fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,278 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ import numpy as np
6
+
7
+ from .config import VisionConfig
8
+
9
+
10
+ def check_array_shape(arr):
11
+ shape = arr.shape
12
+
13
+ # Check if the shape has 4 dimensions
14
+ if len(shape) != 4:
15
+ return False
16
+
17
+ out_channels, kH, KW, _ = shape
18
+
19
+ # Check if out_channels is the largest, and kH and KW are the same
20
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
21
+ return True
22
+ else:
23
+ return False
24
+
25
+
26
+ class Attention(nn.Module):
27
+ def __init__(
28
+ self,
29
+ dims: int,
30
+ num_heads: int,
31
+ query_input_dims: Optional[int] = None,
32
+ key_input_dims: Optional[int] = None,
33
+ value_input_dims: Optional[int] = None,
34
+ value_dims: Optional[int] = None,
35
+ value_output_dims: Optional[int] = None,
36
+ bias: bool = False,
37
+ ):
38
+ super().__init__()
39
+
40
+ if (dims % num_heads) != 0:
41
+ raise ValueError(
42
+ "The input feature dimensions should be divisible by the "
43
+ f"number of heads ({dims} % {num_heads}) != 0"
44
+ )
45
+
46
+ query_input_dims = query_input_dims or dims
47
+ key_input_dims = key_input_dims or dims
48
+ value_input_dims = value_input_dims or key_input_dims
49
+ value_dims = value_dims or dims
50
+ value_output_dims = value_output_dims or dims
51
+
52
+ self.num_heads = num_heads
53
+ head_dim = dims // num_heads
54
+ self.scale = head_dim**-0.5
55
+
56
+ self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
57
+ self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
58
+ self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
59
+ self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
60
+
61
+ def __call__(self, queries, keys, values, mask=None):
62
+ queries = self.q_proj(queries)
63
+ keys = self.k_proj(keys)
64
+ values = self.v_proj(values)
65
+
66
+ num_heads = self.num_heads
67
+ B, L, D = queries.shape
68
+ _, S, _ = keys.shape
69
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
70
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
71
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
72
+
73
+ output = mx.fast.scaled_dot_product_attention(
74
+ queries, keys, values, scale=self.scale, mask=mask
75
+ )
76
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
77
+ return self.out_proj(output)
78
+
79
+
80
+ class MHA(nn.Module):
81
+ def __init__(
82
+ self,
83
+ dims: int,
84
+ num_heads: int,
85
+ bias: bool = False,
86
+ ):
87
+ super().__init__()
88
+
89
+ if (dims % num_heads) != 0:
90
+ raise ValueError(
91
+ "The input feature dimensions should be divisible by the "
92
+ f"number of heads ({dims} % {num_heads}) != 0"
93
+ )
94
+
95
+ self.num_heads = num_heads
96
+ head_dim = dims // num_heads
97
+ self.scale = head_dim**-0.5
98
+
99
+ self.in_proj = nn.Linear(dims, dims * 3, bias=bias)
100
+ self.out_proj = nn.Linear(dims, dims, bias=bias)
101
+
102
+ def __call__(self, queries: mx.array, kv: mx.array, mask=None):
103
+ B, L, D = queries.shape
104
+
105
+ qkv = self.in_proj(queries)
106
+ _, keys, values = mx.split(qkv, 3, axis=-1)
107
+
108
+ num_heads = self.num_heads
109
+ B, L, D = queries.shape
110
+ _, S, _ = keys.shape
111
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
112
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
113
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
114
+
115
+ output = mx.fast.scaled_dot_product_attention(
116
+ queries, keys, values, scale=self.scale, mask=mask
117
+ )
118
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
119
+ return self.out_proj(output)
120
+
121
+
122
+ class MLP(nn.Module):
123
+ def __init__(self, config: VisionConfig):
124
+ super().__init__()
125
+ self.activation_fn = nn.GELU(approx="fast")
126
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
127
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
128
+
129
+ def __call__(self, x: mx.array) -> mx.array:
130
+ x = self.activation_fn(self.fc1(x))
131
+ x = self.fc2(x)
132
+ return x
133
+
134
+
135
+ class EncoderLayer(nn.Module):
136
+ def __init__(self, config: VisionConfig):
137
+ super().__init__()
138
+ self.embed_dim = config.hidden_size
139
+ self.self_attn = Attention(
140
+ config.hidden_size, config.num_attention_heads, bias=True
141
+ )
142
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
143
+ self.mlp = MLP(config)
144
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
145
+
146
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
147
+ y = self.layer_norm1(x)
148
+ y = self.self_attn(y, y, y, mask)
149
+ x = x + y
150
+ y = self.layer_norm2(x)
151
+ y = self.mlp(y)
152
+ return x + y
153
+
154
+
155
+ class Encoder(nn.Module):
156
+ def __init__(self, config: VisionConfig):
157
+ super().__init__()
158
+ self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
159
+
160
+
161
+ class VisionEmbeddings(nn.Module):
162
+ def __init__(self, config: VisionConfig):
163
+ super().__init__()
164
+ self.config = config
165
+ self.embed_dim = config.hidden_size
166
+ self.image_size = config.image_size
167
+ self.patch_size = config.patch_size
168
+
169
+ self.patch_embedding = nn.Conv2d(
170
+ in_channels=config.num_channels,
171
+ out_channels=self.embed_dim,
172
+ kernel_size=self.patch_size,
173
+ stride=self.patch_size,
174
+ bias=True,
175
+ )
176
+
177
+ self.num_patches = (self.image_size // self.patch_size) ** 2
178
+ self.num_positions = self.num_patches
179
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
180
+
181
+ def __call__(self, x: mx.array) -> mx.array:
182
+ batch_size = x.shape[0]
183
+ patch_embeddings = self.patch_embedding(x)
184
+ patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
185
+ position_ids = mx.array(np.arange(self.num_positions)[None, :])
186
+ embeddings = patch_embeddings
187
+ embeddings += self.position_embedding(position_ids)
188
+ return embeddings
189
+
190
+
191
+ class SigLipVisionModel(nn.Module):
192
+ def __init__(self, config: VisionConfig):
193
+ super().__init__()
194
+ self.embeddings = VisionEmbeddings(config)
195
+ self.encoder = Encoder(config)
196
+ self.post_layernorm = nn.LayerNorm(config.hidden_size)
197
+ self.head = SigLipMultiheadAttentionPoolingHead(config)
198
+
199
+ def __call__(
200
+ self,
201
+ x: mx.array,
202
+ output_hidden_states: Optional[bool] = None,
203
+ ) -> mx.array:
204
+ x = self.embeddings(x)
205
+
206
+ encoder_states = (x,) if output_hidden_states else None
207
+
208
+ for l in self.encoder.layers:
209
+ x = l(x, mask=None)
210
+ if output_hidden_states:
211
+ encoder_states = encoder_states + (x,)
212
+
213
+ pooler_output = self.post_layernorm(x[:, 0, :])
214
+ pooler_output = self.head(pooler_output)
215
+ return pooler_output, x, encoder_states
216
+
217
+
218
+ class SigLipMultiheadAttentionPoolingHead(nn.Module):
219
+
220
+ def __init__(self, config: VisionConfig):
221
+ super().__init__()
222
+
223
+ self.probe = mx.ones(
224
+ (
225
+ 1,
226
+ 1,
227
+ config.hidden_size,
228
+ )
229
+ )
230
+ self.attention = MHA(
231
+ config.hidden_size, num_heads=config.num_attention_heads, bias=True
232
+ )
233
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
234
+ self.mlp = MLP(config)
235
+
236
+ def __call__(self, x: mx.array):
237
+ x = self.attention(self.probe, x)[0]
238
+
239
+ residual = x
240
+ x = self.layernorm(x)
241
+ x = residual + self.mlp(x)
242
+
243
+ return x[:, 0]
244
+
245
+
246
+ class VisionModel(nn.Module):
247
+ def __init__(self, config: VisionConfig):
248
+ super().__init__()
249
+ self.model_type = config.model_type
250
+ if self.model_type != "siglip_vision_model":
251
+ raise ValueError(f"Unsupported model type: {self.model_type}")
252
+
253
+ self.vision_model = SigLipVisionModel(config)
254
+
255
+ def __call__(
256
+ self, x: mx.array, output_hidden_states: Optional[bool] = None
257
+ ) -> mx.array:
258
+ return self.vision_model(x, output_hidden_states)
259
+
260
+ def sanitize(self, weights):
261
+ sanitized_weights = {}
262
+ for k, v in weights.items():
263
+ if "position_ids" in k:
264
+ # Remove unused position_ids
265
+ continue
266
+ elif "patch_embedding.weight" in k:
267
+ # PyTorch conv2d weight tensors have shape:
268
+ # [out_channels, in_channels, kH, KW]
269
+ # MLX conv2d expects the weight be of shape:
270
+ # [out_channels, kH, KW, in_channels]
271
+ if check_array_shape(v):
272
+ sanitized_weights[k] = v
273
+ else:
274
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
275
+ else:
276
+ sanitized_weights[k] = v
277
+
278
+ return sanitized_weights
@@ -0,0 +1,2 @@
1
+ from .config import ModelConfig, TextConfig, VisionConfig
2
+ from .llava_next import LanguageModel, Model, VisionModel
@@ -0,0 +1,60 @@
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Union
3
+
4
+ from ..base import BaseModelConfig
5
+
6
+
7
+ @dataclass
8
+ class TextConfig(BaseModelConfig):
9
+ model_type: str
10
+ hidden_size: int = 4096
11
+ num_hidden_layers: int = 32
12
+ intermediate_size: int = 14336
13
+ num_attention_heads: int = 32
14
+ rms_norm_eps: float = 1e-05
15
+ vocab_size: int = 32064
16
+ num_key_value_heads: int = 8
17
+ rope_theta: float = 1000000
18
+ rope_traditional: bool = False
19
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
20
+ max_position_embeddings: int = 4096
21
+
22
+ def __post_init__(self):
23
+ if self.num_key_value_heads is None:
24
+ self.num_key_value_heads = self.num_attention_heads
25
+
26
+ if self.rope_scaling:
27
+ required_keys = {"factor", "type"}
28
+ if not all(key in self.rope_scaling for key in required_keys):
29
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
30
+
31
+ if self.rope_scaling["type"] != "linear":
32
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
33
+
34
+
35
+ @dataclass
36
+ class VisionConfig(BaseModelConfig):
37
+ model_type: str
38
+ num_hidden_layers: int = 24
39
+ hidden_size: int = 1024
40
+ intermediate_size: int = 4096
41
+ num_attention_heads: int = 16
42
+ image_size: int = 336
43
+ patch_size: int = 14
44
+ projection_dim: int = 768
45
+ vocab_size: int = 32000
46
+ num_channels: int = 3
47
+ layer_norm_eps: float = 1e-5
48
+
49
+
50
+ @dataclass
51
+ class ModelConfig(BaseModelConfig):
52
+ text_config: TextConfig
53
+ vision_config: VisionConfig
54
+ model_type: str
55
+ ignore_index: int = -100
56
+ image_token_index: int = 32000
57
+ vision_feature_select_strategy: str = "default"
58
+ vision_feature_layer: int = -2
59
+ vocab_size: int = 32000
60
+ eos_token_id: Optional[List[int]] = None
@@ -0,0 +1,192 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+
6
+ from ..base import (
7
+ LanguageModelOutput,
8
+ create_attention_mask,
9
+ scaled_dot_product_attention,
10
+ )
11
+ from ..cache import KVCache
12
+ from .config import TextConfig
13
+
14
+
15
+ class Attention(nn.Module):
16
+ def __init__(self, config: TextConfig):
17
+ super().__init__()
18
+
19
+ dim = config.hidden_size
20
+ self.n_heads = n_heads = config.num_attention_heads
21
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
22
+
23
+ self.repeats = n_heads // n_kv_heads
24
+
25
+ head_dim = config.hidden_size // n_heads
26
+ self.scale = head_dim**-0.5
27
+
28
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
29
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
30
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
31
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
32
+
33
+ rope_scale = (
34
+ 1 / config.rope_scaling["factor"]
35
+ if config.rope_scaling is not None
36
+ and config.rope_scaling["type"] == "linear"
37
+ else 1
38
+ )
39
+ self.rope = nn.RoPE(
40
+ head_dim,
41
+ traditional=config.rope_traditional,
42
+ base=config.rope_theta,
43
+ scale=rope_scale,
44
+ )
45
+
46
+ def __call__(
47
+ self,
48
+ x: mx.array,
49
+ mask: Optional[mx.array] = None,
50
+ cache: Optional[KVCache] = None,
51
+ ) -> mx.array:
52
+ B, L, D = x.shape
53
+
54
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
55
+
56
+ # Prepare the queries, keys and values for the attention computation
57
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
58
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
59
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
60
+
61
+ if cache is not None:
62
+ queries = self.rope(queries, offset=cache.offset)
63
+ keys = self.rope(keys, offset=cache.offset)
64
+ keys, values = cache.update_and_fetch(keys, values)
65
+ else:
66
+ queries = self.rope(queries)
67
+ keys = self.rope(keys)
68
+
69
+ output = scaled_dot_product_attention(
70
+ queries, keys, values, cache, scale=self.scale, mask=mask
71
+ )
72
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
73
+ return self.o_proj(output)
74
+
75
+
76
+ class MLP(nn.Module):
77
+ def __init__(self, dim, hidden_dim):
78
+ super().__init__()
79
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
80
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
81
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
82
+
83
+ def __call__(self, x) -> mx.array:
84
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
85
+
86
+
87
+ class TransformerBlock(nn.Module):
88
+ def __init__(self, config: TextConfig):
89
+ super().__init__()
90
+ self.num_attention_heads = config.num_attention_heads
91
+ self.hidden_size = config.hidden_size
92
+ self.self_attn = Attention(config)
93
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
94
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
95
+ self.post_attention_layernorm = nn.RMSNorm(
96
+ config.hidden_size, eps=config.rms_norm_eps
97
+ )
98
+ self.config = config
99
+
100
+ def __call__(
101
+ self,
102
+ x: mx.array,
103
+ mask: Optional[mx.array] = None,
104
+ cache: Optional[KVCache] = None,
105
+ ) -> mx.array:
106
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
107
+ h = x + r
108
+ r = self.mlp(self.post_attention_layernorm(h))
109
+ out = h + r
110
+ return out
111
+
112
+
113
+ class Llama(nn.Module):
114
+ def __init__(self, config: TextConfig):
115
+ super().__init__()
116
+ self.config = config
117
+ self.vocab_size = config.vocab_size
118
+ self.num_hidden_layers = config.num_hidden_layers
119
+ assert self.vocab_size > 0
120
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
121
+ self.layers = [
122
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
123
+ ]
124
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
125
+
126
+ def __call__(
127
+ self,
128
+ inputs: mx.array,
129
+ inputs_embeds: Optional[mx.array] = None,
130
+ mask: Optional[mx.array] = None,
131
+ cache=None,
132
+ ):
133
+ # for passing merged input embeddings
134
+ if inputs_embeds is None:
135
+ h = self.embed_tokens(inputs)
136
+ else:
137
+ h = inputs_embeds
138
+
139
+ if cache is None:
140
+ cache = [None] * len(self.layers)
141
+
142
+ if mask is None:
143
+ mask = create_attention_mask(h, cache)
144
+
145
+ for layer, c in zip(self.layers, cache):
146
+ h = layer(h, mask, c)
147
+
148
+ return self.norm(h)
149
+
150
+
151
+ class LanguageModel(nn.Module):
152
+ def __init__(self, config: TextConfig):
153
+ super().__init__()
154
+ self.config = config
155
+ self.model_type = config.model_type
156
+ if self.model_type not in ["mistral", "llama"]:
157
+ raise ValueError(
158
+ f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
159
+ )
160
+ self.model = Llama(config)
161
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
162
+
163
+ def __call__(
164
+ self,
165
+ inputs: mx.array,
166
+ inputs_embeds=None,
167
+ mask: Optional[mx.array] = None,
168
+ cache=None,
169
+ **kwargs,
170
+ ):
171
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
172
+ logits = self.lm_head(out)
173
+ return LanguageModelOutput(logits=logits)
174
+
175
+ @staticmethod
176
+ def sanitize(weights):
177
+ # Remove unused precomputed rotary freqs
178
+ return {
179
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
180
+ }
181
+
182
+ @property
183
+ def layers(self):
184
+ return self.model.layers
185
+
186
+ @property
187
+ def head_dim(self):
188
+ return self.config.hidden_size // self.config.num_attention_heads
189
+
190
+ @property
191
+ def n_kv_heads(self):
192
+ return self.config.num_key_value_heads
@@ -0,0 +1,138 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ import numpy as np
6
+
7
+ from ..base import InputEmbeddingsFeatures
8
+ from .config import ModelConfig
9
+ from .language import LanguageModel
10
+ from .vision import VisionModel
11
+
12
+
13
+ class LlavaMultiModalProjector(nn.Module):
14
+ def __init__(self, config: ModelConfig):
15
+ super().__init__()
16
+ self.linear_1 = nn.Linear(
17
+ config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
18
+ )
19
+ self.gelu = nn.GELU()
20
+ self.linear_2 = nn.Linear(
21
+ config.text_config.hidden_size, config.text_config.hidden_size, bias=True
22
+ )
23
+
24
+ def __call__(self, x: mx.array) -> mx.array:
25
+ x = self.linear_1(x)
26
+ x = self.gelu(x)
27
+ x = self.linear_2(x)
28
+ return x
29
+
30
+
31
+ class Model(nn.Module):
32
+ def __init__(self, config: ModelConfig):
33
+ super().__init__()
34
+ self.config = config
35
+ self.vision_tower = VisionModel(config.vision_config)
36
+ self.language_model = LanguageModel(config.text_config)
37
+ embed_std = 1 / mx.sqrt(config.text_config.hidden_size)
38
+ self.image_newline = (
39
+ mx.random.normal((config.text_config.hidden_size,)) * embed_std
40
+ )
41
+
42
+ self.multi_modal_projector = LlavaMultiModalProjector(config)
43
+ self.vision_feature_layer = config.vision_feature_layer
44
+ self.vision_feature_select_strategy = config.vision_feature_select_strategy
45
+
46
+ def get_input_embeddings(
47
+ self,
48
+ input_ids: Optional[mx.array] = None,
49
+ pixel_values: Optional[mx.array] = None,
50
+ **kwargs,
51
+ ):
52
+ if pixel_values is None:
53
+ return InputEmbeddingsFeatures(
54
+ inputs_embeds=self.language_model.model.embed_tokens(input_ids)
55
+ )
56
+
57
+ # Get the input embeddings from the language model
58
+ inputs_embeds = self.language_model.model.embed_tokens(input_ids)
59
+
60
+ # Get the ouptut hidden states from the vision model
61
+ *_, hidden_states = self.vision_tower(
62
+ pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
63
+ )
64
+
65
+ # Select the hidden states from the desired layer
66
+ selected_image_feature = hidden_states[self.vision_feature_layer]
67
+
68
+ if self.vision_feature_select_strategy == "default":
69
+ selected_image_feature = selected_image_feature[:, 1:]
70
+ elif self.vision_feature_select_strategy == "full":
71
+ selected_image_feature = selected_image_feature
72
+ else:
73
+ raise ValueError(
74
+ "Unexpected feature selection strategy: "
75
+ f"{self.vision_feature_select_strategy}"
76
+ )
77
+
78
+ # Pass image features through the multi-modal projector
79
+ image_features = self.multi_modal_projector(selected_image_feature)
80
+
81
+ # Add a newline token to the image features
82
+ if self.image_newline is not None:
83
+ self.image_newline = np.array(self.image_newline)[None, None, :]
84
+ self.image_newline = np.broadcast_to(
85
+ self.image_newline, image_features.shape
86
+ )
87
+ image_newline = mx.array(self.image_newline)
88
+ image_features = mx.concatenate([image_features, image_newline], axis=0)
89
+
90
+ # Insert special image tokens in the input_ids
91
+ final_inputs_embeds = self._merge_input_ids_with_image_features(
92
+ image_features, inputs_embeds, input_ids
93
+ )
94
+ return InputEmbeddingsFeatures(inputs_embeds=final_inputs_embeds)
95
+
96
+ def _merge_input_ids_with_image_features(
97
+ self, image_features, inputs_embeds, input_ids
98
+ ):
99
+ image_token_index = self.config.image_token_index
100
+ num_images, num_image_patches, embed_dim = image_features.shape
101
+
102
+ image_positions = np.where(input_ids == image_token_index)[1].tolist()
103
+
104
+ text_segments = []
105
+ start_idx = 0
106
+
107
+ for position in image_positions:
108
+ text_segments.append(inputs_embeds[:, start_idx:position])
109
+ start_idx = position + 1
110
+
111
+ image_embeddings = mx.split(image_features, image_features.shape[0])
112
+ final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
113
+ final_embeddings += [inputs_embeds[:, start_idx:]]
114
+
115
+ # Create a final embedding of shape
116
+ # (1, num_image_patches*num_images + sequence_len, embed_dim)
117
+ return mx.concatenate(final_embeddings, axis=1)
118
+
119
+ @property
120
+ def layers(self):
121
+ return self.language_model.model.layers
122
+
123
+ def __call__(
124
+ self,
125
+ input_ids: mx.array,
126
+ pixel_values: mx.array,
127
+ mask: mx.array,
128
+ cache=None,
129
+ **kwargs,
130
+ ):
131
+
132
+ input_embeddings_features = self.get_input_embeddings(input_ids, pixel_values)
133
+ logits = self.language_model(
134
+ input_ids,
135
+ cache=cache,
136
+ inputs_embeds=input_embeddings_features.inputs_embeds,
137
+ )
138
+ return logits