alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,380 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _linreg_h
34
+ #define _linreg_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ #include "descriptivestatistics.h"
40
+ #include "gammaf.h"
41
+ #include "normaldistr.h"
42
+ #include "igammaf.h"
43
+ #include "reflections.h"
44
+ #include "bidiagonal.h"
45
+ #include "qr.h"
46
+ #include "lq.h"
47
+ #include "blas.h"
48
+ #include "rotations.h"
49
+ #include "bdsvd.h"
50
+ #include "svd.h"
51
+
52
+
53
+ struct linearmodel
54
+ {
55
+ ap::real_1d_array w;
56
+ };
57
+ struct lrreport
58
+ {
59
+ ap::real_2d_array c;
60
+ double rmserror;
61
+ double avgerror;
62
+ double avgrelerror;
63
+ double cvrmserror;
64
+ double cvavgerror;
65
+ double cvavgrelerror;
66
+ int ncvdefects;
67
+ ap::integer_1d_array cvdefects;
68
+ };
69
+
70
+
71
+ /*************************************************************************
72
+ Linear regression
73
+
74
+ Subroutine builds model:
75
+
76
+ Y = A(0)*X[0] + ... + A(N-1)*X[N-1] + A(N)
77
+
78
+ and model found in ALGLIB format, covariation matrix, training set errors
79
+ (rms, average, average relative) and leave-one-out cross-validation
80
+ estimate of the generalization error. CV estimate calculated using fast
81
+ algorithm with O(NPoints*NVars) complexity.
82
+
83
+ When covariation matrix is calculated standard deviations of function
84
+ values are assumed to be equal to RMS error on the training set.
85
+
86
+ INPUT PARAMETERS:
87
+ XY - training set, array [0..NPoints-1,0..NVars]:
88
+ * NVars columns - independent variables
89
+ * last column - dependent variable
90
+ NPoints - training set size, NPoints>NVars+1
91
+ NVars - number of independent variables
92
+
93
+ OUTPUT PARAMETERS:
94
+ Info - return code:
95
+ * -255, in case of unknown internal error
96
+ * -4, if internal SVD subroutine haven't converged
97
+ * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
98
+ * 1, if subroutine successfully finished
99
+ LM - linear model in the ALGLIB format. Use subroutines of
100
+ this unit to work with the model.
101
+ AR - additional results
102
+
103
+
104
+ -- ALGLIB --
105
+ Copyright 02.08.2008 by Bochkanov Sergey
106
+ *************************************************************************/
107
+ void lrbuild(const ap::real_2d_array& xy,
108
+ int npoints,
109
+ int nvars,
110
+ int& info,
111
+ linearmodel& lm,
112
+ lrreport& ar);
113
+
114
+
115
+ /*************************************************************************
116
+ Linear regression
117
+
118
+ Variant of LRBuild which uses vector of standatd deviations (errors in
119
+ function values).
120
+
121
+ INPUT PARAMETERS:
122
+ XY - training set, array [0..NPoints-1,0..NVars]:
123
+ * NVars columns - independent variables
124
+ * last column - dependent variable
125
+ S - standard deviations (errors in function values)
126
+ array[0..NPoints-1], S[i]>0.
127
+ NPoints - training set size, NPoints>NVars+1
128
+ NVars - number of independent variables
129
+
130
+ OUTPUT PARAMETERS:
131
+ Info - return code:
132
+ * -255, in case of unknown internal error
133
+ * -4, if internal SVD subroutine haven't converged
134
+ * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
135
+ * -2, if S[I]<=0
136
+ * 1, if subroutine successfully finished
137
+ LM - linear model in the ALGLIB format. Use subroutines of
138
+ this unit to work with the model.
139
+ AR - additional results
140
+
141
+
142
+ -- ALGLIB --
143
+ Copyright 02.08.2008 by Bochkanov Sergey
144
+ *************************************************************************/
145
+ void lrbuilds(const ap::real_2d_array& xy,
146
+ const ap::real_1d_array& s,
147
+ int npoints,
148
+ int nvars,
149
+ int& info,
150
+ linearmodel& lm,
151
+ lrreport& ar);
152
+
153
+
154
+ /*************************************************************************
155
+ Like LRBuildS, but builds model
156
+
157
+ Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
158
+
159
+ i.e. with zero constant term.
160
+
161
+ -- ALGLIB --
162
+ Copyright 30.10.2008 by Bochkanov Sergey
163
+ *************************************************************************/
164
+ void lrbuildzs(const ap::real_2d_array& xy,
165
+ const ap::real_1d_array& s,
166
+ int npoints,
167
+ int nvars,
168
+ int& info,
169
+ linearmodel& lm,
170
+ lrreport& ar);
171
+
172
+
173
+ /*************************************************************************
174
+ Like LRBuild but builds model
175
+
176
+ Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
177
+
178
+ i.e. with zero constant term.
179
+
180
+ -- ALGLIB --
181
+ Copyright 30.10.2008 by Bochkanov Sergey
182
+ *************************************************************************/
183
+ void lrbuildz(const ap::real_2d_array& xy,
184
+ int npoints,
185
+ int nvars,
186
+ int& info,
187
+ linearmodel& lm,
188
+ lrreport& ar);
189
+
190
+
191
+ /*************************************************************************
192
+ Unpacks coefficients of linear model.
193
+
194
+ INPUT PARAMETERS:
195
+ LM - linear model in ALGLIB format
196
+
197
+ OUTPUT PARAMETERS:
198
+ V - coefficients, array[0..NVars]
199
+ NVars - number of independent variables (one less than number
200
+ of coefficients)
201
+
202
+ -- ALGLIB --
203
+ Copyright 30.08.2008 by Bochkanov Sergey
204
+ *************************************************************************/
205
+ void lrunpack(const linearmodel& lm, ap::real_1d_array& v, int& nvars);
206
+
207
+
208
+ /*************************************************************************
209
+ "Packs" coefficients and creates linear model in ALGLIB format (LRUnpack
210
+ reversed).
211
+
212
+ INPUT PARAMETERS:
213
+ V - coefficients, array[0..NVars]
214
+ NVars - number of independent variables
215
+
216
+ OUTPUT PAREMETERS:
217
+ LM - linear model.
218
+
219
+ -- ALGLIB --
220
+ Copyright 30.08.2008 by Bochkanov Sergey
221
+ *************************************************************************/
222
+ void lrpack(const ap::real_1d_array& v, int nvars, linearmodel& lm);
223
+
224
+
225
+ /*************************************************************************
226
+ Procesing
227
+
228
+ INPUT PARAMETERS:
229
+ LM - linear model
230
+ X - input vector, array[0..NVars-1].
231
+
232
+ Result:
233
+ value of linear model regression estimate
234
+
235
+ -- ALGLIB --
236
+ Copyright 03.09.2008 by Bochkanov Sergey
237
+ *************************************************************************/
238
+ double lrprocess(const linearmodel& lm, const ap::real_1d_array& x);
239
+
240
+
241
+ /*************************************************************************
242
+ RMS error on the test set
243
+
244
+ INPUT PARAMETERS:
245
+ LM - linear model
246
+ XY - test set
247
+ NPoints - test set size
248
+
249
+ RESULT:
250
+ root mean square error.
251
+
252
+ -- ALGLIB --
253
+ Copyright 30.08.2008 by Bochkanov Sergey
254
+ *************************************************************************/
255
+ double lrrmserror(const linearmodel& lm,
256
+ const ap::real_2d_array& xy,
257
+ int npoints);
258
+
259
+
260
+ /*************************************************************************
261
+ Average error on the test set
262
+
263
+ INPUT PARAMETERS:
264
+ LM - linear model
265
+ XY - test set
266
+ NPoints - test set size
267
+
268
+ RESULT:
269
+ average error.
270
+
271
+ -- ALGLIB --
272
+ Copyright 30.08.2008 by Bochkanov Sergey
273
+ *************************************************************************/
274
+ double lravgerror(const linearmodel& lm,
275
+ const ap::real_2d_array& xy,
276
+ int npoints);
277
+
278
+
279
+ /*************************************************************************
280
+ RMS error on the test set
281
+
282
+ INPUT PARAMETERS:
283
+ LM - linear model
284
+ XY - test set
285
+ NPoints - test set size
286
+
287
+ RESULT:
288
+ average relative error.
289
+
290
+ -- ALGLIB --
291
+ Copyright 30.08.2008 by Bochkanov Sergey
292
+ *************************************************************************/
293
+ double lravgrelerror(const linearmodel& lm,
294
+ const ap::real_2d_array& xy,
295
+ int npoints);
296
+
297
+
298
+ /*************************************************************************
299
+ Copying of LinearModel strucure
300
+
301
+ INPUT PARAMETERS:
302
+ LM1 - original
303
+
304
+ OUTPUT PARAMETERS:
305
+ LM2 - copy
306
+
307
+ -- ALGLIB --
308
+ Copyright 15.03.2009 by Bochkanov Sergey
309
+ *************************************************************************/
310
+ void lrcopy(const linearmodel& lm1, linearmodel& lm2);
311
+
312
+
313
+ /*************************************************************************
314
+ Serialization of LinearModel strucure
315
+
316
+ INPUT PARAMETERS:
317
+ LM - original
318
+
319
+ OUTPUT PARAMETERS:
320
+ RA - array of real numbers which stores model,
321
+ array[0..RLen-1]
322
+ RLen - RA lenght
323
+
324
+ -- ALGLIB --
325
+ Copyright 15.03.2009 by Bochkanov Sergey
326
+ *************************************************************************/
327
+ void lrserialize(const linearmodel& lm, ap::real_1d_array& ra, int& rlen);
328
+
329
+
330
+ /*************************************************************************
331
+ Unserialization of DecisionForest strucure
332
+
333
+ INPUT PARAMETERS:
334
+ RA - real array which stores decision forest
335
+
336
+ OUTPUT PARAMETERS:
337
+ LM - unserialized structure
338
+
339
+ -- ALGLIB --
340
+ Copyright 15.03.2009 by Bochkanov Sergey
341
+ *************************************************************************/
342
+ void lrunserialize(const ap::real_1d_array& ra, linearmodel& lm);
343
+
344
+
345
+ /*************************************************************************
346
+ Obsolete subroutine, use LRBuildS
347
+
348
+ -- ALGLIB --
349
+ Copyright 26.04.2008 by Bochkanov Sergey
350
+
351
+ References:
352
+ 1. Numerical Recipes in C, "15.2 Fitting Data to a Straight Line"
353
+ *************************************************************************/
354
+ void lrlines(const ap::real_2d_array& xy,
355
+ const ap::real_1d_array& s,
356
+ int n,
357
+ int& info,
358
+ double& a,
359
+ double& b,
360
+ double& vara,
361
+ double& varb,
362
+ double& covab,
363
+ double& corrab,
364
+ double& p);
365
+
366
+
367
+ /*************************************************************************
368
+ Obsolete subroutine, use LRBuild
369
+
370
+ -- ALGLIB --
371
+ Copyright 02.08.2008 by Bochkanov Sergey
372
+ *************************************************************************/
373
+ void lrline(const ap::real_2d_array& xy,
374
+ int n,
375
+ int& info,
376
+ double& a,
377
+ double& b);
378
+
379
+
380
+ #endif
@@ -0,0 +1,1523 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2008, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #include <stdafx.h>
34
+ #include "logit.h"
35
+
36
+ static const double xtol = 100*ap::machineepsilon;
37
+ static const double ftol = 0.0001;
38
+ static const double gtol = 0.3;
39
+ static const int maxfev = 20;
40
+ static const double stpmin = 1.0E-2;
41
+ static const double stpmax = 1.0E5;
42
+ static const int logitvnum = 6;
43
+
44
+ static void mnliexp(ap::real_1d_array& w, const ap::real_1d_array& x);
45
+ static void mnlallerrors(logitmodel& lm,
46
+ const ap::real_2d_array& xy,
47
+ int npoints,
48
+ double& relcls,
49
+ double& avgce,
50
+ double& rms,
51
+ double& avg,
52
+ double& avgrel);
53
+ static void mnlmcsrch(const int& n,
54
+ ap::real_1d_array& x,
55
+ double& f,
56
+ ap::real_1d_array& g,
57
+ const ap::real_1d_array& s,
58
+ double& stp,
59
+ int& info,
60
+ int& nfev,
61
+ ap::real_1d_array& wa,
62
+ logitmcstate& state,
63
+ int& stage);
64
+ static void mnlmcstep(double& stx,
65
+ double& fx,
66
+ double& dx,
67
+ double& sty,
68
+ double& fy,
69
+ double& dy,
70
+ double& stp,
71
+ const double& fp,
72
+ const double& dp,
73
+ bool& brackt,
74
+ const double& stmin,
75
+ const double& stmax,
76
+ int& info);
77
+
78
+ /*************************************************************************
79
+ This subroutine trains logit model.
80
+
81
+ INPUT PARAMETERS:
82
+ XY - training set, array[0..NPoints-1,0..NVars]
83
+ First NVars columns store values of independent
84
+ variables, next column stores number of class (from 0
85
+ to NClasses-1) which dataset element belongs to. Fractional
86
+ values are rounded to nearest integer.
87
+ NPoints - training set size, NPoints>=1
88
+ NVars - number of independent variables, NVars>=1
89
+ NClasses - number of classes, NClasses>=2
90
+
91
+ OUTPUT PARAMETERS:
92
+ Info - return code:
93
+ * -2, if there is a point with class number
94
+ outside of [0..NClasses-1].
95
+ * -1, if incorrect parameters was passed
96
+ (NPoints<NVars+2, NVars<1, NClasses<2).
97
+ * 1, if task has been solved
98
+ LM - model built
99
+ Rep - training report
100
+
101
+ -- ALGLIB --
102
+ Copyright 10.09.2008 by Bochkanov Sergey
103
+ *************************************************************************/
104
+ void mnltrainh(const ap::real_2d_array& xy,
105
+ int npoints,
106
+ int nvars,
107
+ int nclasses,
108
+ int& info,
109
+ logitmodel& lm,
110
+ mnlreport& rep)
111
+ {
112
+ int i;
113
+ int j;
114
+ int k;
115
+ int m;
116
+ int n;
117
+ int ssize;
118
+ bool allsame;
119
+ int offs;
120
+ double threshold;
121
+ double wminstep;
122
+ double decay;
123
+ int wdim;
124
+ int expoffs;
125
+ double v;
126
+ double s;
127
+ multilayerperceptron network;
128
+ int nin;
129
+ int nout;
130
+ int wcount;
131
+ double e;
132
+ ap::real_1d_array g;
133
+ ap::real_2d_array h;
134
+ bool spd;
135
+ int cvcnt;
136
+ ap::real_1d_array x;
137
+ ap::real_1d_array y;
138
+ ap::real_1d_array wbase;
139
+ double wstep;
140
+ ap::real_1d_array wdir;
141
+ ap::real_1d_array work;
142
+ int mcstage;
143
+ logitmcstate mcstate;
144
+ int mcinfo;
145
+ int mcnfev;
146
+
147
+ threshold = 1000*ap::machineepsilon;
148
+ wminstep = 0.001;
149
+ decay = 0.001;
150
+
151
+ //
152
+ // Test for inputs
153
+ //
154
+ if( npoints<nvars+2||nvars<1||nclasses<2 )
155
+ {
156
+ info = -1;
157
+ return;
158
+ }
159
+ for(i = 0; i <= npoints-1; i++)
160
+ {
161
+ if( ap::round(xy(i,nvars))<0||ap::round(xy(i,nvars))>=nclasses )
162
+ {
163
+ info = -2;
164
+ return;
165
+ }
166
+ }
167
+ info = 1;
168
+
169
+ //
170
+ // Initialize data
171
+ //
172
+ rep.ngrad = 0;
173
+ rep.nhess = 0;
174
+
175
+ //
176
+ // Allocate array
177
+ //
178
+ wdim = (nvars+1)*(nclasses-1);
179
+ offs = 5;
180
+ expoffs = offs+wdim;
181
+ ssize = 5+(nvars+1)*(nclasses-1)+nclasses;
182
+ lm.w.setbounds(0, ssize-1);
183
+ lm.w(0) = ssize;
184
+ lm.w(1) = logitvnum;
185
+ lm.w(2) = nvars;
186
+ lm.w(3) = nclasses;
187
+ lm.w(4) = offs;
188
+
189
+ //
190
+ // Degenerate case: all outputs are equal
191
+ //
192
+ allsame = true;
193
+ for(i = 1; i <= npoints-1; i++)
194
+ {
195
+ if( ap::round(xy(i,nvars))!=ap::round(xy(i-1,nvars)) )
196
+ {
197
+ allsame = false;
198
+ }
199
+ }
200
+ if( allsame )
201
+ {
202
+ for(i = 0; i <= (nvars+1)*(nclasses-1)-1; i++)
203
+ {
204
+ lm.w(offs+i) = 0;
205
+ }
206
+ v = -2*log(ap::minrealnumber);
207
+ k = ap::round(xy(0,nvars));
208
+ if( k==nclasses-1 )
209
+ {
210
+ for(i = 0; i <= nclasses-2; i++)
211
+ {
212
+ lm.w(offs+i*(nvars+1)+nvars) = -v;
213
+ }
214
+ }
215
+ else
216
+ {
217
+ for(i = 0; i <= nclasses-2; i++)
218
+ {
219
+ if( i==k )
220
+ {
221
+ lm.w(offs+i*(nvars+1)+nvars) = +v;
222
+ }
223
+ else
224
+ {
225
+ lm.w(offs+i*(nvars+1)+nvars) = 0;
226
+ }
227
+ }
228
+ }
229
+ return;
230
+ }
231
+
232
+ //
233
+ // General case.
234
+ // Prepare task and network. Allocate space.
235
+ //
236
+ mlpcreatec0(nvars, nclasses, network);
237
+ mlpinitpreprocessor(network, xy, npoints);
238
+ mlpproperties(network, nin, nout, wcount);
239
+ for(i = 0; i <= wcount-1; i++)
240
+ {
241
+ network.weights(i) = (2*ap::randomreal()-1)/nvars;
242
+ }
243
+ g.setbounds(0, wcount-1);
244
+ h.setbounds(0, wcount-1, 0, wcount-1);
245
+ wbase.setbounds(0, wcount-1);
246
+ wdir.setbounds(0, wcount-1);
247
+ work.setbounds(0, wcount-1);
248
+
249
+ //
250
+ // First stage: optimize in gradient direction.
251
+ //
252
+ for(k = 0; k <= wcount/3+10; k++)
253
+ {
254
+
255
+ //
256
+ // Calculate gradient in starting point
257
+ //
258
+ mlpgradnbatch(network, xy, npoints, e, g);
259
+ v = ap::vdotproduct(&network.weights(0), &network.weights(0), ap::vlen(0,wcount-1));
260
+ e = e+0.5*decay*v;
261
+ ap::vadd(&g(0), &network.weights(0), ap::vlen(0,wcount-1), decay);
262
+ rep.ngrad = rep.ngrad+1;
263
+
264
+ //
265
+ // Setup optimization scheme
266
+ //
267
+ ap::vmoveneg(&wdir(0), &g(0), ap::vlen(0,wcount-1));
268
+ v = ap::vdotproduct(&wdir(0), &wdir(0), ap::vlen(0,wcount-1));
269
+ wstep = sqrt(v);
270
+ v = 1/sqrt(v);
271
+ ap::vmul(&wdir(0), ap::vlen(0,wcount-1), v);
272
+ mcstage = 0;
273
+ mnlmcsrch(wcount, network.weights, e, g, wdir, wstep, mcinfo, mcnfev, work, mcstate, mcstage);
274
+ while(mcstage!=0)
275
+ {
276
+ mlpgradnbatch(network, xy, npoints, e, g);
277
+ v = ap::vdotproduct(&network.weights(0), &network.weights(0), ap::vlen(0,wcount-1));
278
+ e = e+0.5*decay*v;
279
+ ap::vadd(&g(0), &network.weights(0), ap::vlen(0,wcount-1), decay);
280
+ rep.ngrad = rep.ngrad+1;
281
+ mnlmcsrch(wcount, network.weights, e, g, wdir, wstep, mcinfo, mcnfev, work, mcstate, mcstage);
282
+ }
283
+ }
284
+
285
+ //
286
+ // Second stage: use Hessian when we are close to the minimum
287
+ //
288
+ while(true)
289
+ {
290
+
291
+ //
292
+ // Calculate and update E/G/H
293
+ //
294
+ mlphessiannbatch(network, xy, npoints, e, g, h);
295
+ v = ap::vdotproduct(&network.weights(0), &network.weights(0), ap::vlen(0,wcount-1));
296
+ e = e+0.5*decay*v;
297
+ ap::vadd(&g(0), &network.weights(0), ap::vlen(0,wcount-1), decay);
298
+ for(k = 0; k <= wcount-1; k++)
299
+ {
300
+ h(k,k) = h(k,k)+decay;
301
+ }
302
+ rep.nhess = rep.nhess+1;
303
+
304
+ //
305
+ // Select step direction
306
+ // NOTE: it is important to use lower-triangle Cholesky
307
+ // factorization since it is much faster than higher-triangle version.
308
+ //
309
+ spd = spdmatrixcholesky(h, wcount, false);
310
+ if( spd )
311
+ {
312
+ spd = spdmatrixcholeskysolve(h, g, wcount, false, wdir);
313
+ }
314
+ if( spd )
315
+ {
316
+
317
+ //
318
+ // H is positive definite.
319
+ // Step in Newton direction.
320
+ //
321
+ ap::vmul(&wdir(0), ap::vlen(0,wcount-1), -1);
322
+ spd = true;
323
+ }
324
+ else
325
+ {
326
+
327
+ //
328
+ // H is indefinite.
329
+ // Step in gradient direction.
330
+ //
331
+ ap::vmoveneg(&wdir(0), &g(0), ap::vlen(0,wcount-1));
332
+ spd = false;
333
+ }
334
+
335
+ //
336
+ // Optimize in WDir direction
337
+ //
338
+ v = ap::vdotproduct(&wdir(0), &wdir(0), ap::vlen(0,wcount-1));
339
+ wstep = sqrt(v);
340
+ v = 1/sqrt(v);
341
+ ap::vmul(&wdir(0), ap::vlen(0,wcount-1), v);
342
+ mcstage = 0;
343
+ mnlmcsrch(wcount, network.weights, e, g, wdir, wstep, mcinfo, mcnfev, work, mcstate, mcstage);
344
+ while(mcstage!=0)
345
+ {
346
+ mlpgradnbatch(network, xy, npoints, e, g);
347
+ v = ap::vdotproduct(&network.weights(0), &network.weights(0), ap::vlen(0,wcount-1));
348
+ e = e+0.5*decay*v;
349
+ ap::vadd(&g(0), &network.weights(0), ap::vlen(0,wcount-1), decay);
350
+ rep.ngrad = rep.ngrad+1;
351
+ mnlmcsrch(wcount, network.weights, e, g, wdir, wstep, mcinfo, mcnfev, work, mcstate, mcstage);
352
+ }
353
+ if( spd&&(mcinfo==2||mcinfo==4||mcinfo==6) )
354
+ {
355
+ break;
356
+ }
357
+ }
358
+
359
+ //
360
+ // Convert from NN format to MNL format
361
+ //
362
+ ap::vmove(&lm.w(offs), &network.weights(0), ap::vlen(offs,offs+wcount-1));
363
+ for(k = 0; k <= nvars-1; k++)
364
+ {
365
+ for(i = 0; i <= nclasses-2; i++)
366
+ {
367
+ s = network.columnsigmas(k);
368
+ if( s==0 )
369
+ {
370
+ s = 1;
371
+ }
372
+ j = offs+(nvars+1)*i;
373
+ v = lm.w(j+k);
374
+ lm.w(j+k) = v/s;
375
+ lm.w(j+nvars) = lm.w(j+nvars)+v*network.columnmeans(k)/s;
376
+ }
377
+ }
378
+ for(k = 0; k <= nclasses-2; k++)
379
+ {
380
+ lm.w(offs+(nvars+1)*k+nvars) = -lm.w(offs+(nvars+1)*k+nvars);
381
+ }
382
+ }
383
+
384
+
385
+ /*************************************************************************
386
+ Procesing
387
+
388
+ INPUT PARAMETERS:
389
+ LM - logit model, passed by non-constant reference
390
+ (some fields of structure are used as temporaries
391
+ when calculating model output).
392
+ X - input vector, array[0..NVars-1].
393
+
394
+ OUTPUT PARAMETERS:
395
+ Y - result, array[0..NClasses-1]
396
+ Vector of posterior probabilities for classification task.
397
+ Subroutine does not allocate memory for this vector, it is
398
+ responsibility of a caller to allocate it. Array must be
399
+ at least [0..NClasses-1].
400
+
401
+ -- ALGLIB --
402
+ Copyright 10.09.2008 by Bochkanov Sergey
403
+ *************************************************************************/
404
+ void mnlprocess(logitmodel& lm,
405
+ const ap::real_1d_array& x,
406
+ ap::real_1d_array& y)
407
+ {
408
+ int nvars;
409
+ int nclasses;
410
+ int offs;
411
+ int i;
412
+ int i1;
413
+ double v;
414
+ double mx;
415
+ double s;
416
+
417
+ ap::ap_error::make_assertion(lm.w(1)==logitvnum, "MNLProcess: unexpected model version");
418
+ nvars = ap::round(lm.w(2));
419
+ nclasses = ap::round(lm.w(3));
420
+ offs = ap::round(lm.w(4));
421
+ mnliexp(lm.w, x);
422
+ s = 0;
423
+ i1 = offs+(nvars+1)*(nclasses-1);
424
+ for(i = i1; i <= i1+nclasses-1; i++)
425
+ {
426
+ s = s+lm.w(i);
427
+ }
428
+ for(i = 0; i <= nclasses-1; i++)
429
+ {
430
+ y(i) = lm.w(i1+i)/s;
431
+ }
432
+ }
433
+
434
+
435
+ /*************************************************************************
436
+ Unpacks coefficients of logit model. Logit model have form:
437
+
438
+ P(class=i) = S(i) / (S(0) + S(1) + ... +S(M-1))
439
+ S(i) = Exp(A[i,0]*X[0] + ... + A[i,N-1]*X[N-1] + A[i,N]), when i<M-1
440
+ S(M-1) = 1
441
+
442
+ INPUT PARAMETERS:
443
+ LM - logit model in ALGLIB format
444
+
445
+ OUTPUT PARAMETERS:
446
+ V - coefficients, array[0..NClasses-2,0..NVars]
447
+ NVars - number of independent variables
448
+ NClasses - number of classes
449
+
450
+ -- ALGLIB --
451
+ Copyright 10.09.2008 by Bochkanov Sergey
452
+ *************************************************************************/
453
+ void mnlunpack(const logitmodel& lm,
454
+ ap::real_2d_array& a,
455
+ int& nvars,
456
+ int& nclasses)
457
+ {
458
+ int offs;
459
+ int i;
460
+
461
+ ap::ap_error::make_assertion(lm.w(1)==logitvnum, "MNLUnpack: unexpected model version");
462
+ nvars = ap::round(lm.w(2));
463
+ nclasses = ap::round(lm.w(3));
464
+ offs = ap::round(lm.w(4));
465
+ a.setbounds(0, nclasses-2, 0, nvars);
466
+ for(i = 0; i <= nclasses-2; i++)
467
+ {
468
+ ap::vmove(&a(i, 0), &lm.w(offs+i*(nvars+1)), ap::vlen(0,nvars));
469
+ }
470
+ }
471
+
472
+
473
+ /*************************************************************************
474
+ "Packs" coefficients and creates logit model in ALGLIB format (MNLUnpack
475
+ reversed).
476
+
477
+ INPUT PARAMETERS:
478
+ A - model (see MNLUnpack)
479
+ NVars - number of independent variables
480
+ NClasses - number of classes
481
+
482
+ OUTPUT PARAMETERS:
483
+ LM - logit model.
484
+
485
+ -- ALGLIB --
486
+ Copyright 10.09.2008 by Bochkanov Sergey
487
+ *************************************************************************/
488
+ void mnlpack(const ap::real_2d_array& a,
489
+ int nvars,
490
+ int nclasses,
491
+ logitmodel& lm)
492
+ {
493
+ int offs;
494
+ int i;
495
+ int wdim;
496
+ int ssize;
497
+
498
+ wdim = (nvars+1)*(nclasses-1);
499
+ offs = 5;
500
+ ssize = 5+(nvars+1)*(nclasses-1)+nclasses;
501
+ lm.w.setbounds(0, ssize-1);
502
+ lm.w(0) = ssize;
503
+ lm.w(1) = logitvnum;
504
+ lm.w(2) = nvars;
505
+ lm.w(3) = nclasses;
506
+ lm.w(4) = offs;
507
+ for(i = 0; i <= nclasses-2; i++)
508
+ {
509
+ ap::vmove(&lm.w(offs+i*(nvars+1)), &a(i, 0), ap::vlen(offs+i*(nvars+1),offs+i*(nvars+1)+nvars));
510
+ }
511
+ }
512
+
513
+
514
+ /*************************************************************************
515
+ Copying of LogitModel strucure
516
+
517
+ INPUT PARAMETERS:
518
+ LM1 - original
519
+
520
+ OUTPUT PARAMETERS:
521
+ LM2 - copy
522
+
523
+ -- ALGLIB --
524
+ Copyright 15.03.2009 by Bochkanov Sergey
525
+ *************************************************************************/
526
+ void mnlcopy(const logitmodel& lm1, logitmodel& lm2)
527
+ {
528
+ int k;
529
+
530
+ k = ap::round(lm1.w(0));
531
+ lm2.w.setbounds(0, k-1);
532
+ ap::vmove(&lm2.w(0), &lm1.w(0), ap::vlen(0,k-1));
533
+ }
534
+
535
+
536
+ /*************************************************************************
537
+ Serialization of LogitModel strucure
538
+
539
+ INPUT PARAMETERS:
540
+ LM - original
541
+
542
+ OUTPUT PARAMETERS:
543
+ RA - array of real numbers which stores model,
544
+ array[0..RLen-1]
545
+ RLen - RA lenght
546
+
547
+ -- ALGLIB --
548
+ Copyright 15.03.2009 by Bochkanov Sergey
549
+ *************************************************************************/
550
+ void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen)
551
+ {
552
+
553
+ rlen = ap::round(lm.w(0))+1;
554
+ ra.setbounds(0, rlen-1);
555
+ ra(0) = logitvnum;
556
+ ap::vmove(&ra(1), &lm.w(0), ap::vlen(1,rlen-1));
557
+ }
558
+
559
+
560
+ /*************************************************************************
561
+ Unserialization of LogitModel strucure
562
+
563
+ INPUT PARAMETERS:
564
+ RA - real array which stores model
565
+
566
+ OUTPUT PARAMETERS:
567
+ LM - restored model
568
+
569
+ -- ALGLIB --
570
+ Copyright 15.03.2009 by Bochkanov Sergey
571
+ *************************************************************************/
572
+ void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm)
573
+ {
574
+
575
+ ap::ap_error::make_assertion(ap::round(ra(0))==logitvnum, "MNLUnserialize: incorrect array!");
576
+ lm.w.setbounds(0, ap::round(ra(1))-1);
577
+ ap::vmove(&lm.w(0), &ra(1), ap::vlen(0,ap::round(ra(1))-1));
578
+ }
579
+
580
+
581
+ /*************************************************************************
582
+ Average cross-entropy (in bits per element) on the test set
583
+
584
+ INPUT PARAMETERS:
585
+ LM - logit model
586
+ XY - test set
587
+ NPoints - test set size
588
+
589
+ RESULT:
590
+ CrossEntropy/(NPoints*ln(2)).
591
+
592
+ -- ALGLIB --
593
+ Copyright 10.09.2008 by Bochkanov Sergey
594
+ *************************************************************************/
595
+ double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints)
596
+ {
597
+ double result;
598
+ int nvars;
599
+ int nclasses;
600
+ int i;
601
+ int j;
602
+ ap::real_1d_array workx;
603
+ ap::real_1d_array worky;
604
+ int nmax;
605
+
606
+ ap::ap_error::make_assertion(lm.w(1)==logitvnum, "MNLClsError: unexpected model version");
607
+ nvars = ap::round(lm.w(2));
608
+ nclasses = ap::round(lm.w(3));
609
+ workx.setbounds(0, nvars-1);
610
+ worky.setbounds(0, nclasses-1);
611
+ result = 0;
612
+ for(i = 0; i <= npoints-1; i++)
613
+ {
614
+ ap::ap_error::make_assertion(ap::round(xy(i,nvars))>=0&&ap::round(xy(i,nvars))<nclasses, "MNLAvgCE: incorrect class number!");
615
+
616
+ //
617
+ // Process
618
+ //
619
+ ap::vmove(&workx(0), &xy(i, 0), ap::vlen(0,nvars-1));
620
+ mnlprocess(lm, workx, worky);
621
+ if( worky(ap::round(xy(i,nvars)))>0 )
622
+ {
623
+ result = result-log(worky(ap::round(xy(i,nvars))));
624
+ }
625
+ else
626
+ {
627
+ result = result-log(ap::minrealnumber);
628
+ }
629
+ }
630
+ result = result/(npoints*log(double(2)));
631
+ return result;
632
+ }
633
+
634
+
635
+ /*************************************************************************
636
+ Relative classification error on the test set
637
+
638
+ INPUT PARAMETERS:
639
+ LM - logit model
640
+ XY - test set
641
+ NPoints - test set size
642
+
643
+ RESULT:
644
+ percent of incorrectly classified cases.
645
+
646
+ -- ALGLIB --
647
+ Copyright 10.09.2008 by Bochkanov Sergey
648
+ *************************************************************************/
649
+ double mnlrelclserror(logitmodel& lm,
650
+ const ap::real_2d_array& xy,
651
+ int npoints)
652
+ {
653
+ double result;
654
+
655
+ result = double(mnlclserror(lm, xy, npoints))/double(npoints);
656
+ return result;
657
+ }
658
+
659
+
660
+ /*************************************************************************
661
+ RMS error on the test set
662
+
663
+ INPUT PARAMETERS:
664
+ LM - logit model
665
+ XY - test set
666
+ NPoints - test set size
667
+
668
+ RESULT:
669
+ root mean square error (error when estimating posterior probabilities).
670
+
671
+ -- ALGLIB --
672
+ Copyright 30.08.2008 by Bochkanov Sergey
673
+ *************************************************************************/
674
+ double mnlrmserror(logitmodel& lm, const ap::real_2d_array& xy, int npoints)
675
+ {
676
+ double result;
677
+ double relcls;
678
+ double avgce;
679
+ double rms;
680
+ double avg;
681
+ double avgrel;
682
+
683
+ ap::ap_error::make_assertion(ap::round(lm.w(1))==logitvnum, "MNLRMSError: Incorrect MNL version!");
684
+ mnlallerrors(lm, xy, npoints, relcls, avgce, rms, avg, avgrel);
685
+ result = rms;
686
+ return result;
687
+ }
688
+
689
+
690
+ /*************************************************************************
691
+ Average error on the test set
692
+
693
+ INPUT PARAMETERS:
694
+ LM - logit model
695
+ XY - test set
696
+ NPoints - test set size
697
+
698
+ RESULT:
699
+ average error (error when estimating posterior probabilities).
700
+
701
+ -- ALGLIB --
702
+ Copyright 30.08.2008 by Bochkanov Sergey
703
+ *************************************************************************/
704
+ double mnlavgerror(logitmodel& lm, const ap::real_2d_array& xy, int npoints)
705
+ {
706
+ double result;
707
+ double relcls;
708
+ double avgce;
709
+ double rms;
710
+ double avg;
711
+ double avgrel;
712
+
713
+ ap::ap_error::make_assertion(ap::round(lm.w(1))==logitvnum, "MNLRMSError: Incorrect MNL version!");
714
+ mnlallerrors(lm, xy, npoints, relcls, avgce, rms, avg, avgrel);
715
+ result = avg;
716
+ return result;
717
+ }
718
+
719
+
720
+ /*************************************************************************
721
+ Average relative error on the test set
722
+
723
+ INPUT PARAMETERS:
724
+ LM - logit model
725
+ XY - test set
726
+ NPoints - test set size
727
+
728
+ RESULT:
729
+ average relative error (error when estimating posterior probabilities).
730
+
731
+ -- ALGLIB --
732
+ Copyright 30.08.2008 by Bochkanov Sergey
733
+ *************************************************************************/
734
+ double mnlavgrelerror(logitmodel& lm, const ap::real_2d_array& xy, int ssize)
735
+ {
736
+ double result;
737
+ double relcls;
738
+ double avgce;
739
+ double rms;
740
+ double avg;
741
+ double avgrel;
742
+
743
+ ap::ap_error::make_assertion(ap::round(lm.w(1))==logitvnum, "MNLRMSError: Incorrect MNL version!");
744
+ mnlallerrors(lm, xy, ssize, relcls, avgce, rms, avg, avgrel);
745
+ result = avgrel;
746
+ return result;
747
+ }
748
+
749
+
750
+ /*************************************************************************
751
+ Classification error on test set = MNLRelClsError*NPoints
752
+
753
+ -- ALGLIB --
754
+ Copyright 10.09.2008 by Bochkanov Sergey
755
+ *************************************************************************/
756
+ int mnlclserror(logitmodel& lm, const ap::real_2d_array& xy, int npoints)
757
+ {
758
+ int result;
759
+ int nvars;
760
+ int nclasses;
761
+ int i;
762
+ int j;
763
+ ap::real_1d_array workx;
764
+ ap::real_1d_array worky;
765
+ int nmax;
766
+
767
+ ap::ap_error::make_assertion(lm.w(1)==logitvnum, "MNLClsError: unexpected model version");
768
+ nvars = ap::round(lm.w(2));
769
+ nclasses = ap::round(lm.w(3));
770
+ workx.setbounds(0, nvars-1);
771
+ worky.setbounds(0, nclasses-1);
772
+ result = 0;
773
+ for(i = 0; i <= npoints-1; i++)
774
+ {
775
+
776
+ //
777
+ // Process
778
+ //
779
+ ap::vmove(&workx(0), &xy(i, 0), ap::vlen(0,nvars-1));
780
+ mnlprocess(lm, workx, worky);
781
+
782
+ //
783
+ // Logit version of the answer
784
+ //
785
+ nmax = 0;
786
+ for(j = 0; j <= nclasses-1; j++)
787
+ {
788
+ if( worky(j)>worky(nmax) )
789
+ {
790
+ nmax = j;
791
+ }
792
+ }
793
+
794
+ //
795
+ // compare
796
+ //
797
+ if( nmax!=ap::round(xy(i,nvars)) )
798
+ {
799
+ result = result+1;
800
+ }
801
+ }
802
+ return result;
803
+ }
804
+
805
+
806
+ /*************************************************************************
807
+ Internal subroutine. Places exponents of the anti-overflow shifted
808
+ internal linear outputs into the service part of the W array.
809
+ *************************************************************************/
810
+ static void mnliexp(ap::real_1d_array& w, const ap::real_1d_array& x)
811
+ {
812
+ int nvars;
813
+ int nclasses;
814
+ int offs;
815
+ int i;
816
+ int i1;
817
+ double v;
818
+ double mx;
819
+
820
+ ap::ap_error::make_assertion(w(1)==logitvnum, "LOGIT: unexpected model version");
821
+ nvars = ap::round(w(2));
822
+ nclasses = ap::round(w(3));
823
+ offs = ap::round(w(4));
824
+ i1 = offs+(nvars+1)*(nclasses-1);
825
+ for(i = 0; i <= nclasses-2; i++)
826
+ {
827
+ v = ap::vdotproduct(&w(offs+i*(nvars+1)), &x(0), ap::vlen(offs+i*(nvars+1),offs+i*(nvars+1)+nvars-1));
828
+ w(i1+i) = v+w(offs+i*(nvars+1)+nvars);
829
+ }
830
+ w(i1+nclasses-1) = 0;
831
+ mx = 0;
832
+ for(i = i1; i <= i1+nclasses-1; i++)
833
+ {
834
+ mx = ap::maxreal(mx, w(i));
835
+ }
836
+ for(i = i1; i <= i1+nclasses-1; i++)
837
+ {
838
+ w(i) = exp(w(i)-mx);
839
+ }
840
+ }
841
+
842
+
843
+ /*************************************************************************
844
+ Calculation of all types of errors
845
+
846
+ -- ALGLIB --
847
+ Copyright 30.08.2008 by Bochkanov Sergey
848
+ *************************************************************************/
849
+ static void mnlallerrors(logitmodel& lm,
850
+ const ap::real_2d_array& xy,
851
+ int npoints,
852
+ double& relcls,
853
+ double& avgce,
854
+ double& rms,
855
+ double& avg,
856
+ double& avgrel)
857
+ {
858
+ int nvars;
859
+ int nclasses;
860
+ int i;
861
+ ap::real_1d_array buf;
862
+ ap::real_1d_array workx;
863
+ ap::real_1d_array y;
864
+ ap::real_1d_array dy;
865
+
866
+ ap::ap_error::make_assertion(ap::round(lm.w(1))==logitvnum, "MNL unit: Incorrect MNL version!");
867
+ nvars = ap::round(lm.w(2));
868
+ nclasses = ap::round(lm.w(3));
869
+ workx.setbounds(0, nvars-1);
870
+ y.setbounds(0, nclasses-1);
871
+ dy.setbounds(0, 0);
872
+ dserrallocate(nclasses, buf);
873
+ for(i = 0; i <= npoints-1; i++)
874
+ {
875
+ ap::vmove(&workx(0), &xy(i, 0), ap::vlen(0,nvars-1));
876
+ mnlprocess(lm, workx, y);
877
+ dy(0) = xy(i,nvars);
878
+ dserraccumulate(buf, y, dy);
879
+ }
880
+ dserrfinish(buf);
881
+ relcls = buf(0);
882
+ avgce = buf(1);
883
+ rms = buf(2);
884
+ avg = buf(3);
885
+ avgrel = buf(4);
886
+ }
887
+
888
+
889
+ /*************************************************************************
890
+ THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES A SUFFICIENT
891
+ DECREASE CONDITION AND A CURVATURE CONDITION.
892
+
893
+ AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF UNCERTAINTY WITH
894
+ ENDPOINTS STX AND STY. THE INTERVAL OF UNCERTAINTY IS INITIALLY CHOSEN
895
+ SO THAT IT CONTAINS A MINIMIZER OF THE MODIFIED FUNCTION
896
+
897
+ F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S).
898
+
899
+ IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION HAS A NONPOSITIVE
900
+ FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, THEN THE INTERVAL OF
901
+ UNCERTAINTY IS CHOSEN SO THAT IT CONTAINS A MINIMIZER OF F(X+STP*S).
902
+
903
+ THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES THE SUFFICIENT
904
+ DECREASE CONDITION
905
+
906
+ F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S),
907
+
908
+ AND THE CURVATURE CONDITION
909
+
910
+ ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S).
911
+
912
+ IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION IS BOUNDED
913
+ BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES BOTH CONDITIONS.
914
+ IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH CONDITIONS, THEN THE
915
+ ALGORITHM USUALLY STOPS WHEN ROUNDING ERRORS PREVENT FURTHER PROGRESS.
916
+ IN THIS CASE STP ONLY SATISFIES THE SUFFICIENT DECREASE CONDITION.
917
+
918
+ PARAMETERS DESCRIPRION
919
+
920
+ N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF VARIABLES.
921
+
922
+ X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE BASE POINT FOR
923
+ THE LINE SEARCH. ON OUTPUT IT CONTAINS X+STP*S.
924
+
925
+ F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F AT X. ON OUTPUT
926
+ IT CONTAINS THE VALUE OF F AT X + STP*S.
927
+
928
+ G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE GRADIENT OF F AT X.
929
+ ON OUTPUT IT CONTAINS THE GRADIENT OF F AT X + STP*S.
930
+
931
+ S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE SEARCH DIRECTION.
932
+
933
+ STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN INITIAL ESTIMATE
934
+ OF A SATISFACTORY STEP. ON OUTPUT STP CONTAINS THE FINAL ESTIMATE.
935
+
936
+ FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. TERMINATION OCCURS WHEN THE
937
+ SUFFICIENT DECREASE CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE
938
+ SATISFIED.
939
+
940
+ XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE
941
+ WIDTH OF THE INTERVAL OF UNCERTAINTY IS AT MOST XTOL.
942
+
943
+ STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH SPECIFY LOWER AND
944
+ UPPER BOUNDS FOR THE STEP.
945
+
946
+ MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE
947
+ NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN ITERATION.
948
+
949
+ INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
950
+ INFO = 0 IMPROPER INPUT PARAMETERS.
951
+
952
+ INFO = 1 THE SUFFICIENT DECREASE CONDITION AND THE
953
+ DIRECTIONAL DERIVATIVE CONDITION HOLD.
954
+
955
+ INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
956
+ IS AT MOST XTOL.
957
+
958
+ INFO = 3 NUMBER OF CALLS TO FCN HAS REACHED MAXFEV.
959
+
960
+ INFO = 4 THE STEP IS AT THE LOWER BOUND STPMIN.
961
+
962
+ INFO = 5 THE STEP IS AT THE UPPER BOUND STPMAX.
963
+
964
+ INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
965
+ THERE MAY NOT BE A STEP WHICH SATISFIES THE
966
+ SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
967
+ TOLERANCES MAY BE TOO SMALL.
968
+
969
+ NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN.
970
+
971
+ WA IS A WORK ARRAY OF LENGTH N.
972
+
973
+ ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
974
+ JORGE J. MORE', DAVID J. THUENTE
975
+ *************************************************************************/
976
+ static void mnlmcsrch(const int& n,
977
+ ap::real_1d_array& x,
978
+ double& f,
979
+ ap::real_1d_array& g,
980
+ const ap::real_1d_array& s,
981
+ double& stp,
982
+ int& info,
983
+ int& nfev,
984
+ ap::real_1d_array& wa,
985
+ logitmcstate& state,
986
+ int& stage)
987
+ {
988
+ double v;
989
+ double p5;
990
+ double p66;
991
+ double zero;
992
+
993
+
994
+ //
995
+ // init
996
+ //
997
+ p5 = 0.5;
998
+ p66 = 0.66;
999
+ state.xtrapf = 4.0;
1000
+ zero = 0;
1001
+
1002
+ //
1003
+ // Main cycle
1004
+ //
1005
+ while(true)
1006
+ {
1007
+ if( stage==0 )
1008
+ {
1009
+
1010
+ //
1011
+ // NEXT
1012
+ //
1013
+ stage = 2;
1014
+ continue;
1015
+ }
1016
+ if( stage==2 )
1017
+ {
1018
+ state.infoc = 1;
1019
+ info = 0;
1020
+
1021
+ //
1022
+ // CHECK THE INPUT PARAMETERS FOR ERRORS.
1023
+ //
1024
+ if( n<=0||stp<=0||ftol<0||gtol<zero||xtol<zero||stpmin<zero||stpmax<stpmin||maxfev<=0 )
1025
+ {
1026
+ stage = 0;
1027
+ return;
1028
+ }
1029
+
1030
+ //
1031
+ // COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION
1032
+ // AND CHECK THAT S IS A DESCENT DIRECTION.
1033
+ //
1034
+ v = ap::vdotproduct(&g(0), &s(0), ap::vlen(0,n-1));
1035
+ state.dginit = v;
1036
+ if( state.dginit>=0 )
1037
+ {
1038
+ stage = 0;
1039
+ return;
1040
+ }
1041
+
1042
+ //
1043
+ // INITIALIZE LOCAL VARIABLES.
1044
+ //
1045
+ state.brackt = false;
1046
+ state.stage1 = true;
1047
+ nfev = 0;
1048
+ state.finit = f;
1049
+ state.dgtest = ftol*state.dginit;
1050
+ state.width = stpmax-stpmin;
1051
+ state.width1 = state.width/p5;
1052
+ ap::vmove(&wa(0), &x(0), ap::vlen(0,n-1));
1053
+
1054
+ //
1055
+ // THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP,
1056
+ // FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP.
1057
+ // THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP,
1058
+ // FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF
1059
+ // THE INTERVAL OF UNCERTAINTY.
1060
+ // THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP,
1061
+ // FUNCTION, AND DERIVATIVE AT THE CURRENT STEP.
1062
+ //
1063
+ state.stx = 0;
1064
+ state.fx = state.finit;
1065
+ state.dgx = state.dginit;
1066
+ state.sty = 0;
1067
+ state.fy = state.finit;
1068
+ state.dgy = state.dginit;
1069
+
1070
+ //
1071
+ // NEXT
1072
+ //
1073
+ stage = 3;
1074
+ continue;
1075
+ }
1076
+ if( stage==3 )
1077
+ {
1078
+
1079
+ //
1080
+ // START OF ITERATION.
1081
+ //
1082
+ // SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND
1083
+ // TO THE PRESENT INTERVAL OF UNCERTAINTY.
1084
+ //
1085
+ if( state.brackt )
1086
+ {
1087
+ if( state.stx<state.sty )
1088
+ {
1089
+ state.stmin = state.stx;
1090
+ state.stmax = state.sty;
1091
+ }
1092
+ else
1093
+ {
1094
+ state.stmin = state.sty;
1095
+ state.stmax = state.stx;
1096
+ }
1097
+ }
1098
+ else
1099
+ {
1100
+ state.stmin = state.stx;
1101
+ state.stmax = stp+state.xtrapf*(stp-state.stx);
1102
+ }
1103
+
1104
+ //
1105
+ // FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN.
1106
+ //
1107
+ if( stp>stpmax )
1108
+ {
1109
+ stp = stpmax;
1110
+ }
1111
+ if( stp<stpmin )
1112
+ {
1113
+ stp = stpmin;
1114
+ }
1115
+
1116
+ //
1117
+ // IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET
1118
+ // STP BE THE LOWEST POINT OBTAINED SO FAR.
1119
+ //
1120
+ if( state.brackt&&(stp<=state.stmin||stp>=state.stmax)||nfev>=maxfev-1||state.infoc==0||state.brackt&&state.stmax-state.stmin<=xtol*state.stmax )
1121
+ {
1122
+ stp = state.stx;
1123
+ }
1124
+
1125
+ //
1126
+ // EVALUATE THE FUNCTION AND GRADIENT AT STP
1127
+ // AND COMPUTE THE DIRECTIONAL DERIVATIVE.
1128
+ //
1129
+ ap::vmove(&x(0), &wa(0), ap::vlen(0,n-1));
1130
+ ap::vadd(&x(0), &s(0), ap::vlen(0,n-1), stp);
1131
+
1132
+ //
1133
+ // NEXT
1134
+ //
1135
+ stage = 4;
1136
+ return;
1137
+ }
1138
+ if( stage==4 )
1139
+ {
1140
+ info = 0;
1141
+ nfev = nfev+1;
1142
+ v = ap::vdotproduct(&g(0), &s(0), ap::vlen(0,n-1));
1143
+ state.dg = v;
1144
+ state.ftest1 = state.finit+stp*state.dgtest;
1145
+
1146
+ //
1147
+ // TEST FOR CONVERGENCE.
1148
+ //
1149
+ if( state.brackt&&(stp<=state.stmin||stp>=state.stmax)||state.infoc==0 )
1150
+ {
1151
+ info = 6;
1152
+ }
1153
+ if( stp==stpmax&&f<=state.ftest1&&state.dg<=state.dgtest )
1154
+ {
1155
+ info = 5;
1156
+ }
1157
+ if( stp==stpmin&&(f>state.ftest1||state.dg>=state.dgtest) )
1158
+ {
1159
+ info = 4;
1160
+ }
1161
+ if( nfev>=maxfev )
1162
+ {
1163
+ info = 3;
1164
+ }
1165
+ if( state.brackt&&state.stmax-state.stmin<=xtol*state.stmax )
1166
+ {
1167
+ info = 2;
1168
+ }
1169
+ if( f<=state.ftest1&&fabs(state.dg)<=-gtol*state.dginit )
1170
+ {
1171
+ info = 1;
1172
+ }
1173
+
1174
+ //
1175
+ // CHECK FOR TERMINATION.
1176
+ //
1177
+ if( info!=0 )
1178
+ {
1179
+ stage = 0;
1180
+ return;
1181
+ }
1182
+
1183
+ //
1184
+ // IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED
1185
+ // FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE.
1186
+ //
1187
+ if( state.stage1&&f<=state.ftest1&&state.dg>=ap::minreal(ftol, gtol)*state.dginit )
1188
+ {
1189
+ state.stage1 = false;
1190
+ }
1191
+
1192
+ //
1193
+ // A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF
1194
+ // WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED
1195
+ // FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE
1196
+ // DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN
1197
+ // OBTAINED BUT THE DECREASE IS NOT SUFFICIENT.
1198
+ //
1199
+ if( state.stage1&&f<=state.fx&&f>state.ftest1 )
1200
+ {
1201
+
1202
+ //
1203
+ // DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES.
1204
+ //
1205
+ state.fm = f-stp*state.dgtest;
1206
+ state.fxm = state.fx-state.stx*state.dgtest;
1207
+ state.fym = state.fy-state.sty*state.dgtest;
1208
+ state.dgm = state.dg-state.dgtest;
1209
+ state.dgxm = state.dgx-state.dgtest;
1210
+ state.dgym = state.dgy-state.dgtest;
1211
+
1212
+ //
1213
+ // CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
1214
+ // AND TO COMPUTE THE NEW STEP.
1215
+ //
1216
+ mnlmcstep(state.stx, state.fxm, state.dgxm, state.sty, state.fym, state.dgym, stp, state.fm, state.dgm, state.brackt, state.stmin, state.stmax, state.infoc);
1217
+
1218
+ //
1219
+ // RESET THE FUNCTION AND GRADIENT VALUES FOR F.
1220
+ //
1221
+ state.fx = state.fxm+state.stx*state.dgtest;
1222
+ state.fy = state.fym+state.sty*state.dgtest;
1223
+ state.dgx = state.dgxm+state.dgtest;
1224
+ state.dgy = state.dgym+state.dgtest;
1225
+ }
1226
+ else
1227
+ {
1228
+
1229
+ //
1230
+ // CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
1231
+ // AND TO COMPUTE THE NEW STEP.
1232
+ //
1233
+ mnlmcstep(state.stx, state.fx, state.dgx, state.sty, state.fy, state.dgy, stp, f, state.dg, state.brackt, state.stmin, state.stmax, state.infoc);
1234
+ }
1235
+
1236
+ //
1237
+ // FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE
1238
+ // INTERVAL OF UNCERTAINTY.
1239
+ //
1240
+ if( state.brackt )
1241
+ {
1242
+ if( fabs(state.sty-state.stx)>=p66*state.width1 )
1243
+ {
1244
+ stp = state.stx+p5*(state.sty-state.stx);
1245
+ }
1246
+ state.width1 = state.width;
1247
+ state.width = fabs(state.sty-state.stx);
1248
+ }
1249
+
1250
+ //
1251
+ // NEXT.
1252
+ //
1253
+ stage = 3;
1254
+ continue;
1255
+ }
1256
+ }
1257
+ }
1258
+
1259
+
1260
+ static void mnlmcstep(double& stx,
1261
+ double& fx,
1262
+ double& dx,
1263
+ double& sty,
1264
+ double& fy,
1265
+ double& dy,
1266
+ double& stp,
1267
+ const double& fp,
1268
+ const double& dp,
1269
+ bool& brackt,
1270
+ const double& stmin,
1271
+ const double& stmax,
1272
+ int& info)
1273
+ {
1274
+ bool bound;
1275
+ double gamma;
1276
+ double p;
1277
+ double q;
1278
+ double r;
1279
+ double s;
1280
+ double sgnd;
1281
+ double stpc;
1282
+ double stpf;
1283
+ double stpq;
1284
+ double theta;
1285
+
1286
+ info = 0;
1287
+
1288
+ //
1289
+ // CHECK THE INPUT PARAMETERS FOR ERRORS.
1290
+ //
1291
+ if( brackt&&(stp<=ap::minreal(stx, sty)||stp>=ap::maxreal(stx, sty))||dx*(stp-stx)>=0||stmax<stmin )
1292
+ {
1293
+ return;
1294
+ }
1295
+
1296
+ //
1297
+ // DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN.
1298
+ //
1299
+ sgnd = dp*(dx/fabs(dx));
1300
+
1301
+ //
1302
+ // FIRST CASE. A HIGHER FUNCTION VALUE.
1303
+ // THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER
1304
+ // TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN,
1305
+ // ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN.
1306
+ //
1307
+ if( fp>fx )
1308
+ {
1309
+ info = 1;
1310
+ bound = true;
1311
+ theta = 3*(fx-fp)/(stp-stx)+dx+dp;
1312
+ s = ap::maxreal(fabs(theta), ap::maxreal(fabs(dx), fabs(dp)));
1313
+ gamma = s*sqrt(ap::sqr(theta/s)-dx/s*(dp/s));
1314
+ if( stp<stx )
1315
+ {
1316
+ gamma = -gamma;
1317
+ }
1318
+ p = gamma-dx+theta;
1319
+ q = gamma-dx+gamma+dp;
1320
+ r = p/q;
1321
+ stpc = stx+r*(stp-stx);
1322
+ stpq = stx+dx/((fx-fp)/(stp-stx)+dx)/2*(stp-stx);
1323
+ if( fabs(stpc-stx)<fabs(stpq-stx) )
1324
+ {
1325
+ stpf = stpc;
1326
+ }
1327
+ else
1328
+ {
1329
+ stpf = stpc+(stpq-stpc)/2;
1330
+ }
1331
+ brackt = true;
1332
+ }
1333
+ else
1334
+ {
1335
+ if( sgnd<0 )
1336
+ {
1337
+
1338
+ //
1339
+ // SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF
1340
+ // OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC
1341
+ // STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP,
1342
+ // THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN.
1343
+ //
1344
+ info = 2;
1345
+ bound = false;
1346
+ theta = 3*(fx-fp)/(stp-stx)+dx+dp;
1347
+ s = ap::maxreal(fabs(theta), ap::maxreal(fabs(dx), fabs(dp)));
1348
+ gamma = s*sqrt(ap::sqr(theta/s)-dx/s*(dp/s));
1349
+ if( stp>stx )
1350
+ {
1351
+ gamma = -gamma;
1352
+ }
1353
+ p = gamma-dp+theta;
1354
+ q = gamma-dp+gamma+dx;
1355
+ r = p/q;
1356
+ stpc = stp+r*(stx-stp);
1357
+ stpq = stp+dp/(dp-dx)*(stx-stp);
1358
+ if( fabs(stpc-stp)>fabs(stpq-stp) )
1359
+ {
1360
+ stpf = stpc;
1361
+ }
1362
+ else
1363
+ {
1364
+ stpf = stpq;
1365
+ }
1366
+ brackt = true;
1367
+ }
1368
+ else
1369
+ {
1370
+ if( fabs(dp)<fabs(dx) )
1371
+ {
1372
+
1373
+ //
1374
+ // THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
1375
+ // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES.
1376
+ // THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
1377
+ // IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
1378
+ // IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
1379
+ // EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
1380
+ // COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
1381
+ // CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
1382
+ //
1383
+ info = 3;
1384
+ bound = true;
1385
+ theta = 3*(fx-fp)/(stp-stx)+dx+dp;
1386
+ s = ap::maxreal(fabs(theta), ap::maxreal(fabs(dx), fabs(dp)));
1387
+
1388
+ //
1389
+ // THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND
1390
+ // TO INFINITY IN THE DIRECTION OF THE STEP.
1391
+ //
1392
+ gamma = s*sqrt(ap::maxreal(double(0), ap::sqr(theta/s)-dx/s*(dp/s)));
1393
+ if( stp>stx )
1394
+ {
1395
+ gamma = -gamma;
1396
+ }
1397
+ p = gamma-dp+theta;
1398
+ q = gamma+(dx-dp)+gamma;
1399
+ r = p/q;
1400
+ if( r<0&&gamma!=0 )
1401
+ {
1402
+ stpc = stp+r*(stx-stp);
1403
+ }
1404
+ else
1405
+ {
1406
+ if( stp>stx )
1407
+ {
1408
+ stpc = stmax;
1409
+ }
1410
+ else
1411
+ {
1412
+ stpc = stmin;
1413
+ }
1414
+ }
1415
+ stpq = stp+dp/(dp-dx)*(stx-stp);
1416
+ if( brackt )
1417
+ {
1418
+ if( fabs(stp-stpc)<fabs(stp-stpq) )
1419
+ {
1420
+ stpf = stpc;
1421
+ }
1422
+ else
1423
+ {
1424
+ stpf = stpq;
1425
+ }
1426
+ }
1427
+ else
1428
+ {
1429
+ if( fabs(stp-stpc)>fabs(stp-stpq) )
1430
+ {
1431
+ stpf = stpc;
1432
+ }
1433
+ else
1434
+ {
1435
+ stpf = stpq;
1436
+ }
1437
+ }
1438
+ }
1439
+ else
1440
+ {
1441
+
1442
+ //
1443
+ // FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
1444
+ // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
1445
+ // NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
1446
+ // IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.
1447
+ //
1448
+ info = 4;
1449
+ bound = false;
1450
+ if( brackt )
1451
+ {
1452
+ theta = 3*(fp-fy)/(sty-stp)+dy+dp;
1453
+ s = ap::maxreal(fabs(theta), ap::maxreal(fabs(dy), fabs(dp)));
1454
+ gamma = s*sqrt(ap::sqr(theta/s)-dy/s*(dp/s));
1455
+ if( stp>sty )
1456
+ {
1457
+ gamma = -gamma;
1458
+ }
1459
+ p = gamma-dp+theta;
1460
+ q = gamma-dp+gamma+dy;
1461
+ r = p/q;
1462
+ stpc = stp+r*(sty-stp);
1463
+ stpf = stpc;
1464
+ }
1465
+ else
1466
+ {
1467
+ if( stp>stx )
1468
+ {
1469
+ stpf = stmax;
1470
+ }
1471
+ else
1472
+ {
1473
+ stpf = stmin;
1474
+ }
1475
+ }
1476
+ }
1477
+ }
1478
+ }
1479
+
1480
+ //
1481
+ // UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
1482
+ // DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
1483
+ //
1484
+ if( fp>fx )
1485
+ {
1486
+ sty = stp;
1487
+ fy = fp;
1488
+ dy = dp;
1489
+ }
1490
+ else
1491
+ {
1492
+ if( sgnd<0.0 )
1493
+ {
1494
+ sty = stx;
1495
+ fy = fx;
1496
+ dy = dx;
1497
+ }
1498
+ stx = stp;
1499
+ fx = fp;
1500
+ dx = dp;
1501
+ }
1502
+
1503
+ //
1504
+ // COMPUTE THE NEW STEP AND SAFEGUARD IT.
1505
+ //
1506
+ stpf = ap::minreal(stmax, stpf);
1507
+ stpf = ap::maxreal(stmin, stpf);
1508
+ stp = stpf;
1509
+ if( brackt&&bound )
1510
+ {
1511
+ if( sty>stx )
1512
+ {
1513
+ stp = ap::minreal(stx+0.66*(sty-stx), stp);
1514
+ }
1515
+ else
1516
+ {
1517
+ stp = ap::maxreal(stx+0.66*(sty-stx), stp);
1518
+ }
1519
+ }
1520
+ }
1521
+
1522
+
1523
+