fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,873 @@
|
|
|
1
|
+
from typing import Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
from mlx_lm.models.switch_layers import SwitchGLU
|
|
7
|
+
|
|
8
|
+
from mlx_vlm.models.qwen3_omni_moe.config import (
|
|
9
|
+
CodePredictorConfig,
|
|
10
|
+
TalkerConfig,
|
|
11
|
+
TextConfig,
|
|
12
|
+
)
|
|
13
|
+
from mlx_vlm.sample_utils import top_p_sampling
|
|
14
|
+
|
|
15
|
+
from ..base import create_attention_mask, scaled_dot_product_attention
|
|
16
|
+
from ..cache import KVCache
|
|
17
|
+
from .language import Attention, Qwen3OmniMoeThinkerTextRotaryEmbedding
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class CodePredictorRotaryEmbedding:
|
|
21
|
+
def __init__(self, config: CodePredictorConfig):
|
|
22
|
+
self.config = config
|
|
23
|
+
head_dim = config.head_dim
|
|
24
|
+
inv_freq = 1.0 / (
|
|
25
|
+
config.rope_theta
|
|
26
|
+
** (mx.arange(0, head_dim, 2).astype(mx.float32) / head_dim)
|
|
27
|
+
)
|
|
28
|
+
self.inv_freq = inv_freq
|
|
29
|
+
self.attention_scaling = 1.0
|
|
30
|
+
|
|
31
|
+
def __call__(
|
|
32
|
+
self, x: mx.array, position_ids: mx.array
|
|
33
|
+
) -> Tuple[mx.array, mx.array]:
|
|
34
|
+
batch_size = position_ids.shape[0]
|
|
35
|
+
inv_freq_expanded = mx.broadcast_to(
|
|
36
|
+
self.inv_freq[None, :, None].astype(mx.float32),
|
|
37
|
+
(batch_size, self.inv_freq.shape[0], 1),
|
|
38
|
+
)
|
|
39
|
+
position_ids_expanded = mx.expand_dims(position_ids.astype(mx.float32), axis=1)
|
|
40
|
+
freqs = inv_freq_expanded @ position_ids_expanded
|
|
41
|
+
freqs = mx.swapaxes(freqs, 1, 2)
|
|
42
|
+
emb = mx.concatenate([freqs, freqs], axis=-1)
|
|
43
|
+
cos = mx.cos(emb) * self.attention_scaling
|
|
44
|
+
sin = mx.sin(emb) * self.attention_scaling
|
|
45
|
+
return cos.astype(x.dtype), sin.astype(x.dtype)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def rotate_half_code(x):
|
|
49
|
+
x1 = x[..., : x.shape[-1] // 2]
|
|
50
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
|
51
|
+
return mx.concatenate([-x2, x1], axis=-1)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def apply_rotary_pos_emb_code(q, k, cos, sin):
|
|
55
|
+
cos = mx.expand_dims(cos, axis=1)
|
|
56
|
+
sin = mx.expand_dims(sin, axis=1)
|
|
57
|
+
q_embed = (q * cos) + (rotate_half_code(q) * sin)
|
|
58
|
+
k_embed = (k * cos) + (rotate_half_code(k) * sin)
|
|
59
|
+
return q_embed, k_embed
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class CodePredictorMLP(nn.Module):
|
|
63
|
+
def __init__(self, config: CodePredictorConfig):
|
|
64
|
+
super().__init__()
|
|
65
|
+
self.config = config
|
|
66
|
+
self.hidden_size = config.hidden_size
|
|
67
|
+
self.intermediate_size = config.intermediate_size
|
|
68
|
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
69
|
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
70
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
71
|
+
|
|
72
|
+
if config.hidden_act == "silu":
|
|
73
|
+
self.act_fn = nn.silu
|
|
74
|
+
elif config.hidden_act == "gelu":
|
|
75
|
+
self.act_fn = nn.gelu
|
|
76
|
+
elif config.hidden_act == "gelu_pytorch_tanh":
|
|
77
|
+
self.act_fn = nn.GELU(approx="precise")
|
|
78
|
+
else:
|
|
79
|
+
self.act_fn = nn.silu
|
|
80
|
+
|
|
81
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
82
|
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class CodePredictorAttention(nn.Module):
|
|
86
|
+
def __init__(self, config: CodePredictorConfig, idx: int):
|
|
87
|
+
super().__init__()
|
|
88
|
+
self.config = config
|
|
89
|
+
self.layer_idx = idx
|
|
90
|
+
self.head_dim = getattr(
|
|
91
|
+
config, "head_dim", config.hidden_size // config.num_attention_heads
|
|
92
|
+
)
|
|
93
|
+
self.num_key_value_groups = (
|
|
94
|
+
config.num_attention_heads // config.num_key_value_heads
|
|
95
|
+
)
|
|
96
|
+
self.scaling = self.head_dim**-0.5
|
|
97
|
+
self.attention_dropout = config.attention_dropout
|
|
98
|
+
self.is_causal = True
|
|
99
|
+
|
|
100
|
+
self.q_proj = nn.Linear(
|
|
101
|
+
config.hidden_size,
|
|
102
|
+
config.num_attention_heads * self.head_dim,
|
|
103
|
+
bias=config.attention_bias,
|
|
104
|
+
)
|
|
105
|
+
self.k_proj = nn.Linear(
|
|
106
|
+
config.hidden_size,
|
|
107
|
+
config.num_key_value_heads * self.head_dim,
|
|
108
|
+
bias=config.attention_bias,
|
|
109
|
+
)
|
|
110
|
+
self.v_proj = nn.Linear(
|
|
111
|
+
config.hidden_size,
|
|
112
|
+
config.num_key_value_heads * self.head_dim,
|
|
113
|
+
bias=config.attention_bias,
|
|
114
|
+
)
|
|
115
|
+
self.o_proj = nn.Linear(
|
|
116
|
+
config.num_attention_heads * self.head_dim,
|
|
117
|
+
config.hidden_size,
|
|
118
|
+
bias=config.attention_bias,
|
|
119
|
+
)
|
|
120
|
+
self.q_norm = nn.RMSNorm(dims=self.head_dim, eps=config.rms_norm_eps)
|
|
121
|
+
self.k_norm = nn.RMSNorm(dims=self.head_dim, eps=config.rms_norm_eps)
|
|
122
|
+
self.sliding_window = (
|
|
123
|
+
config.sliding_window
|
|
124
|
+
if (
|
|
125
|
+
hasattr(config, "layer_types")
|
|
126
|
+
and config.layer_types
|
|
127
|
+
and idx < len(config.layer_types)
|
|
128
|
+
and config.layer_types[idx] == "sliding_attention"
|
|
129
|
+
)
|
|
130
|
+
else None
|
|
131
|
+
)
|
|
132
|
+
self.rotary_emb = CodePredictorRotaryEmbedding(config)
|
|
133
|
+
|
|
134
|
+
def __call__(
|
|
135
|
+
self,
|
|
136
|
+
hidden_states: mx.array,
|
|
137
|
+
position_embeddings: Optional[Tuple[mx.array, mx.array]] = None,
|
|
138
|
+
attention_mask: Optional[mx.array] = None,
|
|
139
|
+
position_ids: Optional[mx.array] = None,
|
|
140
|
+
past_key_values: Optional[KVCache] = None,
|
|
141
|
+
cache_position: Optional[mx.array] = None,
|
|
142
|
+
) -> Tuple[mx.array, Optional[mx.array]]:
|
|
143
|
+
B, L, D = hidden_states.shape
|
|
144
|
+
hidden_shape = (B, L, -1, self.head_dim)
|
|
145
|
+
|
|
146
|
+
query_states = (
|
|
147
|
+
self.q_proj(hidden_states).reshape(*hidden_shape).transpose(0, 2, 1, 3)
|
|
148
|
+
)
|
|
149
|
+
key_states = (
|
|
150
|
+
self.k_proj(hidden_states).reshape(*hidden_shape).transpose(0, 2, 1, 3)
|
|
151
|
+
)
|
|
152
|
+
value_states = (
|
|
153
|
+
self.v_proj(hidden_states).reshape(*hidden_shape).transpose(0, 2, 1, 3)
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
query_states = self.q_norm(query_states)
|
|
157
|
+
key_states = self.k_norm(key_states)
|
|
158
|
+
|
|
159
|
+
if position_embeddings is None:
|
|
160
|
+
if position_ids is None:
|
|
161
|
+
if past_key_values is not None:
|
|
162
|
+
offset = (
|
|
163
|
+
past_key_values.offset
|
|
164
|
+
if hasattr(past_key_values, "offset")
|
|
165
|
+
else 0
|
|
166
|
+
)
|
|
167
|
+
position_ids = mx.arange(offset, offset + L)
|
|
168
|
+
else:
|
|
169
|
+
position_ids = mx.arange(L)
|
|
170
|
+
position_ids = mx.expand_dims(position_ids, axis=0)
|
|
171
|
+
cos, sin = self.rotary_emb(hidden_states, position_ids)
|
|
172
|
+
else:
|
|
173
|
+
cos, sin = position_embeddings
|
|
174
|
+
|
|
175
|
+
query_states, key_states = apply_rotary_pos_emb_code(
|
|
176
|
+
query_states, key_states, cos, sin
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
if past_key_values is not None:
|
|
180
|
+
key_states, value_states = past_key_values.update_and_fetch(
|
|
181
|
+
key_states, value_states
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
if attention_mask is not None and isinstance(attention_mask, mx.array):
|
|
185
|
+
kv_seq_len = key_states.shape[-2]
|
|
186
|
+
if attention_mask.shape[-1] != kv_seq_len:
|
|
187
|
+
attention_mask = attention_mask[..., :kv_seq_len]
|
|
188
|
+
|
|
189
|
+
if self.is_causal and attention_mask is None:
|
|
190
|
+
attention_mask = nn.MultiHeadAttention.create_additive_causal_mask(L)
|
|
191
|
+
attention_mask = attention_mask.astype(query_states.dtype)
|
|
192
|
+
|
|
193
|
+
attn_output = scaled_dot_product_attention(
|
|
194
|
+
query_states,
|
|
195
|
+
key_states,
|
|
196
|
+
value_states,
|
|
197
|
+
past_key_values,
|
|
198
|
+
scale=self.scaling,
|
|
199
|
+
mask=attention_mask,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
203
|
+
attn_output = self.o_proj(attn_output)
|
|
204
|
+
return attn_output, None
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
class CodePredictorDecoderLayer(nn.Module):
|
|
208
|
+
def __init__(self, config: CodePredictorConfig, idx: int):
|
|
209
|
+
super().__init__()
|
|
210
|
+
self.self_attn = CodePredictorAttention(config, idx)
|
|
211
|
+
self.mlp = CodePredictorMLP(config)
|
|
212
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
213
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
214
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
215
|
+
)
|
|
216
|
+
self.attention_type = (
|
|
217
|
+
config.layer_types[idx]
|
|
218
|
+
if hasattr(config, "layer_types") and config.layer_types
|
|
219
|
+
else "full_attention"
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
def __call__(
|
|
223
|
+
self,
|
|
224
|
+
hidden_states: mx.array,
|
|
225
|
+
attention_mask: Optional[mx.array] = None,
|
|
226
|
+
position_ids: Optional[mx.array] = None,
|
|
227
|
+
past_key_values: Optional[KVCache] = None,
|
|
228
|
+
cache_position: Optional[mx.array] = None,
|
|
229
|
+
position_embeddings: Optional[Tuple[mx.array, mx.array]] = None,
|
|
230
|
+
) -> mx.array:
|
|
231
|
+
residual = hidden_states
|
|
232
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
233
|
+
hidden_states, _ = self.self_attn(
|
|
234
|
+
hidden_states=hidden_states,
|
|
235
|
+
attention_mask=attention_mask,
|
|
236
|
+
position_ids=position_ids,
|
|
237
|
+
past_key_values=past_key_values,
|
|
238
|
+
cache_position=cache_position,
|
|
239
|
+
position_embeddings=position_embeddings,
|
|
240
|
+
)
|
|
241
|
+
hidden_states = residual + hidden_states
|
|
242
|
+
|
|
243
|
+
residual = hidden_states
|
|
244
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
245
|
+
hidden_states = self.mlp(hidden_states)
|
|
246
|
+
hidden_states = residual + hidden_states
|
|
247
|
+
return hidden_states
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
class CodePredictorModel(nn.Module):
|
|
251
|
+
def __init__(self, config: CodePredictorConfig):
|
|
252
|
+
super().__init__()
|
|
253
|
+
self.config = config
|
|
254
|
+
self.layers = [
|
|
255
|
+
CodePredictorDecoderLayer(config, idx)
|
|
256
|
+
for idx in range(config.num_hidden_layers)
|
|
257
|
+
]
|
|
258
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
259
|
+
self.rotary_emb = CodePredictorRotaryEmbedding(config)
|
|
260
|
+
self.codec_embedding = [
|
|
261
|
+
nn.Embedding(config.vocab_size, config.hidden_size)
|
|
262
|
+
for _ in range(config.num_code_groups - 1)
|
|
263
|
+
]
|
|
264
|
+
|
|
265
|
+
def __call__(
|
|
266
|
+
self,
|
|
267
|
+
input_ids: Optional[mx.array] = None,
|
|
268
|
+
attention_mask: Optional[mx.array] = None,
|
|
269
|
+
position_ids: Optional[mx.array] = None,
|
|
270
|
+
past_key_values: Optional[list] = None,
|
|
271
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
272
|
+
use_cache: Optional[bool] = False,
|
|
273
|
+
cache_position: Optional[mx.array] = None,
|
|
274
|
+
generation_steps: Optional[int] = None,
|
|
275
|
+
) -> mx.array:
|
|
276
|
+
if input_ids is not None:
|
|
277
|
+
raise ValueError("`input_ids` is expected to be `None`")
|
|
278
|
+
|
|
279
|
+
if use_cache and past_key_values is None:
|
|
280
|
+
past_key_values = [KVCache() for _ in range(len(self.layers))]
|
|
281
|
+
|
|
282
|
+
if cache_position is None:
|
|
283
|
+
if past_key_values is not None and len(past_key_values) > 0:
|
|
284
|
+
offset = (
|
|
285
|
+
past_key_values[0].offset
|
|
286
|
+
if hasattr(past_key_values[0], "offset")
|
|
287
|
+
else 0
|
|
288
|
+
)
|
|
289
|
+
else:
|
|
290
|
+
offset = 0
|
|
291
|
+
cache_position = mx.arange(offset, offset + inputs_embeds.shape[1])
|
|
292
|
+
|
|
293
|
+
if position_ids is None:
|
|
294
|
+
position_ids = mx.expand_dims(cache_position, axis=0)
|
|
295
|
+
|
|
296
|
+
if attention_mask is None:
|
|
297
|
+
attention_mask = create_attention_mask(
|
|
298
|
+
inputs_embeds,
|
|
299
|
+
past_key_values[0] if past_key_values else None,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
if attention_mask is not None and not isinstance(attention_mask, dict):
|
|
303
|
+
causal_mask_mapping = {
|
|
304
|
+
"full_attention": attention_mask,
|
|
305
|
+
}
|
|
306
|
+
else:
|
|
307
|
+
causal_mask_mapping = (
|
|
308
|
+
attention_mask
|
|
309
|
+
if isinstance(attention_mask, dict)
|
|
310
|
+
else {"full_attention": None}
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
hidden_states = inputs_embeds
|
|
314
|
+
|
|
315
|
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
316
|
+
|
|
317
|
+
for i, decoder_layer in enumerate(self.layers):
|
|
318
|
+
hidden_states = decoder_layer(
|
|
319
|
+
hidden_states,
|
|
320
|
+
attention_mask=causal_mask_mapping.get(
|
|
321
|
+
decoder_layer.attention_type,
|
|
322
|
+
causal_mask_mapping.get("full_attention"),
|
|
323
|
+
),
|
|
324
|
+
position_ids=position_ids,
|
|
325
|
+
past_key_values=past_key_values[i] if past_key_values else None,
|
|
326
|
+
cache_position=cache_position,
|
|
327
|
+
position_embeddings=position_embeddings,
|
|
328
|
+
)
|
|
329
|
+
|
|
330
|
+
hidden_states = self.norm(hidden_states)
|
|
331
|
+
return hidden_states
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
class CodePredictor(nn.Module):
|
|
335
|
+
def __init__(self, config: CodePredictorConfig):
|
|
336
|
+
super().__init__()
|
|
337
|
+
self.config = config
|
|
338
|
+
self.model = CodePredictorModel(config)
|
|
339
|
+
self.lm_head = [
|
|
340
|
+
nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
341
|
+
for _ in range(config.num_code_groups - 1)
|
|
342
|
+
]
|
|
343
|
+
|
|
344
|
+
def __call__(
|
|
345
|
+
self,
|
|
346
|
+
input_ids: Optional[mx.array] = None,
|
|
347
|
+
attention_mask: Optional[mx.array] = None,
|
|
348
|
+
position_ids: Optional[mx.array] = None,
|
|
349
|
+
past_key_values: Optional[list] = None,
|
|
350
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
351
|
+
labels: Optional[mx.array] = None,
|
|
352
|
+
use_cache: Optional[bool] = None,
|
|
353
|
+
cache_position: Optional[mx.array] = None,
|
|
354
|
+
generation_steps: Optional[int] = None,
|
|
355
|
+
):
|
|
356
|
+
if (
|
|
357
|
+
inputs_embeds is not None
|
|
358
|
+
and inputs_embeds.shape[1] > 1
|
|
359
|
+
and generation_steps is None
|
|
360
|
+
):
|
|
361
|
+
generation_steps = inputs_embeds.shape[1] - 2
|
|
362
|
+
elif input_ids is not None and generation_steps is not None:
|
|
363
|
+
inputs_embeds = self.model.codec_embedding[generation_steps - 1](input_ids)
|
|
364
|
+
|
|
365
|
+
if generation_steps is None:
|
|
366
|
+
generation_steps = 0
|
|
367
|
+
|
|
368
|
+
outputs = self.model(
|
|
369
|
+
input_ids=None,
|
|
370
|
+
attention_mask=attention_mask,
|
|
371
|
+
position_ids=position_ids,
|
|
372
|
+
past_key_values=past_key_values,
|
|
373
|
+
inputs_embeds=inputs_embeds,
|
|
374
|
+
use_cache=use_cache,
|
|
375
|
+
cache_position=cache_position,
|
|
376
|
+
generation_steps=generation_steps,
|
|
377
|
+
)
|
|
378
|
+
|
|
379
|
+
hidden_states = outputs
|
|
380
|
+
logits = self.lm_head[generation_steps](hidden_states)
|
|
381
|
+
|
|
382
|
+
return logits, hidden_states, inputs_embeds
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
class TalkerResizeMlp(nn.Module):
|
|
386
|
+
def __init__(self, config: TalkerConfig):
|
|
387
|
+
super().__init__()
|
|
388
|
+
self.linear_fc1 = nn.Linear(
|
|
389
|
+
config.thinker_hidden_size, config.text_config.intermediate_size, bias=True
|
|
390
|
+
)
|
|
391
|
+
self.linear_fc2 = nn.Linear(
|
|
392
|
+
config.text_config.intermediate_size,
|
|
393
|
+
config.text_config.hidden_size,
|
|
394
|
+
bias=True,
|
|
395
|
+
)
|
|
396
|
+
|
|
397
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
398
|
+
return self.linear_fc2(nn.silu(self.linear_fc1(x)))
|
|
399
|
+
|
|
400
|
+
|
|
401
|
+
class TalkerTextMlp(nn.Module):
|
|
402
|
+
def __init__(self, config: TextConfig, intermediate_sz: int):
|
|
403
|
+
super().__init__()
|
|
404
|
+
if not intermediate_sz:
|
|
405
|
+
intermediate_sz = config.intermediate_size
|
|
406
|
+
|
|
407
|
+
self.gate_proj = nn.Linear(config.hidden_size, intermediate_sz, bias=False)
|
|
408
|
+
self.up_proj = nn.Linear(config.hidden_size, intermediate_sz, bias=False)
|
|
409
|
+
self.down_proj = nn.Linear(intermediate_sz, config.hidden_size, bias=False)
|
|
410
|
+
|
|
411
|
+
if config.hidden_act == "silu":
|
|
412
|
+
self.act_fn = nn.silu
|
|
413
|
+
elif config.hidden_act == "gelu":
|
|
414
|
+
self.act_fn = nn.gelu
|
|
415
|
+
else:
|
|
416
|
+
self.act_fn = nn.silu
|
|
417
|
+
|
|
418
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
419
|
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
class TalkerSparseMoeBlock(nn.Module):
|
|
423
|
+
def __init__(self, config: TextConfig):
|
|
424
|
+
super().__init__()
|
|
425
|
+
self.num_experts = config.num_experts
|
|
426
|
+
self.top_k = config.num_experts_per_tok
|
|
427
|
+
self.norm_topk_prob = config.norm_topk_prob
|
|
428
|
+
|
|
429
|
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
|
430
|
+
self.switch_mlp = SwitchGLU(
|
|
431
|
+
config.hidden_size, config.moe_intermediate_size, config.num_experts
|
|
432
|
+
)
|
|
433
|
+
self.shared_expert = TalkerTextMlp(
|
|
434
|
+
config, config.shared_expert_intermediate_size
|
|
435
|
+
)
|
|
436
|
+
self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False)
|
|
437
|
+
|
|
438
|
+
def __call__(self, hidden_states: mx.array) -> Tuple[mx.array, mx.array]:
|
|
439
|
+
router_logits = self.gate(hidden_states)
|
|
440
|
+
routing_weights = mx.softmax(
|
|
441
|
+
router_logits.astype(mx.float32), axis=-1, precise=True
|
|
442
|
+
)
|
|
443
|
+
|
|
444
|
+
k = self.top_k
|
|
445
|
+
inds = mx.argpartition(routing_weights, kth=-k, axis=-1)[..., -k:]
|
|
446
|
+
scores = mx.take_along_axis(routing_weights, inds, axis=-1)
|
|
447
|
+
|
|
448
|
+
if self.norm_topk_prob:
|
|
449
|
+
scores /= mx.sum(scores, axis=-1, keepdims=True)
|
|
450
|
+
|
|
451
|
+
y = self.switch_mlp(hidden_states, inds)
|
|
452
|
+
final_hidden_states = (y * scores[..., None]).sum(axis=-2)
|
|
453
|
+
|
|
454
|
+
shared_expert_output = self.shared_expert(hidden_states)
|
|
455
|
+
shared_expert_gate_output = nn.sigmoid(self.shared_expert_gate(hidden_states))
|
|
456
|
+
shared_expert_output = shared_expert_gate_output * shared_expert_output
|
|
457
|
+
|
|
458
|
+
final_hidden_states = final_hidden_states + shared_expert_output
|
|
459
|
+
return final_hidden_states, router_logits
|
|
460
|
+
|
|
461
|
+
|
|
462
|
+
class TalkerModelDecoderLayer(nn.Module):
|
|
463
|
+
def __init__(self, config: TextConfig, idx: int):
|
|
464
|
+
super().__init__()
|
|
465
|
+
self.self_attn = Attention(config)
|
|
466
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
467
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
468
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
469
|
+
)
|
|
470
|
+
self.mlp = TalkerSparseMoeBlock(config)
|
|
471
|
+
|
|
472
|
+
def __call__(
|
|
473
|
+
self,
|
|
474
|
+
hidden_states: mx.array,
|
|
475
|
+
position_embeddings: Optional[Tuple[mx.array, mx.array]] = None,
|
|
476
|
+
attention_mask: Optional[mx.array] = None,
|
|
477
|
+
position_ids: Optional[mx.array] = None,
|
|
478
|
+
past_key_values: Optional[KVCache] = None,
|
|
479
|
+
cache_position: Optional[mx.array] = None,
|
|
480
|
+
) -> mx.array:
|
|
481
|
+
residual = hidden_states
|
|
482
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
483
|
+
|
|
484
|
+
if position_ids is not None and position_ids.ndim == 2:
|
|
485
|
+
position_ids_3d = mx.tile(mx.expand_dims(position_ids, axis=0), (3, 1, 1))
|
|
486
|
+
else:
|
|
487
|
+
position_ids_3d = position_ids
|
|
488
|
+
|
|
489
|
+
hidden_states = self.self_attn(
|
|
490
|
+
hidden_states,
|
|
491
|
+
mask=attention_mask,
|
|
492
|
+
cache=past_key_values,
|
|
493
|
+
position_ids=position_ids_3d,
|
|
494
|
+
)
|
|
495
|
+
hidden_states = residual + hidden_states
|
|
496
|
+
|
|
497
|
+
residual = hidden_states
|
|
498
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
499
|
+
hidden_states, _ = self.mlp(hidden_states)
|
|
500
|
+
hidden_states = residual + hidden_states
|
|
501
|
+
return hidden_states
|
|
502
|
+
|
|
503
|
+
|
|
504
|
+
class TalkerModel(nn.Module):
|
|
505
|
+
def __init__(self, config: TextConfig):
|
|
506
|
+
super().__init__()
|
|
507
|
+
self.config = config
|
|
508
|
+
self.layers = [
|
|
509
|
+
TalkerModelDecoderLayer(config, idx)
|
|
510
|
+
for idx in range(config.num_hidden_layers)
|
|
511
|
+
]
|
|
512
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
513
|
+
self.rotary_emb = Qwen3OmniMoeThinkerTextRotaryEmbedding(
|
|
514
|
+
config.head_dim,
|
|
515
|
+
max_position_embeddings=config.max_position_embeddings,
|
|
516
|
+
base=config.rope_theta,
|
|
517
|
+
rope_scaling=config.rope_scaling,
|
|
518
|
+
)
|
|
519
|
+
self.codec_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
520
|
+
|
|
521
|
+
def __call__(
|
|
522
|
+
self,
|
|
523
|
+
input_ids: Optional[mx.array] = None,
|
|
524
|
+
attention_mask: Optional[mx.array] = None,
|
|
525
|
+
position_ids: Optional[mx.array] = None,
|
|
526
|
+
past_key_values: Optional[list] = None,
|
|
527
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
528
|
+
use_cache: Optional[bool] = None,
|
|
529
|
+
cache_position: Optional[mx.array] = None,
|
|
530
|
+
visual_pos_masks: Optional[mx.array] = None,
|
|
531
|
+
deepstack_visual_embeds: Optional[list] = None,
|
|
532
|
+
) -> mx.array:
|
|
533
|
+
if inputs_embeds is None:
|
|
534
|
+
inputs_embeds = self.codec_embedding(input_ids)
|
|
535
|
+
|
|
536
|
+
if use_cache and past_key_values is None:
|
|
537
|
+
past_key_values = [KVCache() for _ in range(len(self.layers))]
|
|
538
|
+
|
|
539
|
+
if cache_position is None:
|
|
540
|
+
if past_key_values is not None and len(past_key_values) > 0:
|
|
541
|
+
offset = (
|
|
542
|
+
past_key_values[0].offset
|
|
543
|
+
if hasattr(past_key_values[0], "offset")
|
|
544
|
+
else 0
|
|
545
|
+
)
|
|
546
|
+
else:
|
|
547
|
+
offset = 0
|
|
548
|
+
cache_position = mx.arange(offset, offset + inputs_embeds.shape[1])
|
|
549
|
+
|
|
550
|
+
if position_ids is None:
|
|
551
|
+
position_ids = cache_position
|
|
552
|
+
position_ids = mx.expand_dims(position_ids, axis=0)
|
|
553
|
+
position_ids = mx.tile(position_ids, (3, 1, 1))
|
|
554
|
+
|
|
555
|
+
if position_ids.ndim == 2:
|
|
556
|
+
position_ids = mx.broadcast_to(
|
|
557
|
+
position_ids[None, ...],
|
|
558
|
+
(3, position_ids.shape[0], position_ids.shape[1]),
|
|
559
|
+
)
|
|
560
|
+
|
|
561
|
+
text_position_ids = (
|
|
562
|
+
position_ids[0] if position_ids.shape[0] >= 1 else position_ids
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
if attention_mask is None:
|
|
566
|
+
attention_mask = create_attention_mask(
|
|
567
|
+
inputs_embeds,
|
|
568
|
+
past_key_values if past_key_values else None,
|
|
569
|
+
)
|
|
570
|
+
|
|
571
|
+
hidden_states = inputs_embeds
|
|
572
|
+
|
|
573
|
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
574
|
+
|
|
575
|
+
for layer_idx, decoder_layer in enumerate(self.layers):
|
|
576
|
+
hidden_states = decoder_layer(
|
|
577
|
+
hidden_states,
|
|
578
|
+
attention_mask=attention_mask,
|
|
579
|
+
position_ids=position_ids,
|
|
580
|
+
past_key_values=past_key_values[layer_idx] if past_key_values else None,
|
|
581
|
+
cache_position=cache_position,
|
|
582
|
+
position_embeddings=position_embeddings,
|
|
583
|
+
)
|
|
584
|
+
|
|
585
|
+
if deepstack_visual_embeds is not None and layer_idx < len(
|
|
586
|
+
deepstack_visual_embeds
|
|
587
|
+
):
|
|
588
|
+
hidden_states = self._deepstack_process(
|
|
589
|
+
hidden_states,
|
|
590
|
+
visual_pos_masks,
|
|
591
|
+
deepstack_visual_embeds[layer_idx],
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
if layer_idx % 4 == 0:
|
|
595
|
+
mx.eval(hidden_states)
|
|
596
|
+
|
|
597
|
+
hidden_states = self.norm(hidden_states)
|
|
598
|
+
return hidden_states
|
|
599
|
+
|
|
600
|
+
def _deepstack_process(
|
|
601
|
+
self,
|
|
602
|
+
hidden_states: mx.array,
|
|
603
|
+
visual_pos_masks: mx.array,
|
|
604
|
+
visual_embeds: mx.array,
|
|
605
|
+
):
|
|
606
|
+
if visual_pos_masks.ndim == 3:
|
|
607
|
+
visual_pos_masks = visual_pos_masks[..., 0]
|
|
608
|
+
visual_embeds = visual_embeds.astype(hidden_states.dtype)
|
|
609
|
+
visual_indices = np.where(visual_pos_masks)[0].tolist()
|
|
610
|
+
local_this = hidden_states[:, visual_indices, :] + visual_embeds
|
|
611
|
+
hidden_states[:, visual_indices, :] = local_this
|
|
612
|
+
return hidden_states
|
|
613
|
+
|
|
614
|
+
|
|
615
|
+
class Talker(nn.Module):
|
|
616
|
+
def __init__(self, config: TalkerConfig):
|
|
617
|
+
super().__init__()
|
|
618
|
+
self.config = config
|
|
619
|
+
self.model = TalkerModel(config.text_config)
|
|
620
|
+
self.text_projection = TalkerResizeMlp(config)
|
|
621
|
+
self.hidden_projection = TalkerResizeMlp(config)
|
|
622
|
+
self.code_predictor = CodePredictor(config.code_predictor_config)
|
|
623
|
+
self.codec_head = nn.Linear(
|
|
624
|
+
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
def __call__(
|
|
628
|
+
self,
|
|
629
|
+
input_ids: Optional[mx.array] = None,
|
|
630
|
+
attention_mask: Optional[mx.array] = None,
|
|
631
|
+
position_ids: Optional[mx.array] = None,
|
|
632
|
+
past_key_values: Optional[list] = None,
|
|
633
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
634
|
+
use_cache: Optional[bool] = None,
|
|
635
|
+
cache_position: Optional[mx.array] = None,
|
|
636
|
+
visual_pos_masks: Optional[mx.array] = None,
|
|
637
|
+
deepstack_visual_embeds: Optional[list] = None,
|
|
638
|
+
generation_steps: Optional[int] = None,
|
|
639
|
+
residual_codes: Optional[mx.array] = None,
|
|
640
|
+
trailing_text_hidden: Optional[mx.array] = None,
|
|
641
|
+
):
|
|
642
|
+
if inputs_embeds is None:
|
|
643
|
+
inputs_embeds = self.model.codec_embedding(input_ids)
|
|
644
|
+
|
|
645
|
+
outputs = self.model(
|
|
646
|
+
input_ids=None,
|
|
647
|
+
attention_mask=attention_mask,
|
|
648
|
+
position_ids=position_ids,
|
|
649
|
+
past_key_values=past_key_values,
|
|
650
|
+
inputs_embeds=inputs_embeds,
|
|
651
|
+
use_cache=use_cache,
|
|
652
|
+
cache_position=cache_position,
|
|
653
|
+
visual_pos_masks=visual_pos_masks,
|
|
654
|
+
deepstack_visual_embeds=deepstack_visual_embeds,
|
|
655
|
+
)
|
|
656
|
+
|
|
657
|
+
hidden_states = outputs
|
|
658
|
+
logits = self.codec_head(hidden_states)
|
|
659
|
+
|
|
660
|
+
return logits, hidden_states
|
|
661
|
+
|
|
662
|
+
def prepare_inputs_for_generation(
|
|
663
|
+
self,
|
|
664
|
+
input_ids: mx.array,
|
|
665
|
+
past_hidden: mx.array,
|
|
666
|
+
trailing_text_hidden: mx.array,
|
|
667
|
+
tts_pad_embed: mx.array,
|
|
668
|
+
generation_step: int,
|
|
669
|
+
temperature: float = 1.0,
|
|
670
|
+
top_p: float = 0.8,
|
|
671
|
+
):
|
|
672
|
+
token = input_ids
|
|
673
|
+
last_id_hidden = self.model.codec_embedding(token)
|
|
674
|
+
|
|
675
|
+
cp_input_embeds = mx.concatenate([past_hidden, last_id_hidden], axis=1)
|
|
676
|
+
cp_past_key_values = [
|
|
677
|
+
KVCache() for _ in range(len(self.code_predictor.model.layers))
|
|
678
|
+
]
|
|
679
|
+
|
|
680
|
+
cp_logits, cp_hidden, _ = self.code_predictor(
|
|
681
|
+
inputs_embeds=cp_input_embeds,
|
|
682
|
+
past_key_values=cp_past_key_values,
|
|
683
|
+
use_cache=True,
|
|
684
|
+
)
|
|
685
|
+
|
|
686
|
+
if temperature == 0:
|
|
687
|
+
cp_token = mx.argmax(cp_logits[:, -1, :], axis=-1)
|
|
688
|
+
else:
|
|
689
|
+
cp_token = top_p_sampling(cp_logits[:, -1, :], top_p, temperature)
|
|
690
|
+
|
|
691
|
+
current_step_codes = [token, cp_token[:, None]]
|
|
692
|
+
|
|
693
|
+
mid_residual_hiddens = []
|
|
694
|
+
|
|
695
|
+
for cp_step in range(1, self.config.num_code_groups - 1):
|
|
696
|
+
cp_logits, cp_hidden, cp_input_embeds_out = self.code_predictor(
|
|
697
|
+
input_ids=cp_token[:, None],
|
|
698
|
+
past_key_values=cp_past_key_values,
|
|
699
|
+
use_cache=True,
|
|
700
|
+
generation_steps=cp_step,
|
|
701
|
+
)
|
|
702
|
+
mid_residual_hiddens.append(cp_input_embeds_out)
|
|
703
|
+
|
|
704
|
+
if temperature == 0:
|
|
705
|
+
cp_token = mx.argmax(cp_logits[:, -1, :], axis=-1)
|
|
706
|
+
else:
|
|
707
|
+
cp_token = top_p_sampling(cp_logits[:, -1, :], top_p, temperature)
|
|
708
|
+
|
|
709
|
+
current_step_codes.append(cp_token[:, None])
|
|
710
|
+
|
|
711
|
+
last_residual_hidden = self.code_predictor.model.codec_embedding[-1](
|
|
712
|
+
cp_token[:, None]
|
|
713
|
+
)
|
|
714
|
+
|
|
715
|
+
codec_hiddens = [last_id_hidden] + mid_residual_hiddens + [last_residual_hidden]
|
|
716
|
+
codec_hiddens_stacked = mx.concatenate(codec_hiddens, axis=1)
|
|
717
|
+
inputs_embeds = mx.sum(codec_hiddens_stacked, axis=1, keepdims=True)
|
|
718
|
+
|
|
719
|
+
if generation_step < trailing_text_hidden.shape[1]:
|
|
720
|
+
trailing = trailing_text_hidden[:, generation_step].reshape(1, 1, -1)
|
|
721
|
+
inputs_embeds = inputs_embeds + trailing
|
|
722
|
+
else:
|
|
723
|
+
inputs_embeds = inputs_embeds + tts_pad_embed
|
|
724
|
+
|
|
725
|
+
residual_codes = mx.concatenate(current_step_codes, axis=1)
|
|
726
|
+
|
|
727
|
+
return inputs_embeds, residual_codes
|
|
728
|
+
|
|
729
|
+
def generate(
|
|
730
|
+
self,
|
|
731
|
+
inputs_embeds: mx.array,
|
|
732
|
+
trailing_text_hidden: mx.array,
|
|
733
|
+
tts_pad_embed: mx.array,
|
|
734
|
+
talker_input_ids: mx.array,
|
|
735
|
+
max_new_tokens: int = 2048,
|
|
736
|
+
temperature: float = 0.9,
|
|
737
|
+
top_p: float = 1.0,
|
|
738
|
+
**kwargs,
|
|
739
|
+
):
|
|
740
|
+
past_key_values = [
|
|
741
|
+
KVCache() for _ in range(self.config.text_config.num_hidden_layers)
|
|
742
|
+
]
|
|
743
|
+
|
|
744
|
+
logits, hidden_states = self(
|
|
745
|
+
input_ids=None,
|
|
746
|
+
inputs_embeds=inputs_embeds,
|
|
747
|
+
past_key_values=past_key_values,
|
|
748
|
+
use_cache=True,
|
|
749
|
+
)
|
|
750
|
+
|
|
751
|
+
hidden_states_list = [(hidden_states, None)]
|
|
752
|
+
|
|
753
|
+
if temperature == 0:
|
|
754
|
+
token = mx.argmax(logits[:, -1, :], axis=-1)
|
|
755
|
+
else:
|
|
756
|
+
token = top_p_sampling(logits[:, -1, :], top_p, temperature)
|
|
757
|
+
|
|
758
|
+
generation_step = 0
|
|
759
|
+
|
|
760
|
+
for _ in range(max_new_tokens):
|
|
761
|
+
token_scalar = token.item()
|
|
762
|
+
if token_scalar == self.config.codec_eos_token_id:
|
|
763
|
+
break
|
|
764
|
+
|
|
765
|
+
past_hidden = hidden_states_list[-1][0][:, -1:]
|
|
766
|
+
inputs_embeds, residual_codes = self.prepare_inputs_for_generation(
|
|
767
|
+
input_ids=token[:, None],
|
|
768
|
+
past_hidden=past_hidden,
|
|
769
|
+
trailing_text_hidden=trailing_text_hidden,
|
|
770
|
+
tts_pad_embed=tts_pad_embed,
|
|
771
|
+
generation_step=generation_step,
|
|
772
|
+
temperature=temperature,
|
|
773
|
+
top_p=0.8,
|
|
774
|
+
)
|
|
775
|
+
|
|
776
|
+
logits, hidden_states = self(
|
|
777
|
+
input_ids=None,
|
|
778
|
+
inputs_embeds=inputs_embeds,
|
|
779
|
+
past_key_values=past_key_values,
|
|
780
|
+
use_cache=True,
|
|
781
|
+
)
|
|
782
|
+
|
|
783
|
+
hidden_states_list.append((hidden_states, residual_codes))
|
|
784
|
+
|
|
785
|
+
if temperature == 0:
|
|
786
|
+
token = mx.argmax(logits[:, -1, :], axis=-1)
|
|
787
|
+
else:
|
|
788
|
+
token = top_p_sampling(logits[:, -1, :], top_p, temperature)
|
|
789
|
+
|
|
790
|
+
generation_step += 1
|
|
791
|
+
|
|
792
|
+
class TalkerGenerateResult:
|
|
793
|
+
def __init__(self, hidden_states):
|
|
794
|
+
self.hidden_states = hidden_states
|
|
795
|
+
|
|
796
|
+
return TalkerGenerateResult(hidden_states_list)
|
|
797
|
+
|
|
798
|
+
def generate_stream(
|
|
799
|
+
self,
|
|
800
|
+
inputs_embeds: mx.array,
|
|
801
|
+
trailing_text_hidden: mx.array,
|
|
802
|
+
tts_pad_embed: mx.array,
|
|
803
|
+
talker_input_ids: mx.array,
|
|
804
|
+
max_new_tokens: int = 2048,
|
|
805
|
+
temperature: float = 0.9,
|
|
806
|
+
top_p: float = 1.0,
|
|
807
|
+
**kwargs,
|
|
808
|
+
):
|
|
809
|
+
past_key_values = [
|
|
810
|
+
KVCache() for _ in range(self.config.text_config.num_hidden_layers)
|
|
811
|
+
]
|
|
812
|
+
logits, hidden_states = self(
|
|
813
|
+
input_ids=None,
|
|
814
|
+
inputs_embeds=inputs_embeds,
|
|
815
|
+
past_key_values=past_key_values,
|
|
816
|
+
use_cache=True,
|
|
817
|
+
)
|
|
818
|
+
|
|
819
|
+
if temperature == 0:
|
|
820
|
+
token = mx.argmax(logits[:, -1, :], axis=-1)
|
|
821
|
+
else:
|
|
822
|
+
token = top_p_sampling(logits[:, -1, :], top_p, temperature)
|
|
823
|
+
|
|
824
|
+
generation_step = 0
|
|
825
|
+
past_hidden = hidden_states[:, -1:]
|
|
826
|
+
|
|
827
|
+
for _ in range(max_new_tokens):
|
|
828
|
+
token_scalar = token.item()
|
|
829
|
+
if token_scalar == self.config.codec_eos_token_id:
|
|
830
|
+
break
|
|
831
|
+
|
|
832
|
+
inputs_embeds, residual_codes = self.prepare_inputs_for_generation(
|
|
833
|
+
input_ids=token[:, None],
|
|
834
|
+
past_hidden=past_hidden,
|
|
835
|
+
trailing_text_hidden=trailing_text_hidden,
|
|
836
|
+
tts_pad_embed=tts_pad_embed,
|
|
837
|
+
generation_step=generation_step,
|
|
838
|
+
temperature=temperature,
|
|
839
|
+
top_p=0.8,
|
|
840
|
+
)
|
|
841
|
+
|
|
842
|
+
logits, hidden_states = self(
|
|
843
|
+
input_ids=None,
|
|
844
|
+
inputs_embeds=inputs_embeds,
|
|
845
|
+
past_key_values=past_key_values,
|
|
846
|
+
use_cache=True,
|
|
847
|
+
)
|
|
848
|
+
past_hidden = hidden_states[:, -1:]
|
|
849
|
+
|
|
850
|
+
yield residual_codes
|
|
851
|
+
|
|
852
|
+
if temperature == 0:
|
|
853
|
+
token = mx.argmax(logits[:, -1, :], axis=-1)
|
|
854
|
+
else:
|
|
855
|
+
token = top_p_sampling(logits[:, -1, :], top_p, temperature)
|
|
856
|
+
|
|
857
|
+
generation_step += 1
|
|
858
|
+
|
|
859
|
+
def sanitize(self, weights):
|
|
860
|
+
for l in range(self.config.text_config.num_hidden_layers):
|
|
861
|
+
prefix = f"talker.model.layers.{l}.mlp"
|
|
862
|
+
for n in ["gate_proj", "down_proj", "up_proj"]:
|
|
863
|
+
experts_weights = []
|
|
864
|
+
for e in range(self.config.text_config.num_experts):
|
|
865
|
+
key = f"{prefix}.experts.{e}.{n}.weight"
|
|
866
|
+
if key in weights:
|
|
867
|
+
experts_weights.append(weights.pop(key))
|
|
868
|
+
|
|
869
|
+
if experts_weights:
|
|
870
|
+
weights[f"{prefix}.switch_mlp.{n}.weight"] = mx.stack(
|
|
871
|
+
experts_weights, axis=0
|
|
872
|
+
)
|
|
873
|
+
return weights
|