alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,138 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _sinverse_h
|
40
|
+
#define _sinverse_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
#include "sblas.h"
|
46
|
+
#include "ldlt.h"
|
47
|
+
|
48
|
+
|
49
|
+
/*************************************************************************
|
50
|
+
Inversion of a symmetric indefinite matrix
|
51
|
+
|
52
|
+
The algorithm gets an LDLT-decomposition as an input, generates matrix A^-1
|
53
|
+
and saves the lower or upper triangle of an inverse matrix depending on the
|
54
|
+
input (U*D*U' or L*D*L').
|
55
|
+
|
56
|
+
Input parameters:
|
57
|
+
A - LDLT-decomposition of the matrix,
|
58
|
+
Output of subroutine SMatrixLDLT.
|
59
|
+
N - size of matrix A.
|
60
|
+
IsUpper - storage format. If IsUpper = True, then the symmetric matrix
|
61
|
+
is given as decomposition A = U*D*U' and this decomposition
|
62
|
+
is stored in the upper triangle of matrix A and on the main
|
63
|
+
diagonal, and the lower triangle of matrix A is not used.
|
64
|
+
Pivots - a table of permutations, output of subroutine SMatrixLDLT.
|
65
|
+
|
66
|
+
Output parameters:
|
67
|
+
A - inverse of the matrix, whose LDLT-decomposition was stored
|
68
|
+
in matrix A as a subroutine input.
|
69
|
+
Array with elements [0..N-1, 0..N-1].
|
70
|
+
If IsUpper = True, then A contains the upper triangle of
|
71
|
+
matrix A^-1, and the elements below the main diagonal are
|
72
|
+
not used nor changed. The same applies if IsUpper = False.
|
73
|
+
|
74
|
+
Result:
|
75
|
+
True, if the matrix is not singular.
|
76
|
+
False, if the matrix is singular and could not be inverted.
|
77
|
+
|
78
|
+
-- LAPACK routine (version 3.0) --
|
79
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
80
|
+
Courant Institute, Argonne National Lab, and Rice University
|
81
|
+
March 31, 1993
|
82
|
+
*************************************************************************/
|
83
|
+
bool smatrixldltinverse(ap::real_2d_array& a,
|
84
|
+
const ap::integer_1d_array& pivots,
|
85
|
+
int n,
|
86
|
+
bool isupper);
|
87
|
+
|
88
|
+
|
89
|
+
/*************************************************************************
|
90
|
+
Inversion of a symmetric indefinite matrix
|
91
|
+
|
92
|
+
Given a lower or upper triangle of matrix A, the algorithm generates
|
93
|
+
matrix A^-1 and saves the lower or upper triangle depending on the input.
|
94
|
+
|
95
|
+
Input parameters:
|
96
|
+
A - matrix to be inverted (upper or lower triangle).
|
97
|
+
Array with elements [0..N-1, 0..N-1].
|
98
|
+
N - size of matrix A.
|
99
|
+
IsUpper - storage format. If IsUpper = True, then the upper
|
100
|
+
triangle of matrix A is given, otherwise the lower
|
101
|
+
triangle is given.
|
102
|
+
|
103
|
+
Output parameters:
|
104
|
+
A - inverse of matrix A.
|
105
|
+
Array with elements [0..N-1, 0..N-1].
|
106
|
+
If IsUpper = True, then A contains the upper triangle of
|
107
|
+
matrix A^-1, and the elements below the main diagonal are
|
108
|
+
not used nor changed.
|
109
|
+
The same applies if IsUpper = False.
|
110
|
+
|
111
|
+
Result:
|
112
|
+
True, if the matrix is not singular.
|
113
|
+
False, if the matrix is singular and could not be inverted.
|
114
|
+
|
115
|
+
-- LAPACK routine (version 3.0) --
|
116
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
117
|
+
Courant Institute, Argonne National Lab, and Rice University
|
118
|
+
March 31, 1993
|
119
|
+
*************************************************************************/
|
120
|
+
bool smatrixinverse(ap::real_2d_array& a, int n, bool isupper);
|
121
|
+
|
122
|
+
|
123
|
+
/*************************************************************************
|
124
|
+
Obsolete 1-based subroutine
|
125
|
+
*************************************************************************/
|
126
|
+
bool inverseldlt(ap::real_2d_array& a,
|
127
|
+
const ap::integer_1d_array& pivots,
|
128
|
+
int n,
|
129
|
+
bool isupper);
|
130
|
+
|
131
|
+
|
132
|
+
/*************************************************************************
|
133
|
+
Obsolete 1-based subroutine
|
134
|
+
*************************************************************************/
|
135
|
+
bool inversesymmetricindefinite(ap::real_2d_array& a, int n, bool isupper);
|
136
|
+
|
137
|
+
|
138
|
+
#endif
|
@@ -0,0 +1,138 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "spddet.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Determinant calculation of the matrix given by the Cholesky decomposition.
|
38
|
+
|
39
|
+
Input parameters:
|
40
|
+
A - Cholesky decomposition,
|
41
|
+
output of SMatrixCholesky subroutine.
|
42
|
+
N - size of matrix A.
|
43
|
+
|
44
|
+
As the determinant is equal to the product of squares of diagonal elements,
|
45
|
+
it�s not necessary to specify which triangle - lower or upper - the matrix
|
46
|
+
is stored in.
|
47
|
+
|
48
|
+
Result:
|
49
|
+
matrix determinant.
|
50
|
+
|
51
|
+
-- ALGLIB --
|
52
|
+
Copyright 2005-2008 by Bochkanov Sergey
|
53
|
+
*************************************************************************/
|
54
|
+
double spdmatrixcholeskydet(const ap::real_2d_array& a, int n)
|
55
|
+
{
|
56
|
+
double result;
|
57
|
+
int i;
|
58
|
+
|
59
|
+
result = 1;
|
60
|
+
for(i = 0; i <= n-1; i++)
|
61
|
+
{
|
62
|
+
result = result*ap::sqr(a(i,i));
|
63
|
+
}
|
64
|
+
return result;
|
65
|
+
}
|
66
|
+
|
67
|
+
|
68
|
+
/*************************************************************************
|
69
|
+
Determinant calculation of the symmetric positive definite matrix.
|
70
|
+
|
71
|
+
Input parameters:
|
72
|
+
A - matrix. Array with elements [0..N-1, 0..N-1].
|
73
|
+
N - size of matrix A.
|
74
|
+
IsUpper - if IsUpper = True, then the symmetric matrix A is given by
|
75
|
+
its upper triangle, and the lower triangle isn�t used by
|
76
|
+
subroutine. Similarly, if IsUpper = False, then A is given
|
77
|
+
by its lower triangle.
|
78
|
+
|
79
|
+
Result:
|
80
|
+
determinant of matrix A.
|
81
|
+
If matrix A is not positive definite, then subroutine returns -1.
|
82
|
+
|
83
|
+
-- ALGLIB --
|
84
|
+
Copyright 2005-2008 by Bochkanov Sergey
|
85
|
+
*************************************************************************/
|
86
|
+
double spdmatrixdet(ap::real_2d_array a, int n, bool isupper)
|
87
|
+
{
|
88
|
+
double result;
|
89
|
+
|
90
|
+
if( !spdmatrixcholesky(a, n, isupper) )
|
91
|
+
{
|
92
|
+
result = -1;
|
93
|
+
}
|
94
|
+
else
|
95
|
+
{
|
96
|
+
result = spdmatrixcholeskydet(a, n);
|
97
|
+
}
|
98
|
+
return result;
|
99
|
+
}
|
100
|
+
|
101
|
+
|
102
|
+
/*************************************************************************
|
103
|
+
Obsolete subroutine
|
104
|
+
*************************************************************************/
|
105
|
+
double determinantcholesky(const ap::real_2d_array& a, int n)
|
106
|
+
{
|
107
|
+
double result;
|
108
|
+
int i;
|
109
|
+
|
110
|
+
result = 1;
|
111
|
+
for(i = 1; i <= n; i++)
|
112
|
+
{
|
113
|
+
result = result*ap::sqr(a(i,i));
|
114
|
+
}
|
115
|
+
return result;
|
116
|
+
}
|
117
|
+
|
118
|
+
|
119
|
+
/*************************************************************************
|
120
|
+
Obsolete subroutine
|
121
|
+
*************************************************************************/
|
122
|
+
double determinantspd(ap::real_2d_array a, int n, bool isupper)
|
123
|
+
{
|
124
|
+
double result;
|
125
|
+
|
126
|
+
if( !choleskydecomposition(a, n, isupper) )
|
127
|
+
{
|
128
|
+
result = -1;
|
129
|
+
}
|
130
|
+
else
|
131
|
+
{
|
132
|
+
result = determinantcholesky(a, n);
|
133
|
+
}
|
134
|
+
return result;
|
135
|
+
}
|
136
|
+
|
137
|
+
|
138
|
+
|
data/ext/alglib/spddet.h
ADDED
@@ -0,0 +1,96 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _spddet_h
|
34
|
+
#define _spddet_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "cholesky.h"
|
40
|
+
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Determinant calculation of the matrix given by the Cholesky decomposition.
|
44
|
+
|
45
|
+
Input parameters:
|
46
|
+
A - Cholesky decomposition,
|
47
|
+
output of SMatrixCholesky subroutine.
|
48
|
+
N - size of matrix A.
|
49
|
+
|
50
|
+
As the determinant is equal to the product of squares of diagonal elements,
|
51
|
+
it�s not necessary to specify which triangle - lower or upper - the matrix
|
52
|
+
is stored in.
|
53
|
+
|
54
|
+
Result:
|
55
|
+
matrix determinant.
|
56
|
+
|
57
|
+
-- ALGLIB --
|
58
|
+
Copyright 2005-2008 by Bochkanov Sergey
|
59
|
+
*************************************************************************/
|
60
|
+
double spdmatrixcholeskydet(const ap::real_2d_array& a, int n);
|
61
|
+
|
62
|
+
|
63
|
+
/*************************************************************************
|
64
|
+
Determinant calculation of the symmetric positive definite matrix.
|
65
|
+
|
66
|
+
Input parameters:
|
67
|
+
A - matrix. Array with elements [0..N-1, 0..N-1].
|
68
|
+
N - size of matrix A.
|
69
|
+
IsUpper - if IsUpper = True, then the symmetric matrix A is given by
|
70
|
+
its upper triangle, and the lower triangle isn�t used by
|
71
|
+
subroutine. Similarly, if IsUpper = False, then A is given
|
72
|
+
by its lower triangle.
|
73
|
+
|
74
|
+
Result:
|
75
|
+
determinant of matrix A.
|
76
|
+
If matrix A is not positive definite, then subroutine returns -1.
|
77
|
+
|
78
|
+
-- ALGLIB --
|
79
|
+
Copyright 2005-2008 by Bochkanov Sergey
|
80
|
+
*************************************************************************/
|
81
|
+
double spdmatrixdet(ap::real_2d_array a, int n, bool isupper);
|
82
|
+
|
83
|
+
|
84
|
+
/*************************************************************************
|
85
|
+
Obsolete subroutine
|
86
|
+
*************************************************************************/
|
87
|
+
double determinantcholesky(const ap::real_2d_array& a, int n);
|
88
|
+
|
89
|
+
|
90
|
+
/*************************************************************************
|
91
|
+
Obsolete subroutine
|
92
|
+
*************************************************************************/
|
93
|
+
double determinantspd(ap::real_2d_array a, int n, bool isupper);
|
94
|
+
|
95
|
+
|
96
|
+
#endif
|
@@ -0,0 +1,842 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "spdgevd.h"
|
35
|
+
|
36
|
+
/*************************************************************************
|
37
|
+
Algorithm for solving the following generalized symmetric positive-definite
|
38
|
+
eigenproblem:
|
39
|
+
A*x = lambda*B*x (1) or
|
40
|
+
A*B*x = lambda*x (2) or
|
41
|
+
B*A*x = lambda*x (3).
|
42
|
+
where A is a symmetric matrix, B - symmetric positive-definite matrix.
|
43
|
+
The problem is solved by reducing it to an ordinary symmetric eigenvalue
|
44
|
+
problem.
|
45
|
+
|
46
|
+
Input parameters:
|
47
|
+
A - symmetric matrix which is given by its upper or lower
|
48
|
+
triangular part.
|
49
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
50
|
+
N - size of matrices A and B.
|
51
|
+
IsUpperA - storage format of matrix A.
|
52
|
+
B - symmetric positive-definite matrix which is given by
|
53
|
+
its upper or lower triangular part.
|
54
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
55
|
+
IsUpperB - storage format of matrix B.
|
56
|
+
ZNeeded - if ZNeeded is equal to:
|
57
|
+
* 0, the eigenvectors are not returned;
|
58
|
+
* 1, the eigenvectors are returned.
|
59
|
+
ProblemType - if ProblemType is equal to:
|
60
|
+
* 1, the following problem is solved: A*x = lambda*B*x;
|
61
|
+
* 2, the following problem is solved: A*B*x = lambda*x;
|
62
|
+
* 3, the following problem is solved: B*A*x = lambda*x.
|
63
|
+
|
64
|
+
Output parameters:
|
65
|
+
D - eigenvalues in ascending order.
|
66
|
+
Array whose index ranges within [0..N-1].
|
67
|
+
Z - if ZNeeded is equal to:
|
68
|
+
* 0, Z hasn�t changed;
|
69
|
+
* 1, Z contains eigenvectors.
|
70
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
71
|
+
The eigenvectors are stored in matrix columns. It should
|
72
|
+
be noted that the eigenvectors in such problems do not
|
73
|
+
form an orthogonal system.
|
74
|
+
|
75
|
+
Result:
|
76
|
+
True, if the problem was solved successfully.
|
77
|
+
False, if the error occurred during the Cholesky decomposition of matrix
|
78
|
+
B (the matrix isn�t positive-definite) or during the work of the iterative
|
79
|
+
algorithm for solving the symmetric eigenproblem.
|
80
|
+
|
81
|
+
See also the GeneralizedSymmetricDefiniteEVDReduce subroutine.
|
82
|
+
|
83
|
+
-- ALGLIB --
|
84
|
+
Copyright 1.28.2006 by Bochkanov Sergey
|
85
|
+
*************************************************************************/
|
86
|
+
bool smatrixgevd(ap::real_2d_array a,
|
87
|
+
int n,
|
88
|
+
bool isuppera,
|
89
|
+
const ap::real_2d_array& b,
|
90
|
+
bool isupperb,
|
91
|
+
int zneeded,
|
92
|
+
int problemtype,
|
93
|
+
ap::real_1d_array& d,
|
94
|
+
ap::real_2d_array& z)
|
95
|
+
{
|
96
|
+
bool result;
|
97
|
+
ap::real_2d_array r;
|
98
|
+
ap::real_2d_array t;
|
99
|
+
bool isupperr;
|
100
|
+
int j1;
|
101
|
+
int j2;
|
102
|
+
int j1inc;
|
103
|
+
int j2inc;
|
104
|
+
int i;
|
105
|
+
int j;
|
106
|
+
double v;
|
107
|
+
|
108
|
+
|
109
|
+
//
|
110
|
+
// Reduce and solve
|
111
|
+
//
|
112
|
+
result = smatrixgevdreduce(a, n, isuppera, b, isupperb, problemtype, r, isupperr);
|
113
|
+
if( !result )
|
114
|
+
{
|
115
|
+
return result;
|
116
|
+
}
|
117
|
+
result = smatrixevd(a, n, zneeded, isuppera, d, t);
|
118
|
+
if( !result )
|
119
|
+
{
|
120
|
+
return result;
|
121
|
+
}
|
122
|
+
|
123
|
+
//
|
124
|
+
// Transform eigenvectors if needed
|
125
|
+
//
|
126
|
+
if( zneeded!=0 )
|
127
|
+
{
|
128
|
+
|
129
|
+
//
|
130
|
+
// fill Z with zeros
|
131
|
+
//
|
132
|
+
z.setbounds(0, n-1, 0, n-1);
|
133
|
+
for(j = 0; j <= n-1; j++)
|
134
|
+
{
|
135
|
+
z(0,j) = 0.0;
|
136
|
+
}
|
137
|
+
for(i = 1; i <= n-1; i++)
|
138
|
+
{
|
139
|
+
ap::vmove(&z(i, 0), &z(0, 0), ap::vlen(0,n-1));
|
140
|
+
}
|
141
|
+
|
142
|
+
//
|
143
|
+
// Setup R properties
|
144
|
+
//
|
145
|
+
if( isupperr )
|
146
|
+
{
|
147
|
+
j1 = 0;
|
148
|
+
j2 = n-1;
|
149
|
+
j1inc = +1;
|
150
|
+
j2inc = 0;
|
151
|
+
}
|
152
|
+
else
|
153
|
+
{
|
154
|
+
j1 = 0;
|
155
|
+
j2 = 0;
|
156
|
+
j1inc = 0;
|
157
|
+
j2inc = +1;
|
158
|
+
}
|
159
|
+
|
160
|
+
//
|
161
|
+
// Calculate R*Z
|
162
|
+
//
|
163
|
+
for(i = 0; i <= n-1; i++)
|
164
|
+
{
|
165
|
+
for(j = j1; j <= j2; j++)
|
166
|
+
{
|
167
|
+
v = r(i,j);
|
168
|
+
ap::vadd(&z(i, 0), &t(j, 0), ap::vlen(0,n-1), v);
|
169
|
+
}
|
170
|
+
j1 = j1+j1inc;
|
171
|
+
j2 = j2+j2inc;
|
172
|
+
}
|
173
|
+
}
|
174
|
+
return result;
|
175
|
+
}
|
176
|
+
|
177
|
+
|
178
|
+
/*************************************************************************
|
179
|
+
Algorithm for reduction of the following generalized symmetric positive-
|
180
|
+
definite eigenvalue problem:
|
181
|
+
A*x = lambda*B*x (1) or
|
182
|
+
A*B*x = lambda*x (2) or
|
183
|
+
B*A*x = lambda*x (3)
|
184
|
+
to the symmetric eigenvalues problem C*y = lambda*y (eigenvalues of this and
|
185
|
+
the given problems are the same, and the eigenvectors of the given problem
|
186
|
+
could be obtained by multiplying the obtained eigenvectors by the
|
187
|
+
transformation matrix x = R*y).
|
188
|
+
|
189
|
+
Here A is a symmetric matrix, B - symmetric positive-definite matrix.
|
190
|
+
|
191
|
+
Input parameters:
|
192
|
+
A - symmetric matrix which is given by its upper or lower
|
193
|
+
triangular part.
|
194
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
195
|
+
N - size of matrices A and B.
|
196
|
+
IsUpperA - storage format of matrix A.
|
197
|
+
B - symmetric positive-definite matrix which is given by
|
198
|
+
its upper or lower triangular part.
|
199
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
200
|
+
IsUpperB - storage format of matrix B.
|
201
|
+
ProblemType - if ProblemType is equal to:
|
202
|
+
* 1, the following problem is solved: A*x = lambda*B*x;
|
203
|
+
* 2, the following problem is solved: A*B*x = lambda*x;
|
204
|
+
* 3, the following problem is solved: B*A*x = lambda*x.
|
205
|
+
|
206
|
+
Output parameters:
|
207
|
+
A - symmetric matrix which is given by its upper or lower
|
208
|
+
triangle depending on IsUpperA. Contains matrix C.
|
209
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
210
|
+
R - upper triangular or low triangular transformation matrix
|
211
|
+
which is used to obtain the eigenvectors of a given problem
|
212
|
+
as the product of eigenvectors of C (from the right) and
|
213
|
+
matrix R (from the left). If the matrix is upper
|
214
|
+
triangular, the elements below the main diagonal
|
215
|
+
are equal to 0 (and vice versa). Thus, we can perform
|
216
|
+
the multiplication without taking into account the
|
217
|
+
internal structure (which is an easier though less
|
218
|
+
effective way).
|
219
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
220
|
+
IsUpperR - type of matrix R (upper or lower triangular).
|
221
|
+
|
222
|
+
Result:
|
223
|
+
True, if the problem was reduced successfully.
|
224
|
+
False, if the error occurred during the Cholesky decomposition of
|
225
|
+
matrix B (the matrix is not positive-definite).
|
226
|
+
|
227
|
+
-- ALGLIB --
|
228
|
+
Copyright 1.28.2006 by Bochkanov Sergey
|
229
|
+
*************************************************************************/
|
230
|
+
bool smatrixgevdreduce(ap::real_2d_array& a,
|
231
|
+
int n,
|
232
|
+
bool isuppera,
|
233
|
+
const ap::real_2d_array& b,
|
234
|
+
bool isupperb,
|
235
|
+
int problemtype,
|
236
|
+
ap::real_2d_array& r,
|
237
|
+
bool& isupperr)
|
238
|
+
{
|
239
|
+
bool result;
|
240
|
+
ap::real_2d_array t;
|
241
|
+
ap::real_1d_array w1;
|
242
|
+
ap::real_1d_array w2;
|
243
|
+
ap::real_1d_array w3;
|
244
|
+
int i;
|
245
|
+
int j;
|
246
|
+
double v;
|
247
|
+
|
248
|
+
ap::ap_error::make_assertion(n>0, "SMatrixGEVDReduce: N<=0!");
|
249
|
+
ap::ap_error::make_assertion(problemtype==1||problemtype==2||problemtype==3, "SMatrixGEVDReduce: incorrect ProblemType!");
|
250
|
+
result = true;
|
251
|
+
|
252
|
+
//
|
253
|
+
// Problem 1: A*x = lambda*B*x
|
254
|
+
//
|
255
|
+
// Reducing to:
|
256
|
+
// C*y = lambda*y
|
257
|
+
// C = L^(-1) * A * L^(-T)
|
258
|
+
// x = L^(-T) * y
|
259
|
+
//
|
260
|
+
if( problemtype==1 )
|
261
|
+
{
|
262
|
+
|
263
|
+
//
|
264
|
+
// Factorize B in T: B = LL'
|
265
|
+
//
|
266
|
+
t.setbounds(0, n-1, 0, n-1);
|
267
|
+
if( isupperb )
|
268
|
+
{
|
269
|
+
for(i = 0; i <= n-1; i++)
|
270
|
+
{
|
271
|
+
ap::vmove(t.getcolumn(i, i, n-1), b.getrow(i, i, n-1));
|
272
|
+
}
|
273
|
+
}
|
274
|
+
else
|
275
|
+
{
|
276
|
+
for(i = 0; i <= n-1; i++)
|
277
|
+
{
|
278
|
+
ap::vmove(&t(i, 0), &b(i, 0), ap::vlen(0,i));
|
279
|
+
}
|
280
|
+
}
|
281
|
+
if( !spdmatrixcholesky(t, n, false) )
|
282
|
+
{
|
283
|
+
result = false;
|
284
|
+
return result;
|
285
|
+
}
|
286
|
+
|
287
|
+
//
|
288
|
+
// Invert L in T
|
289
|
+
//
|
290
|
+
if( !rmatrixtrinverse(t, n, false, false) )
|
291
|
+
{
|
292
|
+
result = false;
|
293
|
+
return result;
|
294
|
+
}
|
295
|
+
|
296
|
+
//
|
297
|
+
// Build L^(-1) * A * L^(-T) in R
|
298
|
+
//
|
299
|
+
w1.setbounds(1, n);
|
300
|
+
w2.setbounds(1, n);
|
301
|
+
r.setbounds(0, n-1, 0, n-1);
|
302
|
+
for(j = 1; j <= n; j++)
|
303
|
+
{
|
304
|
+
|
305
|
+
//
|
306
|
+
// Form w2 = A * l'(j) (here l'(j) is j-th column of L^(-T))
|
307
|
+
//
|
308
|
+
ap::vmove(&w1(1), &t(j-1, 0), ap::vlen(1,j));
|
309
|
+
symmetricmatrixvectormultiply(a, isuppera, 0, j-1, w1, 1.0, w2);
|
310
|
+
if( isuppera )
|
311
|
+
{
|
312
|
+
matrixvectormultiply(a, 0, j-1, j, n-1, true, w1, 1, j, 1.0, w2, j+1, n, 0.0);
|
313
|
+
}
|
314
|
+
else
|
315
|
+
{
|
316
|
+
matrixvectormultiply(a, j, n-1, 0, j-1, false, w1, 1, j, 1.0, w2, j+1, n, 0.0);
|
317
|
+
}
|
318
|
+
|
319
|
+
//
|
320
|
+
// Form l(i)*w2 (here l(i) is i-th row of L^(-1))
|
321
|
+
//
|
322
|
+
for(i = 1; i <= n; i++)
|
323
|
+
{
|
324
|
+
v = ap::vdotproduct(&t(i-1, 0), &w2(1), ap::vlen(0,i-1));
|
325
|
+
r(i-1,j-1) = v;
|
326
|
+
}
|
327
|
+
}
|
328
|
+
|
329
|
+
//
|
330
|
+
// Copy R to A
|
331
|
+
//
|
332
|
+
for(i = 0; i <= n-1; i++)
|
333
|
+
{
|
334
|
+
ap::vmove(&a(i, 0), &r(i, 0), ap::vlen(0,n-1));
|
335
|
+
}
|
336
|
+
|
337
|
+
//
|
338
|
+
// Copy L^(-1) from T to R and transpose
|
339
|
+
//
|
340
|
+
isupperr = true;
|
341
|
+
for(i = 0; i <= n-1; i++)
|
342
|
+
{
|
343
|
+
for(j = 0; j <= i-1; j++)
|
344
|
+
{
|
345
|
+
r(i,j) = 0;
|
346
|
+
}
|
347
|
+
}
|
348
|
+
for(i = 0; i <= n-1; i++)
|
349
|
+
{
|
350
|
+
ap::vmove(r.getrow(i, i, n-1), t.getcolumn(i, i, n-1));
|
351
|
+
}
|
352
|
+
return result;
|
353
|
+
}
|
354
|
+
|
355
|
+
//
|
356
|
+
// Problem 2: A*B*x = lambda*x
|
357
|
+
// or
|
358
|
+
// problem 3: B*A*x = lambda*x
|
359
|
+
//
|
360
|
+
// Reducing to:
|
361
|
+
// C*y = lambda*y
|
362
|
+
// C = U * A * U'
|
363
|
+
// B = U'* U
|
364
|
+
//
|
365
|
+
if( problemtype==2||problemtype==3 )
|
366
|
+
{
|
367
|
+
|
368
|
+
//
|
369
|
+
// Factorize B in T: B = U'*U
|
370
|
+
//
|
371
|
+
t.setbounds(0, n-1, 0, n-1);
|
372
|
+
if( isupperb )
|
373
|
+
{
|
374
|
+
for(i = 0; i <= n-1; i++)
|
375
|
+
{
|
376
|
+
ap::vmove(&t(i, i), &b(i, i), ap::vlen(i,n-1));
|
377
|
+
}
|
378
|
+
}
|
379
|
+
else
|
380
|
+
{
|
381
|
+
for(i = 0; i <= n-1; i++)
|
382
|
+
{
|
383
|
+
ap::vmove(t.getrow(i, i, n-1), b.getcolumn(i, i, n-1));
|
384
|
+
}
|
385
|
+
}
|
386
|
+
if( !spdmatrixcholesky(t, n, true) )
|
387
|
+
{
|
388
|
+
result = false;
|
389
|
+
return result;
|
390
|
+
}
|
391
|
+
|
392
|
+
//
|
393
|
+
// Build U * A * U' in R
|
394
|
+
//
|
395
|
+
w1.setbounds(1, n);
|
396
|
+
w2.setbounds(1, n);
|
397
|
+
w3.setbounds(1, n);
|
398
|
+
r.setbounds(0, n-1, 0, n-1);
|
399
|
+
for(j = 1; j <= n; j++)
|
400
|
+
{
|
401
|
+
|
402
|
+
//
|
403
|
+
// Form w2 = A * u'(j) (here u'(j) is j-th column of U')
|
404
|
+
//
|
405
|
+
ap::vmove(&w1(1), &t(j-1, j-1), ap::vlen(1,n-j+1));
|
406
|
+
symmetricmatrixvectormultiply(a, isuppera, j-1, n-1, w1, 1.0, w3);
|
407
|
+
ap::vmove(&w2(j), &w3(1), ap::vlen(j,n));
|
408
|
+
ap::vmove(&w1(j), &t(j-1, j-1), ap::vlen(j,n));
|
409
|
+
if( isuppera )
|
410
|
+
{
|
411
|
+
matrixvectormultiply(a, 0, j-2, j-1, n-1, false, w1, j, n, 1.0, w2, 1, j-1, 0.0);
|
412
|
+
}
|
413
|
+
else
|
414
|
+
{
|
415
|
+
matrixvectormultiply(a, j-1, n-1, 0, j-2, true, w1, j, n, 1.0, w2, 1, j-1, 0.0);
|
416
|
+
}
|
417
|
+
|
418
|
+
//
|
419
|
+
// Form u(i)*w2 (here u(i) is i-th row of U)
|
420
|
+
//
|
421
|
+
for(i = 1; i <= n; i++)
|
422
|
+
{
|
423
|
+
v = ap::vdotproduct(&t(i-1, i-1), &w2(i), ap::vlen(i-1,n-1));
|
424
|
+
r(i-1,j-1) = v;
|
425
|
+
}
|
426
|
+
}
|
427
|
+
|
428
|
+
//
|
429
|
+
// Copy R to A
|
430
|
+
//
|
431
|
+
for(i = 0; i <= n-1; i++)
|
432
|
+
{
|
433
|
+
ap::vmove(&a(i, 0), &r(i, 0), ap::vlen(0,n-1));
|
434
|
+
}
|
435
|
+
if( problemtype==2 )
|
436
|
+
{
|
437
|
+
|
438
|
+
//
|
439
|
+
// Invert U in T
|
440
|
+
//
|
441
|
+
if( !rmatrixtrinverse(t, n, true, false) )
|
442
|
+
{
|
443
|
+
result = false;
|
444
|
+
return result;
|
445
|
+
}
|
446
|
+
|
447
|
+
//
|
448
|
+
// Copy U^-1 from T to R
|
449
|
+
//
|
450
|
+
isupperr = true;
|
451
|
+
for(i = 0; i <= n-1; i++)
|
452
|
+
{
|
453
|
+
for(j = 0; j <= i-1; j++)
|
454
|
+
{
|
455
|
+
r(i,j) = 0;
|
456
|
+
}
|
457
|
+
}
|
458
|
+
for(i = 0; i <= n-1; i++)
|
459
|
+
{
|
460
|
+
ap::vmove(&r(i, i), &t(i, i), ap::vlen(i,n-1));
|
461
|
+
}
|
462
|
+
}
|
463
|
+
else
|
464
|
+
{
|
465
|
+
|
466
|
+
//
|
467
|
+
// Copy U from T to R and transpose
|
468
|
+
//
|
469
|
+
isupperr = false;
|
470
|
+
for(i = 0; i <= n-1; i++)
|
471
|
+
{
|
472
|
+
for(j = i+1; j <= n-1; j++)
|
473
|
+
{
|
474
|
+
r(i,j) = 0;
|
475
|
+
}
|
476
|
+
}
|
477
|
+
for(i = 0; i <= n-1; i++)
|
478
|
+
{
|
479
|
+
ap::vmove(r.getcolumn(i, i, n-1), t.getrow(i, i, n-1));
|
480
|
+
}
|
481
|
+
}
|
482
|
+
}
|
483
|
+
return result;
|
484
|
+
}
|
485
|
+
|
486
|
+
|
487
|
+
/*************************************************************************
|
488
|
+
Obsolete 1-based subroutine
|
489
|
+
*************************************************************************/
|
490
|
+
bool generalizedsymmetricdefiniteevd(ap::real_2d_array a,
|
491
|
+
int n,
|
492
|
+
bool isuppera,
|
493
|
+
const ap::real_2d_array& b,
|
494
|
+
bool isupperb,
|
495
|
+
int zneeded,
|
496
|
+
int problemtype,
|
497
|
+
ap::real_1d_array& d,
|
498
|
+
ap::real_2d_array& z)
|
499
|
+
{
|
500
|
+
bool result;
|
501
|
+
ap::real_2d_array r;
|
502
|
+
ap::real_2d_array t;
|
503
|
+
bool isupperr;
|
504
|
+
int j1;
|
505
|
+
int j2;
|
506
|
+
int j1inc;
|
507
|
+
int j2inc;
|
508
|
+
int i;
|
509
|
+
int j;
|
510
|
+
double v;
|
511
|
+
|
512
|
+
|
513
|
+
//
|
514
|
+
// Reduce and solve
|
515
|
+
//
|
516
|
+
result = generalizedsymmetricdefiniteevdreduce(a, n, isuppera, b, isupperb, problemtype, r, isupperr);
|
517
|
+
if( !result )
|
518
|
+
{
|
519
|
+
return result;
|
520
|
+
}
|
521
|
+
result = symmetricevd(a, n, zneeded, isuppera, d, t);
|
522
|
+
if( !result )
|
523
|
+
{
|
524
|
+
return result;
|
525
|
+
}
|
526
|
+
|
527
|
+
//
|
528
|
+
// Transform eigenvectors if needed
|
529
|
+
//
|
530
|
+
if( zneeded!=0 )
|
531
|
+
{
|
532
|
+
|
533
|
+
//
|
534
|
+
// fill Z with zeros
|
535
|
+
//
|
536
|
+
z.setbounds(1, n, 1, n);
|
537
|
+
for(j = 1; j <= n; j++)
|
538
|
+
{
|
539
|
+
z(1,j) = 0.0;
|
540
|
+
}
|
541
|
+
for(i = 2; i <= n; i++)
|
542
|
+
{
|
543
|
+
ap::vmove(&z(i, 1), &z(1, 1), ap::vlen(1,n));
|
544
|
+
}
|
545
|
+
|
546
|
+
//
|
547
|
+
// Setup R properties
|
548
|
+
//
|
549
|
+
if( isupperr )
|
550
|
+
{
|
551
|
+
j1 = 1;
|
552
|
+
j2 = n;
|
553
|
+
j1inc = +1;
|
554
|
+
j2inc = 0;
|
555
|
+
}
|
556
|
+
else
|
557
|
+
{
|
558
|
+
j1 = 1;
|
559
|
+
j2 = 1;
|
560
|
+
j1inc = 0;
|
561
|
+
j2inc = +1;
|
562
|
+
}
|
563
|
+
|
564
|
+
//
|
565
|
+
// Calculate R*Z
|
566
|
+
//
|
567
|
+
for(i = 1; i <= n; i++)
|
568
|
+
{
|
569
|
+
for(j = j1; j <= j2; j++)
|
570
|
+
{
|
571
|
+
v = r(i,j);
|
572
|
+
ap::vadd(&z(i, 1), &t(j, 1), ap::vlen(1,n), v);
|
573
|
+
}
|
574
|
+
j1 = j1+j1inc;
|
575
|
+
j2 = j2+j2inc;
|
576
|
+
}
|
577
|
+
}
|
578
|
+
return result;
|
579
|
+
}
|
580
|
+
|
581
|
+
|
582
|
+
/*************************************************************************
|
583
|
+
Obsolete 1-based subroutine
|
584
|
+
*************************************************************************/
|
585
|
+
bool generalizedsymmetricdefiniteevdreduce(ap::real_2d_array& a,
|
586
|
+
int n,
|
587
|
+
bool isuppera,
|
588
|
+
const ap::real_2d_array& b,
|
589
|
+
bool isupperb,
|
590
|
+
int problemtype,
|
591
|
+
ap::real_2d_array& r,
|
592
|
+
bool& isupperr)
|
593
|
+
{
|
594
|
+
bool result;
|
595
|
+
ap::real_2d_array t;
|
596
|
+
ap::real_1d_array w1;
|
597
|
+
ap::real_1d_array w2;
|
598
|
+
ap::real_1d_array w3;
|
599
|
+
int i;
|
600
|
+
int j;
|
601
|
+
double v;
|
602
|
+
|
603
|
+
ap::ap_error::make_assertion(n>0, "GeneralizedSymmetricDefiniteEVDReduce: N<=0!");
|
604
|
+
ap::ap_error::make_assertion(problemtype==1||problemtype==2||problemtype==3, "GeneralizedSymmetricDefiniteEVDReduce: incorrect ProblemType!");
|
605
|
+
result = true;
|
606
|
+
|
607
|
+
//
|
608
|
+
// Problem 1: A*x = lambda*B*x
|
609
|
+
//
|
610
|
+
// Reducing to:
|
611
|
+
// C*y = lambda*y
|
612
|
+
// C = L^(-1) * A * L^(-T)
|
613
|
+
// x = L^(-T) * y
|
614
|
+
//
|
615
|
+
if( problemtype==1 )
|
616
|
+
{
|
617
|
+
|
618
|
+
//
|
619
|
+
// Factorize B in T: B = LL'
|
620
|
+
//
|
621
|
+
t.setbounds(1, n, 1, n);
|
622
|
+
if( isupperb )
|
623
|
+
{
|
624
|
+
for(i = 1; i <= n; i++)
|
625
|
+
{
|
626
|
+
ap::vmove(t.getcolumn(i, i, n), b.getrow(i, i, n));
|
627
|
+
}
|
628
|
+
}
|
629
|
+
else
|
630
|
+
{
|
631
|
+
for(i = 1; i <= n; i++)
|
632
|
+
{
|
633
|
+
ap::vmove(&t(i, 1), &b(i, 1), ap::vlen(1,i));
|
634
|
+
}
|
635
|
+
}
|
636
|
+
if( !choleskydecomposition(t, n, false) )
|
637
|
+
{
|
638
|
+
result = false;
|
639
|
+
return result;
|
640
|
+
}
|
641
|
+
|
642
|
+
//
|
643
|
+
// Invert L in T
|
644
|
+
//
|
645
|
+
if( !invtriangular(t, n, false, false) )
|
646
|
+
{
|
647
|
+
result = false;
|
648
|
+
return result;
|
649
|
+
}
|
650
|
+
|
651
|
+
//
|
652
|
+
// Build L^(-1) * A * L^(-T) in R
|
653
|
+
//
|
654
|
+
w1.setbounds(1, n);
|
655
|
+
w2.setbounds(1, n);
|
656
|
+
r.setbounds(1, n, 1, n);
|
657
|
+
for(j = 1; j <= n; j++)
|
658
|
+
{
|
659
|
+
|
660
|
+
//
|
661
|
+
// Form w2 = A * l'(j) (here l'(j) is j-th column of L^(-T))
|
662
|
+
//
|
663
|
+
ap::vmove(&w1(1), &t(j, 1), ap::vlen(1,j));
|
664
|
+
symmetricmatrixvectormultiply(a, isuppera, 1, j, w1, 1.0, w2);
|
665
|
+
if( isuppera )
|
666
|
+
{
|
667
|
+
matrixvectormultiply(a, 1, j, j+1, n, true, w1, 1, j, 1.0, w2, j+1, n, 0.0);
|
668
|
+
}
|
669
|
+
else
|
670
|
+
{
|
671
|
+
matrixvectormultiply(a, j+1, n, 1, j, false, w1, 1, j, 1.0, w2, j+1, n, 0.0);
|
672
|
+
}
|
673
|
+
|
674
|
+
//
|
675
|
+
// Form l(i)*w2 (here l(i) is i-th row of L^(-1))
|
676
|
+
//
|
677
|
+
for(i = 1; i <= n; i++)
|
678
|
+
{
|
679
|
+
v = ap::vdotproduct(&t(i, 1), &w2(1), ap::vlen(1,i));
|
680
|
+
r(i,j) = v;
|
681
|
+
}
|
682
|
+
}
|
683
|
+
|
684
|
+
//
|
685
|
+
// Copy R to A
|
686
|
+
//
|
687
|
+
for(i = 1; i <= n; i++)
|
688
|
+
{
|
689
|
+
ap::vmove(&a(i, 1), &r(i, 1), ap::vlen(1,n));
|
690
|
+
}
|
691
|
+
|
692
|
+
//
|
693
|
+
// Copy L^(-1) from T to R and transpose
|
694
|
+
//
|
695
|
+
isupperr = true;
|
696
|
+
for(i = 1; i <= n; i++)
|
697
|
+
{
|
698
|
+
for(j = 1; j <= i-1; j++)
|
699
|
+
{
|
700
|
+
r(i,j) = 0;
|
701
|
+
}
|
702
|
+
}
|
703
|
+
for(i = 1; i <= n; i++)
|
704
|
+
{
|
705
|
+
ap::vmove(r.getrow(i, i, n), t.getcolumn(i, i, n));
|
706
|
+
}
|
707
|
+
return result;
|
708
|
+
}
|
709
|
+
|
710
|
+
//
|
711
|
+
// Problem 2: A*B*x = lambda*x
|
712
|
+
// or
|
713
|
+
// problem 3: B*A*x = lambda*x
|
714
|
+
//
|
715
|
+
// Reducing to:
|
716
|
+
// C*y = lambda*y
|
717
|
+
// C = U * A * U'
|
718
|
+
// B = U'* U
|
719
|
+
//
|
720
|
+
if( problemtype==2||problemtype==3 )
|
721
|
+
{
|
722
|
+
|
723
|
+
//
|
724
|
+
// Factorize B in T: B = U'*U
|
725
|
+
//
|
726
|
+
t.setbounds(1, n, 1, n);
|
727
|
+
if( isupperb )
|
728
|
+
{
|
729
|
+
for(i = 1; i <= n; i++)
|
730
|
+
{
|
731
|
+
ap::vmove(&t(i, i), &b(i, i), ap::vlen(i,n));
|
732
|
+
}
|
733
|
+
}
|
734
|
+
else
|
735
|
+
{
|
736
|
+
for(i = 1; i <= n; i++)
|
737
|
+
{
|
738
|
+
ap::vmove(t.getrow(i, i, n), b.getcolumn(i, i, n));
|
739
|
+
}
|
740
|
+
}
|
741
|
+
if( !choleskydecomposition(t, n, true) )
|
742
|
+
{
|
743
|
+
result = false;
|
744
|
+
return result;
|
745
|
+
}
|
746
|
+
|
747
|
+
//
|
748
|
+
// Build U * A * U' in R
|
749
|
+
//
|
750
|
+
w1.setbounds(1, n);
|
751
|
+
w2.setbounds(1, n);
|
752
|
+
w3.setbounds(1, n);
|
753
|
+
r.setbounds(1, n, 1, n);
|
754
|
+
for(j = 1; j <= n; j++)
|
755
|
+
{
|
756
|
+
|
757
|
+
//
|
758
|
+
// Form w2 = A * u'(j) (here u'(j) is j-th column of U')
|
759
|
+
//
|
760
|
+
ap::vmove(&w1(1), &t(j, j), ap::vlen(1,n-j+1));
|
761
|
+
symmetricmatrixvectormultiply(a, isuppera, j, n, w1, 1.0, w3);
|
762
|
+
ap::vmove(&w2(j), &w3(1), ap::vlen(j,n));
|
763
|
+
ap::vmove(&w1(j), &t(j, j), ap::vlen(j,n));
|
764
|
+
if( isuppera )
|
765
|
+
{
|
766
|
+
matrixvectormultiply(a, 1, j-1, j, n, false, w1, j, n, 1.0, w2, 1, j-1, 0.0);
|
767
|
+
}
|
768
|
+
else
|
769
|
+
{
|
770
|
+
matrixvectormultiply(a, j, n, 1, j-1, true, w1, j, n, 1.0, w2, 1, j-1, 0.0);
|
771
|
+
}
|
772
|
+
|
773
|
+
//
|
774
|
+
// Form u(i)*w2 (here u(i) is i-th row of U)
|
775
|
+
//
|
776
|
+
for(i = 1; i <= n; i++)
|
777
|
+
{
|
778
|
+
v = ap::vdotproduct(&t(i, i), &w2(i), ap::vlen(i,n));
|
779
|
+
r(i,j) = v;
|
780
|
+
}
|
781
|
+
}
|
782
|
+
|
783
|
+
//
|
784
|
+
// Copy R to A
|
785
|
+
//
|
786
|
+
for(i = 1; i <= n; i++)
|
787
|
+
{
|
788
|
+
ap::vmove(&a(i, 1), &r(i, 1), ap::vlen(1,n));
|
789
|
+
}
|
790
|
+
if( problemtype==2 )
|
791
|
+
{
|
792
|
+
|
793
|
+
//
|
794
|
+
// Invert U in T
|
795
|
+
//
|
796
|
+
if( !invtriangular(t, n, true, false) )
|
797
|
+
{
|
798
|
+
result = false;
|
799
|
+
return result;
|
800
|
+
}
|
801
|
+
|
802
|
+
//
|
803
|
+
// Copy U^-1 from T to R
|
804
|
+
//
|
805
|
+
isupperr = true;
|
806
|
+
for(i = 1; i <= n; i++)
|
807
|
+
{
|
808
|
+
for(j = 1; j <= i-1; j++)
|
809
|
+
{
|
810
|
+
r(i,j) = 0;
|
811
|
+
}
|
812
|
+
}
|
813
|
+
for(i = 1; i <= n; i++)
|
814
|
+
{
|
815
|
+
ap::vmove(&r(i, i), &t(i, i), ap::vlen(i,n));
|
816
|
+
}
|
817
|
+
}
|
818
|
+
else
|
819
|
+
{
|
820
|
+
|
821
|
+
//
|
822
|
+
// Copy U from T to R and transpose
|
823
|
+
//
|
824
|
+
isupperr = false;
|
825
|
+
for(i = 1; i <= n; i++)
|
826
|
+
{
|
827
|
+
for(j = i+1; j <= n; j++)
|
828
|
+
{
|
829
|
+
r(i,j) = 0;
|
830
|
+
}
|
831
|
+
}
|
832
|
+
for(i = 1; i <= n; i++)
|
833
|
+
{
|
834
|
+
ap::vmove(r.getcolumn(i, i, n), t.getrow(i, i, n));
|
835
|
+
}
|
836
|
+
}
|
837
|
+
}
|
838
|
+
return result;
|
839
|
+
}
|
840
|
+
|
841
|
+
|
842
|
+
|