fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,763 @@
|
|
|
1
|
+
"""
|
|
2
|
+
MLX-based Molmo Processor.
|
|
3
|
+
|
|
4
|
+
This module provides an MLX-native processor for Molmo models that doesn't
|
|
5
|
+
require torch, torchvision, or tensorflow.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import json
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import List, Optional, Tuple, Union
|
|
11
|
+
|
|
12
|
+
import mlx.core as mx
|
|
13
|
+
import numpy as np
|
|
14
|
+
from PIL import Image
|
|
15
|
+
from transformers import AutoTokenizer
|
|
16
|
+
from transformers.feature_extraction_utils import BatchFeature
|
|
17
|
+
from transformers.image_processing_utils import BaseImageProcessor
|
|
18
|
+
from transformers.image_utils import ImageInput, make_list_of_images
|
|
19
|
+
from transformers.processing_utils import ProcessorMixin
|
|
20
|
+
|
|
21
|
+
# CLIP normalization constants
|
|
22
|
+
OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
|
23
|
+
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def pad_to_bounding_box(
|
|
27
|
+
image: np.ndarray,
|
|
28
|
+
offset_height: int,
|
|
29
|
+
offset_width: int,
|
|
30
|
+
target_height: int,
|
|
31
|
+
target_width: int,
|
|
32
|
+
value: int = 0,
|
|
33
|
+
) -> np.ndarray:
|
|
34
|
+
"""Pad image to target bounding box."""
|
|
35
|
+
height, width = image.shape[:2]
|
|
36
|
+
after_padding_width = target_width - offset_width - width
|
|
37
|
+
after_padding_height = target_height - offset_height - height
|
|
38
|
+
if image.ndim == 3:
|
|
39
|
+
padding = [
|
|
40
|
+
[offset_height, after_padding_height],
|
|
41
|
+
[offset_width, after_padding_width],
|
|
42
|
+
[0, 0],
|
|
43
|
+
]
|
|
44
|
+
else:
|
|
45
|
+
padding = [
|
|
46
|
+
[offset_height, after_padding_height],
|
|
47
|
+
[offset_width, after_padding_width],
|
|
48
|
+
]
|
|
49
|
+
return np.pad(image, padding, constant_values=value)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def normalize_image(
|
|
53
|
+
image: np.ndarray, offset: Tuple[float, ...], scale: Tuple[float, ...]
|
|
54
|
+
) -> np.ndarray:
|
|
55
|
+
"""Normalize image with mean and std."""
|
|
56
|
+
image = image.astype(np.float32)
|
|
57
|
+
image -= np.array(offset, dtype=np.float32)[None, None, :]
|
|
58
|
+
image /= np.array(scale, dtype=np.float32)[None, None, :]
|
|
59
|
+
return image
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def resize_and_pad(
|
|
63
|
+
image: np.ndarray,
|
|
64
|
+
desired_output_size: Tuple[int, int],
|
|
65
|
+
pad_value: float = 0,
|
|
66
|
+
normalize: bool = True,
|
|
67
|
+
image_mean: Tuple[float, ...] = OPENAI_CLIP_MEAN,
|
|
68
|
+
image_std: Tuple[float, ...] = OPENAI_CLIP_STD,
|
|
69
|
+
) -> Tuple[np.ndarray, np.ndarray]:
|
|
70
|
+
"""Resize and pad image using PIL (no torch/tensorflow)."""
|
|
71
|
+
desired_height, desired_width = desired_output_size
|
|
72
|
+
height, width = image.shape[:2]
|
|
73
|
+
|
|
74
|
+
# Calculate scale
|
|
75
|
+
image_scale_y = np.float32(desired_height) / np.float32(height)
|
|
76
|
+
image_scale_x = np.float32(desired_width) / np.float32(width)
|
|
77
|
+
image_scale = min(image_scale_x, image_scale_y)
|
|
78
|
+
scaled_height = int(np.float32(height) * image_scale)
|
|
79
|
+
scaled_width = int(np.float32(width) * image_scale)
|
|
80
|
+
|
|
81
|
+
# Use PIL for resizing (bilinear interpolation)
|
|
82
|
+
pil_image = Image.fromarray(
|
|
83
|
+
(image * 255).astype(np.uint8) if image.max() <= 1.0 else image.astype(np.uint8)
|
|
84
|
+
)
|
|
85
|
+
pil_image = pil_image.resize(
|
|
86
|
+
(scaled_width, scaled_height), Image.Resampling.BILINEAR
|
|
87
|
+
)
|
|
88
|
+
image = np.array(pil_image).astype(np.float32) / 255.0
|
|
89
|
+
image = np.clip(image, 0.0, 1.0)
|
|
90
|
+
|
|
91
|
+
# Pad to desired size
|
|
92
|
+
top_pad = (desired_height - scaled_height) // 2
|
|
93
|
+
left_pad = (desired_width - scaled_width) // 2
|
|
94
|
+
padding = [
|
|
95
|
+
[top_pad, desired_height - scaled_height - top_pad],
|
|
96
|
+
[left_pad, desired_width - scaled_width - left_pad],
|
|
97
|
+
[0, 0],
|
|
98
|
+
]
|
|
99
|
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
|
100
|
+
image = np.pad(image, padding, constant_values=pad_value)
|
|
101
|
+
|
|
102
|
+
if normalize:
|
|
103
|
+
image = normalize_image(image, offset=image_mean, scale=image_std)
|
|
104
|
+
|
|
105
|
+
return image, image_mask
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def select_tiling(
|
|
109
|
+
h: int, w: int, patch_size: int, max_num_patches: int
|
|
110
|
+
) -> Tuple[int, int]:
|
|
111
|
+
"""Select best tiling for image."""
|
|
112
|
+
tilings = []
|
|
113
|
+
for i in range(1, max_num_patches + 1):
|
|
114
|
+
for j in range(1, max_num_patches + 1):
|
|
115
|
+
if i * j <= max_num_patches:
|
|
116
|
+
tilings.append((i, j))
|
|
117
|
+
tilings.sort(key=lambda x: (x[0] * x[1], x[0]))
|
|
118
|
+
candidate_tilings = np.array(tilings, dtype=np.int32)
|
|
119
|
+
candidate_resolutions = candidate_tilings * patch_size
|
|
120
|
+
|
|
121
|
+
original_size = np.array([h, w], dtype=np.float32)
|
|
122
|
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
|
|
123
|
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True)
|
|
124
|
+
|
|
125
|
+
if np.all(required_scale < 1):
|
|
126
|
+
ix = np.argmax(required_scale)
|
|
127
|
+
else:
|
|
128
|
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
|
129
|
+
ix = np.argmin(required_scale)
|
|
130
|
+
|
|
131
|
+
return tuple(candidate_tilings[ix])
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def rearrange_patches(
|
|
135
|
+
patches: np.ndarray, dh: int, dw: int, h: int, w: int
|
|
136
|
+
) -> np.ndarray:
|
|
137
|
+
"""Rearrange patches: 'p (h dh) (w dw) c -> p (h w) (dh dw c)'"""
|
|
138
|
+
p, H, W, c = patches.shape
|
|
139
|
+
patches = patches.reshape(p, h, dh, w, dw, c)
|
|
140
|
+
patches = patches.transpose(0, 1, 3, 2, 4, 5)
|
|
141
|
+
patches = patches.reshape(p, h * w, dh * dw * c)
|
|
142
|
+
return patches
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def rearrange_mask(mask: np.ndarray, dh: int, dw: int, h: int, w: int) -> np.ndarray:
|
|
146
|
+
"""Rearrange mask: 'p (h dh) (w dw) -> p (h w) (dh dw)'"""
|
|
147
|
+
p, H, W = mask.shape
|
|
148
|
+
mask = mask.reshape(p, h, dh, w, dw)
|
|
149
|
+
mask = mask.transpose(0, 1, 3, 2, 4)
|
|
150
|
+
mask = mask.reshape(p, h * w, dh * dw)
|
|
151
|
+
return mask
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def rearrange_global(image: np.ndarray, dh: int, dw: int, h: int, w: int) -> np.ndarray:
|
|
155
|
+
"""Rearrange global image: '(h dh) (w dw) c -> (h w) (dh dw c)'"""
|
|
156
|
+
H, W, c = image.shape
|
|
157
|
+
image = image.reshape(h, dh, w, dw, c)
|
|
158
|
+
image = image.transpose(0, 2, 1, 3, 4)
|
|
159
|
+
image = image.reshape(h * w, dh * dw * c)
|
|
160
|
+
return image
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
class MolmoImageProcessor(BaseImageProcessor):
|
|
164
|
+
"""MLX-based image processor for Molmo."""
|
|
165
|
+
|
|
166
|
+
model_input_names = ["images", "image_input_idx", "image_masks"]
|
|
167
|
+
|
|
168
|
+
def __init__(
|
|
169
|
+
self,
|
|
170
|
+
max_crops: int = 12,
|
|
171
|
+
overlap_margins: List[int] = None,
|
|
172
|
+
base_image_input_size: List[int] = None,
|
|
173
|
+
image_token_length_w: int = 12,
|
|
174
|
+
image_token_length_h: int = 12,
|
|
175
|
+
image_patch_size: int = 14,
|
|
176
|
+
image_padding_mask: bool = True,
|
|
177
|
+
do_normalize: bool = True,
|
|
178
|
+
image_mean: Optional[List[float]] = None,
|
|
179
|
+
image_std: Optional[List[float]] = None,
|
|
180
|
+
**kwargs,
|
|
181
|
+
):
|
|
182
|
+
super().__init__(**kwargs)
|
|
183
|
+
self.max_crops = max_crops
|
|
184
|
+
self.overlap_margins = overlap_margins or [4, 4]
|
|
185
|
+
self.base_image_input_size = base_image_input_size or [336, 336]
|
|
186
|
+
self.image_token_length_w = image_token_length_w
|
|
187
|
+
self.image_token_length_h = image_token_length_h
|
|
188
|
+
self.image_patch_size = image_patch_size
|
|
189
|
+
self.image_padding_mask = image_padding_mask
|
|
190
|
+
self.do_normalize = do_normalize
|
|
191
|
+
self.image_mean = tuple(image_mean) if image_mean else OPENAI_CLIP_MEAN
|
|
192
|
+
self.image_std = tuple(image_std) if image_std else OPENAI_CLIP_STD
|
|
193
|
+
|
|
194
|
+
def image_to_patches_and_tokens(
|
|
195
|
+
self,
|
|
196
|
+
image: np.ndarray,
|
|
197
|
+
image_patch_token_id: int,
|
|
198
|
+
image_col_token_id: int,
|
|
199
|
+
image_start_token_id: int,
|
|
200
|
+
image_end_token_id: int,
|
|
201
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
202
|
+
"""Convert image to patches and tokens."""
|
|
203
|
+
base_image_input_size = self.base_image_input_size
|
|
204
|
+
base_image_input_d = self.image_patch_size
|
|
205
|
+
tokens_per_image = self.image_token_length_w * self.image_token_length_h
|
|
206
|
+
image_base_patch_w = base_image_input_size[1] // base_image_input_d
|
|
207
|
+
image_base_patch_h = base_image_input_size[0] // base_image_input_d
|
|
208
|
+
|
|
209
|
+
original_image_h, original_image_w = image.shape[:2]
|
|
210
|
+
crop_size = base_image_input_size[0]
|
|
211
|
+
|
|
212
|
+
left_margin, right_margin = self.overlap_margins
|
|
213
|
+
total_margin_pixels = base_image_input_d * (right_margin + left_margin)
|
|
214
|
+
crop_patches = base_image_input_size[0] // base_image_input_d
|
|
215
|
+
crop_window_patches = crop_patches - (right_margin + left_margin)
|
|
216
|
+
crop_window_size = crop_window_patches * base_image_input_d
|
|
217
|
+
|
|
218
|
+
tiling = select_tiling(
|
|
219
|
+
original_image_h - total_margin_pixels,
|
|
220
|
+
original_image_w - total_margin_pixels,
|
|
221
|
+
crop_window_size,
|
|
222
|
+
self.max_crops,
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
src, img_mask = resize_and_pad(
|
|
226
|
+
image,
|
|
227
|
+
[
|
|
228
|
+
tiling[0] * crop_window_size + total_margin_pixels,
|
|
229
|
+
tiling[1] * crop_window_size + total_margin_pixels,
|
|
230
|
+
],
|
|
231
|
+
image_mean=self.image_mean,
|
|
232
|
+
image_std=self.image_std,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
patches_arr = []
|
|
236
|
+
mask_arr = []
|
|
237
|
+
patch_ordering_arr = []
|
|
238
|
+
|
|
239
|
+
on = 0
|
|
240
|
+
for i in range(tiling[0]):
|
|
241
|
+
y0 = i * crop_window_size
|
|
242
|
+
crop_y0 = 0 if i == 0 else left_margin // 2
|
|
243
|
+
|
|
244
|
+
crop_h = image_base_patch_h - (right_margin + left_margin)
|
|
245
|
+
if i == 0:
|
|
246
|
+
crop_h += left_margin
|
|
247
|
+
if i == (tiling[0] - 1):
|
|
248
|
+
crop_h += right_margin
|
|
249
|
+
|
|
250
|
+
for j in range(tiling[1]):
|
|
251
|
+
x0 = j * crop_window_size
|
|
252
|
+
crop_x0 = 0 if j == 0 else left_margin // 2
|
|
253
|
+
|
|
254
|
+
crop_w = image_base_patch_w - (right_margin + left_margin)
|
|
255
|
+
if j == 0:
|
|
256
|
+
crop_w += left_margin
|
|
257
|
+
if j == (tiling[1] - 1):
|
|
258
|
+
crop_w += right_margin
|
|
259
|
+
|
|
260
|
+
pooled_w = (crop_w + 1) // 2
|
|
261
|
+
pooled_h = (crop_h + 1) // 2
|
|
262
|
+
|
|
263
|
+
ordering = np.reshape(
|
|
264
|
+
np.arange(on, on + pooled_h * pooled_w, dtype=np.int32),
|
|
265
|
+
(pooled_h, pooled_w, 1),
|
|
266
|
+
)
|
|
267
|
+
patch_ordering_arr.append(
|
|
268
|
+
pad_to_bounding_box(
|
|
269
|
+
ordering,
|
|
270
|
+
crop_y0,
|
|
271
|
+
crop_x0,
|
|
272
|
+
self.image_token_length_h,
|
|
273
|
+
self.image_token_length_w,
|
|
274
|
+
value=-1,
|
|
275
|
+
)[:, :, 0]
|
|
276
|
+
)
|
|
277
|
+
patches_arr.append(src[y0 : y0 + crop_size, x0 : x0 + crop_size])
|
|
278
|
+
mask_arr.append(img_mask[y0 : y0 + crop_size, x0 : x0 + crop_size])
|
|
279
|
+
|
|
280
|
+
on += pooled_h * pooled_w
|
|
281
|
+
|
|
282
|
+
patches = np.stack(patches_arr)
|
|
283
|
+
patch_ordering = np.stack(patch_ordering_arr)
|
|
284
|
+
img_mask = np.stack(mask_arr)
|
|
285
|
+
|
|
286
|
+
# Rearrange patches
|
|
287
|
+
patches = rearrange_patches(
|
|
288
|
+
patches,
|
|
289
|
+
base_image_input_d,
|
|
290
|
+
base_image_input_d,
|
|
291
|
+
image_base_patch_h,
|
|
292
|
+
image_base_patch_w,
|
|
293
|
+
)
|
|
294
|
+
img_mask = rearrange_mask(
|
|
295
|
+
img_mask,
|
|
296
|
+
base_image_input_d,
|
|
297
|
+
base_image_input_d,
|
|
298
|
+
image_base_patch_h,
|
|
299
|
+
image_base_patch_w,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
img_mask = img_mask.astype(np.float32).mean(axis=-1)
|
|
303
|
+
patch_ordering = np.reshape(patch_ordering, [-1])
|
|
304
|
+
valid = patch_ordering >= 0
|
|
305
|
+
|
|
306
|
+
# Transpose order
|
|
307
|
+
patch_ordering_rh = np.reshape(
|
|
308
|
+
patch_ordering,
|
|
309
|
+
[
|
|
310
|
+
tiling[0],
|
|
311
|
+
tiling[1],
|
|
312
|
+
self.image_token_length_h,
|
|
313
|
+
self.image_token_length_w,
|
|
314
|
+
],
|
|
315
|
+
)
|
|
316
|
+
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
|
|
317
|
+
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
|
|
318
|
+
|
|
319
|
+
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
|
|
320
|
+
|
|
321
|
+
# Build output tokens
|
|
322
|
+
h = tiling[0] * crop_window_patches + (right_margin + left_margin)
|
|
323
|
+
w = tiling[1] * crop_window_patches + (right_margin + left_margin)
|
|
324
|
+
per_row = np.full(((w + 1) // 2,), image_patch_token_id)
|
|
325
|
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
|
326
|
+
|
|
327
|
+
joint = np.tile(per_row, [(h + 1) // 2])
|
|
328
|
+
joint = [[image_start_token_id], joint, [image_end_token_id]]
|
|
329
|
+
|
|
330
|
+
# Global image
|
|
331
|
+
resized, _ = resize_and_pad(
|
|
332
|
+
image,
|
|
333
|
+
base_image_input_size,
|
|
334
|
+
image_mean=self.image_mean,
|
|
335
|
+
image_std=self.image_std,
|
|
336
|
+
)
|
|
337
|
+
resized = rearrange_global(
|
|
338
|
+
resized,
|
|
339
|
+
base_image_input_d,
|
|
340
|
+
base_image_input_d,
|
|
341
|
+
image_base_patch_h,
|
|
342
|
+
image_base_patch_w,
|
|
343
|
+
)
|
|
344
|
+
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
|
|
345
|
+
|
|
346
|
+
patch_ordering = np.where(
|
|
347
|
+
patch_ordering >= 0, patch_ordering + tokens_per_image, -1
|
|
348
|
+
)
|
|
349
|
+
patch_ordering = np.concatenate(
|
|
350
|
+
[np.arange(0, tokens_per_image), patch_ordering], 0
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
per_row = np.full((self.image_token_length_w,), image_patch_token_id)
|
|
354
|
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
|
355
|
+
extra_tokens = np.tile(per_row, [self.image_token_length_h])
|
|
356
|
+
joint = [
|
|
357
|
+
[image_start_token_id],
|
|
358
|
+
extra_tokens,
|
|
359
|
+
[image_end_token_id],
|
|
360
|
+
] + joint
|
|
361
|
+
|
|
362
|
+
joint = np.concatenate(joint, 0)
|
|
363
|
+
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
|
|
364
|
+
|
|
365
|
+
return patches, joint, patch_ordering, img_mask
|
|
366
|
+
|
|
367
|
+
def build_image_input_idx(
|
|
368
|
+
self,
|
|
369
|
+
image_tokens: np.ndarray,
|
|
370
|
+
patch_order: np.ndarray,
|
|
371
|
+
image_patch_token_id: int,
|
|
372
|
+
) -> np.ndarray:
|
|
373
|
+
"""Build image input indices."""
|
|
374
|
+
tokens_per_image = self.image_token_length_w * self.image_token_length_h
|
|
375
|
+
|
|
376
|
+
image_input_idx = image_tokens == image_patch_token_id
|
|
377
|
+
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
|
|
378
|
+
|
|
379
|
+
if patch_order is not None:
|
|
380
|
+
n_tokens = image_input_idx.shape[0]
|
|
381
|
+
patch_order = np.reshape(patch_order, [-1])
|
|
382
|
+
|
|
383
|
+
valid = patch_order >= 0
|
|
384
|
+
n_valid_patches = valid.sum()
|
|
385
|
+
|
|
386
|
+
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
|
|
387
|
+
sorted_patch_ixs[patch_order[valid]] = np.arange(
|
|
388
|
+
n_valid_patches, dtype=np.int32
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
|
|
392
|
+
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
|
|
393
|
+
|
|
394
|
+
valid_int = (sorted_patch_ixs_ex >= 0).astype(np.int32)
|
|
395
|
+
image_input_idx = image_input_idx[sorted_patch_ixs_ex * valid_int]
|
|
396
|
+
image_input_idx = image_input_idx * valid_int - 100 * (1 - valid_int)
|
|
397
|
+
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
|
|
398
|
+
|
|
399
|
+
return image_input_idx
|
|
400
|
+
|
|
401
|
+
def preprocess(
|
|
402
|
+
self,
|
|
403
|
+
image: np.ndarray,
|
|
404
|
+
image_patch_token_id: int,
|
|
405
|
+
image_col_token_id: int,
|
|
406
|
+
image_start_token_id: int,
|
|
407
|
+
image_end_token_id: int,
|
|
408
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
409
|
+
"""Preprocess a single image."""
|
|
410
|
+
crops, image_tokens, patch_ordering, img_mask = (
|
|
411
|
+
self.image_to_patches_and_tokens(
|
|
412
|
+
image,
|
|
413
|
+
image_patch_token_id,
|
|
414
|
+
image_col_token_id,
|
|
415
|
+
image_start_token_id,
|
|
416
|
+
image_end_token_id,
|
|
417
|
+
)
|
|
418
|
+
)
|
|
419
|
+
patch_idx = self.build_image_input_idx(
|
|
420
|
+
image_tokens, patch_ordering, image_patch_token_id
|
|
421
|
+
)
|
|
422
|
+
return crops, image_tokens, patch_idx, img_mask
|
|
423
|
+
|
|
424
|
+
|
|
425
|
+
class MolmoProcessor(ProcessorMixin):
|
|
426
|
+
"""MLX-based processor for Molmo."""
|
|
427
|
+
|
|
428
|
+
attributes = ["image_processor", "tokenizer"]
|
|
429
|
+
image_processor_class = "MolmoImageProcessor"
|
|
430
|
+
tokenizer_class = "AutoTokenizer"
|
|
431
|
+
|
|
432
|
+
def __init__(
|
|
433
|
+
self,
|
|
434
|
+
image_processor=None,
|
|
435
|
+
tokenizer=None,
|
|
436
|
+
chat_template=None,
|
|
437
|
+
**kwargs,
|
|
438
|
+
):
|
|
439
|
+
if image_processor is None:
|
|
440
|
+
image_processor = MolmoImageProcessor()
|
|
441
|
+
# Molmo uses these specific token names
|
|
442
|
+
self.image_patch_token = "<im_patch>"
|
|
443
|
+
self.image_col_token = "<im_col>"
|
|
444
|
+
self.image_start_token = "<im_start>"
|
|
445
|
+
self.image_end_token = "<im_end>"
|
|
446
|
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
447
|
+
|
|
448
|
+
def __call__(
|
|
449
|
+
self,
|
|
450
|
+
images: ImageInput = None,
|
|
451
|
+
text: Union[str, List[str]] = None,
|
|
452
|
+
**kwargs,
|
|
453
|
+
) -> BatchFeature:
|
|
454
|
+
"""Process images and text for Molmo."""
|
|
455
|
+
if images is None and text is None:
|
|
456
|
+
raise ValueError("You must provide either images or text.")
|
|
457
|
+
|
|
458
|
+
# Get token IDs
|
|
459
|
+
image_patch_token_id = self.tokenizer.convert_tokens_to_ids(
|
|
460
|
+
self.image_patch_token
|
|
461
|
+
)
|
|
462
|
+
image_col_token_id = self.tokenizer.convert_tokens_to_ids(self.image_col_token)
|
|
463
|
+
image_start_token_id = self.tokenizer.convert_tokens_to_ids(
|
|
464
|
+
self.image_start_token
|
|
465
|
+
)
|
|
466
|
+
image_end_token_id = self.tokenizer.convert_tokens_to_ids(self.image_end_token)
|
|
467
|
+
|
|
468
|
+
# Validate token IDs
|
|
469
|
+
if image_patch_token_id is None:
|
|
470
|
+
raise ValueError(
|
|
471
|
+
f"Token '{self.image_patch_token}' not found in tokenizer vocabulary"
|
|
472
|
+
)
|
|
473
|
+
if image_col_token_id is None:
|
|
474
|
+
raise ValueError(
|
|
475
|
+
f"Token '{self.image_col_token}' not found in tokenizer vocabulary"
|
|
476
|
+
)
|
|
477
|
+
if image_start_token_id is None:
|
|
478
|
+
raise ValueError(
|
|
479
|
+
f"Token '{self.image_start_token}' not found in tokenizer vocabulary"
|
|
480
|
+
)
|
|
481
|
+
if image_end_token_id is None:
|
|
482
|
+
raise ValueError(
|
|
483
|
+
f"Token '{self.image_end_token}' not found in tokenizer vocabulary"
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
# Process images
|
|
487
|
+
if images is not None:
|
|
488
|
+
images = make_list_of_images(images)
|
|
489
|
+
# Convert PIL images to numpy arrays
|
|
490
|
+
np_images = []
|
|
491
|
+
for img in images:
|
|
492
|
+
if isinstance(img, Image.Image):
|
|
493
|
+
img = img.convert("RGB")
|
|
494
|
+
np_images.append(np.array(img).astype(np.float32) / 255.0)
|
|
495
|
+
elif isinstance(img, np.ndarray):
|
|
496
|
+
if img.max() > 1.0:
|
|
497
|
+
img = img.astype(np.float32) / 255.0
|
|
498
|
+
np_images.append(img)
|
|
499
|
+
else:
|
|
500
|
+
np_images.append(np.array(img).astype(np.float32) / 255.0)
|
|
501
|
+
images = np_images
|
|
502
|
+
|
|
503
|
+
# Tokenize text
|
|
504
|
+
if text is not None:
|
|
505
|
+
if isinstance(text, str):
|
|
506
|
+
text = [text]
|
|
507
|
+
tokens_list = [self.tokenizer.encode(t) for t in text]
|
|
508
|
+
else:
|
|
509
|
+
tokens_list = [[]]
|
|
510
|
+
|
|
511
|
+
# Process each image with text
|
|
512
|
+
if images is not None and len(images) > 0:
|
|
513
|
+
all_crops = []
|
|
514
|
+
all_image_idx = []
|
|
515
|
+
all_masks = []
|
|
516
|
+
all_input_ids = []
|
|
517
|
+
|
|
518
|
+
for i, (img, tokens) in enumerate(
|
|
519
|
+
zip(
|
|
520
|
+
images,
|
|
521
|
+
(
|
|
522
|
+
tokens_list
|
|
523
|
+
if len(tokens_list) == len(images)
|
|
524
|
+
else [tokens_list[0]] * len(images)
|
|
525
|
+
),
|
|
526
|
+
)
|
|
527
|
+
):
|
|
528
|
+
crops, image_tokens, patch_idx, img_mask = (
|
|
529
|
+
self.image_processor.preprocess(
|
|
530
|
+
img,
|
|
531
|
+
image_patch_token_id,
|
|
532
|
+
image_col_token_id,
|
|
533
|
+
image_start_token_id,
|
|
534
|
+
image_end_token_id,
|
|
535
|
+
)
|
|
536
|
+
)
|
|
537
|
+
|
|
538
|
+
# Combine image tokens with text tokens
|
|
539
|
+
combined_tokens = np.concatenate([image_tokens, np.array(tokens)])
|
|
540
|
+
|
|
541
|
+
# Adjust patch_idx for the position in combined tokens
|
|
542
|
+
all_crops.append(crops)
|
|
543
|
+
all_image_idx.append(patch_idx)
|
|
544
|
+
all_masks.append(img_mask)
|
|
545
|
+
all_input_ids.append(combined_tokens)
|
|
546
|
+
|
|
547
|
+
# Stack results
|
|
548
|
+
pixel_values = mx.array(
|
|
549
|
+
np.concatenate(all_crops, axis=0).astype(np.float32)
|
|
550
|
+
)
|
|
551
|
+
image_input_idx = mx.array(
|
|
552
|
+
np.concatenate(all_image_idx, axis=0).astype(np.int32)
|
|
553
|
+
)
|
|
554
|
+
image_masks = mx.array(np.concatenate(all_masks, axis=0).astype(np.float32))
|
|
555
|
+
|
|
556
|
+
# Pad input_ids to same length
|
|
557
|
+
max_len = max(len(ids) for ids in all_input_ids)
|
|
558
|
+
pad_token_id = self.tokenizer.pad_token_id
|
|
559
|
+
if pad_token_id is None:
|
|
560
|
+
pad_token_id = self.tokenizer.eos_token_id or 0
|
|
561
|
+
padded_ids = []
|
|
562
|
+
for ids in all_input_ids:
|
|
563
|
+
pad_len = max_len - len(ids)
|
|
564
|
+
if pad_len > 0:
|
|
565
|
+
ids = np.pad(ids, (0, pad_len), constant_values=pad_token_id)
|
|
566
|
+
padded_ids.append(ids.astype(np.int32))
|
|
567
|
+
|
|
568
|
+
input_ids = mx.array(np.stack(padded_ids).astype(np.int32))
|
|
569
|
+
|
|
570
|
+
return BatchFeature(
|
|
571
|
+
data={
|
|
572
|
+
"input_ids": input_ids,
|
|
573
|
+
"pixel_values": pixel_values,
|
|
574
|
+
"image_input_idx": image_input_idx,
|
|
575
|
+
"image_masks": image_masks,
|
|
576
|
+
}
|
|
577
|
+
)
|
|
578
|
+
else:
|
|
579
|
+
# Text only
|
|
580
|
+
max_len = max(len(t) for t in tokens_list)
|
|
581
|
+
pad_token_id = self.tokenizer.pad_token_id
|
|
582
|
+
if pad_token_id is None:
|
|
583
|
+
pad_token_id = self.tokenizer.eos_token_id or 0
|
|
584
|
+
padded = []
|
|
585
|
+
for t in tokens_list:
|
|
586
|
+
pad_len = max_len - len(t)
|
|
587
|
+
if pad_len > 0:
|
|
588
|
+
t = t + [pad_token_id] * pad_len
|
|
589
|
+
padded.append(t)
|
|
590
|
+
|
|
591
|
+
return BatchFeature(data={"input_ids": mx.array(padded, dtype=mx.int32)})
|
|
592
|
+
|
|
593
|
+
def batch_decode(self, *args, **kwargs):
|
|
594
|
+
"""Forward to tokenizer's batch_decode."""
|
|
595
|
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
596
|
+
|
|
597
|
+
def decode(self, *args, **kwargs):
|
|
598
|
+
"""Forward to tokenizer's decode."""
|
|
599
|
+
return self.tokenizer.decode(*args, **kwargs)
|
|
600
|
+
|
|
601
|
+
def apply_chat_template(
|
|
602
|
+
self,
|
|
603
|
+
conversation,
|
|
604
|
+
chat_template=None,
|
|
605
|
+
add_generation_prompt=False,
|
|
606
|
+
tokenize=False,
|
|
607
|
+
**kwargs,
|
|
608
|
+
):
|
|
609
|
+
"""Apply chat template."""
|
|
610
|
+
if chat_template is None:
|
|
611
|
+
chat_template = self.chat_template
|
|
612
|
+
if chat_template is None:
|
|
613
|
+
chat_template = getattr(self.tokenizer, "chat_template", None)
|
|
614
|
+
if chat_template is None:
|
|
615
|
+
# Default Molmo chat template
|
|
616
|
+
chat_template = (
|
|
617
|
+
"{% for message in messages %}"
|
|
618
|
+
"{% if message['role'] == 'user' %}"
|
|
619
|
+
"User: {{ message['content'] }}\n"
|
|
620
|
+
"{% elif message['role'] == 'assistant' %}"
|
|
621
|
+
"Assistant: {{ message['content'] }}\n"
|
|
622
|
+
"{% endif %}"
|
|
623
|
+
"{% endfor %}"
|
|
624
|
+
"{% if add_generation_prompt %}Assistant: {% endif %}"
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
from jinja2 import Environment
|
|
628
|
+
|
|
629
|
+
# Use Environment with loopcontrols extension to support {% continue %} and {% break %}
|
|
630
|
+
env = Environment(extensions=["jinja2.ext.loopcontrols"])
|
|
631
|
+
template = env.from_string(chat_template)
|
|
632
|
+
rendered = template.render(
|
|
633
|
+
messages=conversation,
|
|
634
|
+
add_generation_prompt=add_generation_prompt,
|
|
635
|
+
**kwargs,
|
|
636
|
+
)
|
|
637
|
+
|
|
638
|
+
if tokenize:
|
|
639
|
+
return self.tokenizer.encode(rendered)
|
|
640
|
+
return rendered
|
|
641
|
+
|
|
642
|
+
@property
|
|
643
|
+
def model_input_names(self):
|
|
644
|
+
"""Get model input names."""
|
|
645
|
+
return ["input_ids", "pixel_values", "image_input_idx", "image_masks"]
|
|
646
|
+
|
|
647
|
+
@classmethod
|
|
648
|
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
649
|
+
"""Load processor from pretrained model."""
|
|
650
|
+
from huggingface_hub import hf_hub_download
|
|
651
|
+
|
|
652
|
+
kwargs.pop("trust_remote_code", None)
|
|
653
|
+
|
|
654
|
+
model_path = Path(pretrained_model_name_or_path)
|
|
655
|
+
is_local = model_path.exists() and model_path.is_dir()
|
|
656
|
+
|
|
657
|
+
# Load tokenizer
|
|
658
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
659
|
+
str(model_path) if is_local else pretrained_model_name_or_path,
|
|
660
|
+
trust_remote_code=True,
|
|
661
|
+
local_files_only=is_local,
|
|
662
|
+
)
|
|
663
|
+
|
|
664
|
+
# Load image processor config
|
|
665
|
+
image_processor_config = {}
|
|
666
|
+
try:
|
|
667
|
+
if is_local:
|
|
668
|
+
config_path = model_path / "preprocessor_config.json"
|
|
669
|
+
else:
|
|
670
|
+
config_path = Path(
|
|
671
|
+
hf_hub_download(
|
|
672
|
+
pretrained_model_name_or_path, "preprocessor_config.json"
|
|
673
|
+
)
|
|
674
|
+
)
|
|
675
|
+
if config_path.exists():
|
|
676
|
+
with open(config_path, "r") as f:
|
|
677
|
+
config = json.load(f)
|
|
678
|
+
for key in [
|
|
679
|
+
"max_crops",
|
|
680
|
+
"overlap_margins",
|
|
681
|
+
"base_image_input_size",
|
|
682
|
+
"image_token_length_w",
|
|
683
|
+
"image_token_length_h",
|
|
684
|
+
"image_patch_size",
|
|
685
|
+
"image_padding_mask",
|
|
686
|
+
"do_normalize",
|
|
687
|
+
"image_mean",
|
|
688
|
+
"image_std",
|
|
689
|
+
]:
|
|
690
|
+
if key in config:
|
|
691
|
+
image_processor_config[key] = config[key]
|
|
692
|
+
except Exception:
|
|
693
|
+
pass
|
|
694
|
+
|
|
695
|
+
image_processor = MolmoImageProcessor(**image_processor_config)
|
|
696
|
+
|
|
697
|
+
# Load chat template
|
|
698
|
+
chat_template = getattr(tokenizer, "chat_template", None)
|
|
699
|
+
if chat_template is None:
|
|
700
|
+
try:
|
|
701
|
+
if is_local:
|
|
702
|
+
jinja_path = model_path / "chat_template.jinja"
|
|
703
|
+
else:
|
|
704
|
+
jinja_path = Path(
|
|
705
|
+
hf_hub_download(
|
|
706
|
+
pretrained_model_name_or_path, "chat_template.jinja"
|
|
707
|
+
)
|
|
708
|
+
)
|
|
709
|
+
if jinja_path.exists():
|
|
710
|
+
chat_template = jinja_path.read_text(encoding="utf-8")
|
|
711
|
+
tokenizer.chat_template = chat_template
|
|
712
|
+
except Exception:
|
|
713
|
+
pass
|
|
714
|
+
|
|
715
|
+
return cls(
|
|
716
|
+
image_processor=image_processor,
|
|
717
|
+
tokenizer=tokenizer,
|
|
718
|
+
chat_template=chat_template,
|
|
719
|
+
)
|
|
720
|
+
|
|
721
|
+
|
|
722
|
+
# Patch AutoProcessor for Molmo models
|
|
723
|
+
from transformers import AutoProcessor
|
|
724
|
+
|
|
725
|
+
_original_auto_processor_from_pretrained = AutoProcessor.from_pretrained
|
|
726
|
+
|
|
727
|
+
|
|
728
|
+
@classmethod
|
|
729
|
+
def _patched_auto_processor_from_pretrained(
|
|
730
|
+
cls, pretrained_model_name_or_path, **kwargs
|
|
731
|
+
):
|
|
732
|
+
"""Patched from_pretrained that returns MolmoProcessor for molmo models."""
|
|
733
|
+
from huggingface_hub import hf_hub_download
|
|
734
|
+
|
|
735
|
+
model_path = Path(pretrained_model_name_or_path)
|
|
736
|
+
is_local = model_path.exists() and model_path.is_dir()
|
|
737
|
+
|
|
738
|
+
# Check if this is a molmo model
|
|
739
|
+
is_molmo = False
|
|
740
|
+
try:
|
|
741
|
+
if is_local:
|
|
742
|
+
config_path = model_path / "config.json"
|
|
743
|
+
else:
|
|
744
|
+
config_path = Path(
|
|
745
|
+
hf_hub_download(pretrained_model_name_or_path, "config.json")
|
|
746
|
+
)
|
|
747
|
+
with open(config_path, "r") as f:
|
|
748
|
+
config = json.load(f)
|
|
749
|
+
model_type = config.get("model_type", "").lower()
|
|
750
|
+
|
|
751
|
+
is_molmo = model_type == "molmo"
|
|
752
|
+
except Exception:
|
|
753
|
+
pass
|
|
754
|
+
|
|
755
|
+
if is_molmo:
|
|
756
|
+
return MolmoProcessor.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
757
|
+
|
|
758
|
+
return _original_auto_processor_from_pretrained.__func__(
|
|
759
|
+
cls, pretrained_model_name_or_path, **kwargs
|
|
760
|
+
)
|
|
761
|
+
|
|
762
|
+
|
|
763
|
+
AutoProcessor.from_pretrained = _patched_auto_processor_from_pretrained
|