int n, bool isupper)
|
244
|
+
{
|
245
|
+
bool result;
|
246
|
+
int i;
|
247
|
+
int j;
|
248
|
+
int k;
|
249
|
+
int nmj;
|
250
|
+
int jm1;
|
251
|
+
int jp1;
|
252
|
+
int ip1;
|
253
|
+
double v;
|
254
|
+
double ajj;
|
255
|
+
double aii;
|
256
|
+
ap::real_1d_array t;
|
257
|
+
ap::real_1d_array d;
|
258
|
+
|
259
|
+
result = true;
|
260
|
+
|
261
|
+
//
|
262
|
+
// Test the input parameters.
|
263
|
+
//
|
264
|
+
t.setbounds(1, n);
|
265
|
+
d.setbounds(1, n);
|
266
|
+
if( isupper )
|
267
|
+
{
|
268
|
+
|
269
|
+
//
|
270
|
+
// Compute inverse of upper triangular matrix.
|
271
|
+
//
|
272
|
+
for(j = 1; j <= n; j++)
|
273
|
+
{
|
274
|
+
if( a(j,j)==0 )
|
275
|
+
{
|
276
|
+
result = false;
|
277
|
+
return result;
|
278
|
+
}
|
279
|
+
jm1 = j-1;
|
280
|
+
a(j,j) = 1/a(j,j);
|
281
|
+
ajj = -a(j,j);
|
282
|
+
|
283
|
+
//
|
284
|
+
// Compute elements 1:j-1 of j-th column.
|
285
|
+
//
|
286
|
+
ap::vmove(t.getvector(1, jm1), a.getcolumn(j, 1, jm1));
|
287
|
+
for(i = 1; i <= j-1; i++)
|
288
|
+
{
|
289
|
+
v = ap::vdotproduct(a.getrow(i, i, jm1), a.getcolumn(j, i, jm1));
|
290
|
+
a(i,j) = v;
|
291
|
+
}
|
292
|
+
ap::vmul(a.getcolumn(j, 1, jm1), ajj);
|
293
|
+
}
|
294
|
+
|
295
|
+
//
|
296
|
+
// InvA = InvU * InvU'
|
297
|
+
//
|
298
|
+
for(i = 1; i <= n; i++)
|
299
|
+
{
|
300
|
+
aii = a(i,i);
|
301
|
+
if( i<n )
|
302
|
+
{
|
303
|
+
v = ap::vdotproduct(&a(i, i), &a(i, i), ap::vlen(i,n));
|
304
|
+
a(i,i) = v;
|
305
|
+
ip1 = i+1;
|
306
|
+
for(k = 1; k <= i-1; k++)
|
307
|
+
{
|
308
|
+
v = ap::vdotproduct(&a(k, ip1), &a(i, ip1), ap::vlen(ip1,n));
|
309
|
+
a(k,i) = a(k,i)*aii+v;
|
310
|
+
}
|
311
|
+
}
|
312
|
+
else
|
313
|
+
{
|
314
|
+
ap::vmul(a.getcolumn(i, 1, i), aii);
|
315
|
+
}
|
316
|
+
}
|
317
|
+
}
|
318
|
+
else
|
319
|
+
{
|
320
|
+
|
321
|
+
//
|
322
|
+
// Compute inverse of lower triangular matrix.
|
323
|
+
//
|
324
|
+
for(j = n; j >= 1; j--)
|
325
|
+
{
|
326
|
+
if( a(j,j)==0 )
|
327
|
+
{
|
328
|
+
result = false;
|
329
|
+
return result;
|
330
|
+
}
|
331
|
+
a(j,j) = 1/a(j,j);
|
332
|
+
ajj = -a(j,j);
|
333
|
+
if( j<n )
|
334
|
+
{
|
335
|
+
|
336
|
+
//
|
337
|
+
// Compute elements j+1:n of j-th column.
|
338
|
+
//
|
339
|
+
nmj = n-j;
|
340
|
+
jp1 = j+1;
|
341
|
+
ap::vmove(t.getvector(jp1, n), a.getcolumn(j, jp1, n));
|
342
|
+
for(i = j+1; i <= n; i++)
|
343
|
+
{
|
344
|
+
v = ap::vdotproduct(&a(i, jp1), &t(jp1), ap::vlen(jp1,i));
|
345
|
+
a(i,j) = v;
|
346
|
+
}
|
347
|
+
ap::vmul(a.getcolumn(j, jp1, n), ajj);
|
348
|
+
}
|
349
|
+
}
|
350
|
+
|
351
|
+
//
|
352
|
+
// InvA = InvL' * InvL
|
353
|
+
//
|
354
|
+
for(i = 1; i <= n; i++)
|
355
|
+
{
|
356
|
+
aii = a(i,i);
|
357
|
+
if( i<n )
|
358
|
+
{
|
359
|
+
v = ap::vdotproduct(a.getcolumn(i, i, n), a.getcolumn(i, i, n));
|
360
|
+
a(i,i) = v;
|
361
|
+
ip1 = i+1;
|
362
|
+
for(k = 1; k <= i-1; k++)
|
363
|
+
{
|
364
|
+
v = ap::vdotproduct(a.getcolumn(k, ip1, n), a.getcolumn(i, ip1, n));
|
365
|
+
a(i,k) = aii*a(i,k)+v;
|
366
|
+
}
|
367
|
+
}
|
368
|
+
else
|
369
|
+
{
|
370
|
+
ap::vmul(&a(i, 1), ap::vlen(1,i), aii);
|
371
|
+
}
|
372
|
+
}
|
373
|
+
}
|
374
|
+
return result;
|
375
|
+
}
|
376
|
+
|
377
|
+
|
378
|
+
/*************************************************************************
|
379
|
+
Obsolete subroutine.
|
380
|
+
*************************************************************************/
|
381
|
+
bool inversesymmetricpositivedefinite(ap::real_2d_array& a,
|
382
|
+
int n,
|
383
|
+
bool isupper)
|
384
|
+
{
|
385
|
+
bool result;
|
386
|
+
|
387
|
+
result = false;
|
388
|
+
if( choleskydecomposition(a, n, isupper) )
|
389
|
+
{
|
390
|
+
if( inversecholesky(a, n, isupper) )
|
391
|
+
{
|
392
|
+
result = true;
|
393
|
+
}
|
394
|
+
}
|
395
|
+
return result;
|
396
|
+
}
|
397
|
+
|
398
|
+
|
399
|
+
static void testinversecholesky()
|
400
|
+
{
|
401
|
+
ap::real_2d_array l;
|
402
|
+
ap::real_2d_array a;
|
403
|
+
ap::real_2d_array inva;
|
404
|
+
int n;
|
405
|
+
int pass;
|
406
|
+
int passcount;
|
407
|
+
int i;
|
408
|
+
int j;
|
409
|
+
int minij;
|
410
|
+
bool upperin;
|
411
|
+
bool cr;
|
412
|
+
double err;
|
413
|
+
double v;
|
414
|
+
|
415
|
+
err = 0;
|
416
|
+
passcount = 100;
|
417
|
+
for(pass = 1; pass <= passcount; pass++)
|
418
|
+
{
|
419
|
+
n = 1+ap::randominteger(50);
|
420
|
+
upperin = ap::randomreal()>0.5;
|
421
|
+
l.setbounds(1, n, 1, n);
|
422
|
+
a.setbounds(1, n, 1, n);
|
423
|
+
inva.setbounds(1, n, 1, n);
|
424
|
+
for(i = 1; i <= n; i++)
|
425
|
+
{
|
426
|
+
for(j = i+1; j <= n; j++)
|
427
|
+
{
|
428
|
+
l(i,j) = ap::randomreal();
|
429
|
+
l(j,i) = l(i,j);
|
430
|
+
}
|
431
|
+
l(i,i) = 1.1+ap::randomreal();
|
432
|
+
}
|
433
|
+
for(i = 1; i <= n; i++)
|
434
|
+
{
|
435
|
+
for(j = 1; j <= n; j++)
|
436
|
+
{
|
437
|
+
minij = ap::minint(i, j);
|
438
|
+
v = ap::vdotproduct(l.getrow(i, 1, minij), l.getcolumn(j, 1, minij));
|
439
|
+
a(i,j) = v;
|
440
|
+
a(j,i) = v;
|
441
|
+
inva(i,j) = v;
|
442
|
+
inva(j,i) = v;
|
443
|
+
}
|
444
|
+
}
|
445
|
+
for(i = 1; i <= n; i++)
|
446
|
+
{
|
447
|
+
for(j = 1; j <= n; j++)
|
448
|
+
{
|
449
|
+
if( upperin )
|
450
|
+
{
|
451
|
+
if( j<i )
|
452
|
+
{
|
453
|
+
inva(i,j) = 0;
|
454
|
+
}
|
455
|
+
}
|
456
|
+
else
|
457
|
+
{
|
458
|
+
if( i<j )
|
459
|
+
{
|
460
|
+
inva(i,j) = 0;
|
461
|
+
}
|
462
|
+
}
|
463
|
+
}
|
464
|
+
}
|
465
|
+
cr = inversesymmetricpositivedefinite(inva, n, upperin);
|
466
|
+
ap::ap_error::make_assertion(cr, "Something strange");
|
467
|
+
for(i = 1; i <= n; i++)
|
468
|
+
{
|
469
|
+
for(j = 1; j <= n; j++)
|
470
|
+
{
|
471
|
+
if( upperin )
|
472
|
+
{
|
473
|
+
if( j<i )
|
474
|
+
{
|
475
|
+
inva(i,j) = inva(j,i);
|
476
|
+
}
|
477
|
+
}
|
478
|
+
else
|
479
|
+
{
|
480
|
+
if( i<j )
|
481
|
+
{
|
482
|
+
inva(i,j) = inva(j,i);
|
483
|
+
}
|
484
|
+
}
|
485
|
+
}
|
486
|
+
}
|
487
|
+
for(i = 1; i <= n; i++)
|
488
|
+
{
|
489
|
+
for(j = 1; j <= n; j++)
|
490
|
+
{
|
491
|
+
v = ap::vdotproduct(a.getrow(i, 1, n), inva.getcolumn(j, 1, n));
|
492
|
+
if( j==i )
|
493
|
+
{
|
494
|
+
err = ap::maxreal(err, fabs(v-1));
|
495
|
+
}
|
496
|
+
else
|
497
|
+
{
|
498
|
+
err = ap::maxreal(err, fabs(v));
|
499
|
+
}
|
500
|
+
}
|
501
|
+
}
|
502
|
+
}
|
503
|
+
printf("Pass count %0ld\nInverseSymmetricPositiveDefinite error is %5.3le\n",
|
504
|
+
long(passcount),
|
505
|
+
double(err));
|
506
|
+
}
|
507
|
+
|
508
|
+
|
509
|
+
|