fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,337 @@
|
|
|
1
|
+
"""ERNIE 4.5 VL MoE model for MLX."""
|
|
2
|
+
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
import mlx.nn as nn
|
|
7
|
+
import numpy as np
|
|
8
|
+
from transformers import AutoImageProcessor, AutoProcessor, AutoTokenizer
|
|
9
|
+
|
|
10
|
+
from ..base import InputEmbeddingsFeatures
|
|
11
|
+
from .config import ModelConfig
|
|
12
|
+
from .language import LanguageModel
|
|
13
|
+
from .processor import Ernie4_5_VLProcessor, Ernie4_5_VLTokenizer, ImageProcessor
|
|
14
|
+
from .vision import VisionModel
|
|
15
|
+
|
|
16
|
+
# Register custom processor classes for ernie4_5_moe_vl model type
|
|
17
|
+
MODEL_TYPE = "ernie4_5_moe_vl"
|
|
18
|
+
try:
|
|
19
|
+
AutoImageProcessor.register(MODEL_TYPE, slow_image_processor_class=ImageProcessor)
|
|
20
|
+
AutoTokenizer.register(MODEL_TYPE, slow_tokenizer_class=Ernie4_5_VLTokenizer)
|
|
21
|
+
AutoProcessor.register(MODEL_TYPE, Ernie4_5_VLProcessor)
|
|
22
|
+
except Exception:
|
|
23
|
+
pass # Already registered or registration not needed
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class TokenType:
|
|
27
|
+
"""Token type definition."""
|
|
28
|
+
|
|
29
|
+
text = 0
|
|
30
|
+
image = 1
|
|
31
|
+
video = 2
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class VariableResolutionResamplerModel(nn.Module):
|
|
35
|
+
"""Compresses vision features using spatial and temporal convolutions."""
|
|
36
|
+
|
|
37
|
+
def __init__(
|
|
38
|
+
self,
|
|
39
|
+
in_dim: int,
|
|
40
|
+
out_dim: int,
|
|
41
|
+
spatial_conv_size: int,
|
|
42
|
+
temporal_conv_size: int,
|
|
43
|
+
config: ModelConfig,
|
|
44
|
+
):
|
|
45
|
+
super().__init__()
|
|
46
|
+
self.in_dim = in_dim
|
|
47
|
+
self.out_dim = out_dim
|
|
48
|
+
self.config = config
|
|
49
|
+
self.spatial_conv_size = spatial_conv_size
|
|
50
|
+
self.temporal_conv_size = temporal_conv_size
|
|
51
|
+
self.use_temporal_conv = config.use_temporal_conv
|
|
52
|
+
|
|
53
|
+
self.spatial_dim = in_dim * spatial_conv_size * spatial_conv_size
|
|
54
|
+
self.temporal_dim = (
|
|
55
|
+
in_dim * spatial_conv_size * spatial_conv_size * temporal_conv_size
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
self.spatial_linear = nn.Sequential(
|
|
59
|
+
nn.Linear(self.spatial_dim, self.spatial_dim),
|
|
60
|
+
nn.GELU(),
|
|
61
|
+
nn.Linear(self.spatial_dim, self.spatial_dim),
|
|
62
|
+
nn.LayerNorm(self.spatial_dim, eps=1e-6),
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
if self.use_temporal_conv:
|
|
66
|
+
self.temporal_linear = nn.Sequential(
|
|
67
|
+
nn.Linear(self.temporal_dim, self.spatial_dim),
|
|
68
|
+
nn.GELU(),
|
|
69
|
+
nn.Linear(self.spatial_dim, self.spatial_dim),
|
|
70
|
+
nn.LayerNorm(self.spatial_dim, eps=1e-6),
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
self.mlp = nn.Linear(self.spatial_dim, out_dim)
|
|
74
|
+
self.after_norm = nn.RMSNorm(out_dim)
|
|
75
|
+
|
|
76
|
+
def spatial_conv_reshape(self, x: mx.array) -> mx.array:
|
|
77
|
+
S, C = x.shape
|
|
78
|
+
x = x.reshape(-1, C * (self.spatial_conv_size**2))
|
|
79
|
+
return x
|
|
80
|
+
|
|
81
|
+
def __call__(
|
|
82
|
+
self,
|
|
83
|
+
x: mx.array,
|
|
84
|
+
grid_thw: mx.array,
|
|
85
|
+
) -> mx.array:
|
|
86
|
+
def fwd_spatial(x):
|
|
87
|
+
x = self.spatial_conv_reshape(x)
|
|
88
|
+
x = self.spatial_linear(x)
|
|
89
|
+
return x
|
|
90
|
+
|
|
91
|
+
def fwd_placeholder(x, grid_thw):
|
|
92
|
+
grid_thw_np = np.array(grid_thw.tolist(), dtype=np.int64)
|
|
93
|
+
grid_t = grid_thw_np[:, 0]
|
|
94
|
+
grid_hw = grid_thw_np[:, 1:]
|
|
95
|
+
grid_hw_after_conv = grid_hw.prod(-1) // (self.spatial_conv_size**2)
|
|
96
|
+
|
|
97
|
+
tokens_per_img_or_vid = grid_thw_np.prod(-1) // (self.spatial_conv_size**2)
|
|
98
|
+
batch_offset = np.empty(tokens_per_img_or_vid.size, dtype=np.int64)
|
|
99
|
+
batch_offset[0] = 0
|
|
100
|
+
batch_offset[1:] = tokens_per_img_or_vid.cumsum()[:-1]
|
|
101
|
+
|
|
102
|
+
assert (
|
|
103
|
+
self.temporal_conv_size == 2
|
|
104
|
+
), f"Hard Code: temporal_conv_size==2, got: {self.temporal_conv_size}"
|
|
105
|
+
|
|
106
|
+
slice_offsets = []
|
|
107
|
+
for temporal_size, spatial_size, b_offset in zip(
|
|
108
|
+
grid_t, grid_hw_after_conv, batch_offset
|
|
109
|
+
):
|
|
110
|
+
for temp_offset in range(0, temporal_size, 2):
|
|
111
|
+
slice_offsets.append(
|
|
112
|
+
np.arange(
|
|
113
|
+
b_offset + temp_offset * spatial_size,
|
|
114
|
+
b_offset + (temp_offset + 1) * spatial_size,
|
|
115
|
+
)
|
|
116
|
+
)
|
|
117
|
+
slice_offsets = np.concatenate(slice_offsets, axis=-1).astype(np.int32)
|
|
118
|
+
|
|
119
|
+
slice_offsets2 = []
|
|
120
|
+
for temporal_size, spatial_size, b_offset in zip(
|
|
121
|
+
grid_t, grid_hw_after_conv, batch_offset
|
|
122
|
+
):
|
|
123
|
+
for temp_offset in range(
|
|
124
|
+
1 if temporal_size > 1 else 0, temporal_size, 2
|
|
125
|
+
):
|
|
126
|
+
slice_offsets2.append(
|
|
127
|
+
np.arange(
|
|
128
|
+
b_offset + temp_offset * spatial_size,
|
|
129
|
+
b_offset + (temp_offset + 1) * spatial_size,
|
|
130
|
+
)
|
|
131
|
+
)
|
|
132
|
+
slice_offsets2 = np.concatenate(slice_offsets2, axis=-1).astype(np.int32)
|
|
133
|
+
|
|
134
|
+
x_timestep_1 = x[mx.array(slice_offsets), :]
|
|
135
|
+
x_timestep_2 = x[mx.array(slice_offsets2), :]
|
|
136
|
+
x = mx.concatenate([x_timestep_1, x_timestep_2], axis=-1)
|
|
137
|
+
return x
|
|
138
|
+
|
|
139
|
+
def fwd_temporal(x):
|
|
140
|
+
x = self.temporal_linear(x)
|
|
141
|
+
return x
|
|
142
|
+
|
|
143
|
+
def fwd_mlp(x):
|
|
144
|
+
x = self.mlp(x)
|
|
145
|
+
x = self.after_norm(x)
|
|
146
|
+
return x
|
|
147
|
+
|
|
148
|
+
x = fwd_spatial(x)
|
|
149
|
+
if self.use_temporal_conv:
|
|
150
|
+
x = fwd_placeholder(x, grid_thw)
|
|
151
|
+
x = fwd_temporal(x)
|
|
152
|
+
x = fwd_mlp(x)
|
|
153
|
+
return x
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
class Model(nn.Module):
|
|
157
|
+
"""ERNIE 4.5 VL MoE model."""
|
|
158
|
+
|
|
159
|
+
def __init__(self, config: ModelConfig):
|
|
160
|
+
super().__init__()
|
|
161
|
+
self.config = config
|
|
162
|
+
self.vision_tower = VisionModel(config.vision_config)
|
|
163
|
+
self.resampler_model = VariableResolutionResamplerModel(
|
|
164
|
+
config.pixel_hidden_size,
|
|
165
|
+
config.hidden_size,
|
|
166
|
+
config.spatial_conv_size,
|
|
167
|
+
config.temporal_conv_size,
|
|
168
|
+
config=config,
|
|
169
|
+
)
|
|
170
|
+
self.language_model = LanguageModel(config.text_config, config)
|
|
171
|
+
|
|
172
|
+
def get_input_embeddings(
|
|
173
|
+
self,
|
|
174
|
+
input_ids: Optional[mx.array] = None,
|
|
175
|
+
pixel_values: Optional[mx.array] = None,
|
|
176
|
+
**kwargs,
|
|
177
|
+
):
|
|
178
|
+
image_grid_thw = kwargs.get("image_grid_thw", None)
|
|
179
|
+
video_grid_thw = kwargs.get("video_grid_thw", None)
|
|
180
|
+
grid_thw = image_grid_thw if image_grid_thw is not None else video_grid_thw
|
|
181
|
+
|
|
182
|
+
if pixel_values is None:
|
|
183
|
+
return InputEmbeddingsFeatures(
|
|
184
|
+
inputs_embeds=self.language_model.model.embed_tokens(input_ids)
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
dtype = self.vision_tower.patch_embed.proj.weight.dtype
|
|
188
|
+
pixel_values = pixel_values.astype(dtype)
|
|
189
|
+
|
|
190
|
+
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
191
|
+
hidden_states = self.vision_tower(
|
|
192
|
+
pixel_values, grid_thw, output_hidden_states=False
|
|
193
|
+
)
|
|
194
|
+
image_features = self.resampler_model(hidden_states, image_grid_thw)
|
|
195
|
+
final_inputs_embeds = self._merge_input_ids_with_image_features(
|
|
196
|
+
image_features,
|
|
197
|
+
inputs_embeds,
|
|
198
|
+
input_ids,
|
|
199
|
+
)
|
|
200
|
+
return InputEmbeddingsFeatures(inputs_embeds=final_inputs_embeds)
|
|
201
|
+
|
|
202
|
+
def _merge_input_ids_with_image_features(
|
|
203
|
+
self,
|
|
204
|
+
image_features: mx.array,
|
|
205
|
+
inputs_embeds: mx.array,
|
|
206
|
+
input_ids: mx.array,
|
|
207
|
+
) -> mx.array:
|
|
208
|
+
image_token_id = self.config.image_token_id
|
|
209
|
+
video_token_id = self.config.video_token_id
|
|
210
|
+
|
|
211
|
+
image_positions = input_ids == image_token_id
|
|
212
|
+
if mx.sum(image_positions) == 0:
|
|
213
|
+
image_positions = input_ids == video_token_id
|
|
214
|
+
|
|
215
|
+
if mx.sum(image_positions) == 0:
|
|
216
|
+
return inputs_embeds
|
|
217
|
+
|
|
218
|
+
batch_size, seq_len = input_ids.shape
|
|
219
|
+
batch_outputs = []
|
|
220
|
+
feature_start_idx = 0
|
|
221
|
+
|
|
222
|
+
for batch_idx in range(batch_size):
|
|
223
|
+
image_mask = image_positions[batch_idx]
|
|
224
|
+
num_positions = int(mx.sum(image_mask).item())
|
|
225
|
+
|
|
226
|
+
if num_positions > 0:
|
|
227
|
+
batch_features = image_features[
|
|
228
|
+
feature_start_idx : feature_start_idx + num_positions
|
|
229
|
+
]
|
|
230
|
+
|
|
231
|
+
if batch_features.shape[0] != num_positions:
|
|
232
|
+
raise ValueError(
|
|
233
|
+
f"Number of image token positions ({num_positions}) does not match "
|
|
234
|
+
f"number of image features ({batch_features.shape[0]}) for batch {batch_idx}"
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
cumsum = mx.cumsum(image_mask.astype(mx.int32))
|
|
238
|
+
feature_indices = mx.where(
|
|
239
|
+
image_mask, cumsum - 1, mx.zeros_like(cumsum)
|
|
240
|
+
)
|
|
241
|
+
gathered_features = batch_features[feature_indices]
|
|
242
|
+
|
|
243
|
+
image_mask_expanded = mx.expand_dims(image_mask, axis=-1)
|
|
244
|
+
batch_output = mx.where(
|
|
245
|
+
image_mask_expanded, gathered_features, inputs_embeds[batch_idx]
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
feature_start_idx += num_positions
|
|
249
|
+
else:
|
|
250
|
+
batch_output = inputs_embeds[batch_idx]
|
|
251
|
+
|
|
252
|
+
batch_outputs.append(batch_output)
|
|
253
|
+
|
|
254
|
+
return mx.stack(batch_outputs, axis=0)
|
|
255
|
+
|
|
256
|
+
@property
|
|
257
|
+
def layers(self):
|
|
258
|
+
return self.language_model.model.layers
|
|
259
|
+
|
|
260
|
+
def _build_token_type_ids(
|
|
261
|
+
self, input_ids: mx.array, pixel_values: Optional[mx.array] = None
|
|
262
|
+
) -> Optional[mx.array]:
|
|
263
|
+
if pixel_values is None:
|
|
264
|
+
return None
|
|
265
|
+
|
|
266
|
+
image_token_id = self.config.image_token_id
|
|
267
|
+
video_token_id = self.config.video_token_id
|
|
268
|
+
|
|
269
|
+
is_image = input_ids == image_token_id
|
|
270
|
+
is_video = input_ids == video_token_id
|
|
271
|
+
is_vision = is_image | is_video
|
|
272
|
+
|
|
273
|
+
if mx.sum(is_vision) == 0:
|
|
274
|
+
return None
|
|
275
|
+
|
|
276
|
+
token_type_ids = mx.where(
|
|
277
|
+
is_vision, mx.ones_like(input_ids), mx.zeros_like(input_ids)
|
|
278
|
+
)
|
|
279
|
+
return token_type_ids
|
|
280
|
+
|
|
281
|
+
def __call__(
|
|
282
|
+
self,
|
|
283
|
+
input_ids: mx.array,
|
|
284
|
+
pixel_values: Optional[mx.array] = None,
|
|
285
|
+
mask: Optional[mx.array] = None,
|
|
286
|
+
cache=None,
|
|
287
|
+
**kwargs,
|
|
288
|
+
):
|
|
289
|
+
token_type_ids = self._build_token_type_ids(input_ids, pixel_values)
|
|
290
|
+
|
|
291
|
+
inputs_embeds_features = self.get_input_embeddings(
|
|
292
|
+
input_ids, pixel_values, **kwargs
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
logits = self.language_model(
|
|
296
|
+
input_ids,
|
|
297
|
+
inputs_embeds_features.inputs_embeds,
|
|
298
|
+
mask=mask,
|
|
299
|
+
cache=cache,
|
|
300
|
+
pixel_values=pixel_values,
|
|
301
|
+
token_type_ids=token_type_ids,
|
|
302
|
+
**kwargs,
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
return logits
|
|
306
|
+
|
|
307
|
+
def sanitize(self, weights):
|
|
308
|
+
import re
|
|
309
|
+
|
|
310
|
+
def transform_key(key):
|
|
311
|
+
if "vision_tower" not in key and "vision_model" in key:
|
|
312
|
+
key = key.replace("vision_model", "vision_tower")
|
|
313
|
+
|
|
314
|
+
if "language_model" not in key:
|
|
315
|
+
if (
|
|
316
|
+
"model.layers" in key
|
|
317
|
+
or "model.embed_tokens" in key
|
|
318
|
+
or "model.norm" in key
|
|
319
|
+
):
|
|
320
|
+
key = key.replace("model.", "language_model.model.")
|
|
321
|
+
elif "lm_head" in key:
|
|
322
|
+
key = key.replace("lm_head", "language_model.lm_head")
|
|
323
|
+
|
|
324
|
+
if "model.resampler_model" in key:
|
|
325
|
+
key = key.replace("model.resampler_model", "resampler_model")
|
|
326
|
+
|
|
327
|
+
key = re.sub(
|
|
328
|
+
r"(spatial_linear|temporal_linear)\.(\d+)", r"\1.layers.\2", key
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
return key
|
|
332
|
+
|
|
333
|
+
weights = {transform_key(k): v for k, v in weights.items()}
|
|
334
|
+
weights = self.vision_tower.sanitize(weights)
|
|
335
|
+
weights = self.language_model.sanitize(weights)
|
|
336
|
+
|
|
337
|
+
return weights
|