fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from ..cache import KVCache
|
|
12
|
+
from .config import TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Attention(nn.Module):
|
|
16
|
+
def __init__(self, config: TextConfig):
|
|
17
|
+
super().__init__()
|
|
18
|
+
|
|
19
|
+
dim = config.hidden_size
|
|
20
|
+
self.n_heads = n_heads = config.num_attention_heads
|
|
21
|
+
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
22
|
+
|
|
23
|
+
head_dim = config.hidden_size // n_heads
|
|
24
|
+
self.scale = head_dim**-0.5
|
|
25
|
+
|
|
26
|
+
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
27
|
+
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
28
|
+
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
29
|
+
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
30
|
+
|
|
31
|
+
self.rope = nn.RoPE(
|
|
32
|
+
head_dim,
|
|
33
|
+
traditional=config.rope_traditional,
|
|
34
|
+
base=config.rope_theta,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
def __call__(
|
|
38
|
+
self,
|
|
39
|
+
x: mx.array,
|
|
40
|
+
mask: Optional[mx.array] = None,
|
|
41
|
+
cache: Optional[KVCache] = None,
|
|
42
|
+
) -> mx.array:
|
|
43
|
+
B, L, D = x.shape
|
|
44
|
+
|
|
45
|
+
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
46
|
+
|
|
47
|
+
# Prepare the queries, keys and values for the attention computation
|
|
48
|
+
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
49
|
+
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
50
|
+
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
51
|
+
|
|
52
|
+
if cache is not None:
|
|
53
|
+
queries = self.rope(queries, offset=cache.offset)
|
|
54
|
+
keys = self.rope(keys, offset=cache.offset)
|
|
55
|
+
keys, values = cache.update_and_fetch(keys, values)
|
|
56
|
+
else:
|
|
57
|
+
queries = self.rope(queries)
|
|
58
|
+
keys = self.rope(keys)
|
|
59
|
+
|
|
60
|
+
output = scaled_dot_product_attention(
|
|
61
|
+
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
62
|
+
)
|
|
63
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
64
|
+
return self.o_proj(output)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class MLP(nn.Module):
|
|
68
|
+
def __init__(self, dim, hidden_dim):
|
|
69
|
+
super().__init__()
|
|
70
|
+
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
71
|
+
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
72
|
+
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
73
|
+
|
|
74
|
+
def __call__(self, x) -> mx.array:
|
|
75
|
+
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class TransformerBlock(nn.Module):
|
|
79
|
+
def __init__(self, config: TextConfig):
|
|
80
|
+
super().__init__()
|
|
81
|
+
self.num_attention_heads = config.num_attention_heads
|
|
82
|
+
self.hidden_size = config.hidden_size
|
|
83
|
+
self.self_attn = Attention(config)
|
|
84
|
+
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
|
85
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
86
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
87
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
88
|
+
)
|
|
89
|
+
self.config = config
|
|
90
|
+
|
|
91
|
+
def __call__(
|
|
92
|
+
self,
|
|
93
|
+
x: mx.array,
|
|
94
|
+
mask: Optional[mx.array] = None,
|
|
95
|
+
cache: Optional[KVCache] = None,
|
|
96
|
+
) -> mx.array:
|
|
97
|
+
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
98
|
+
h = x + r
|
|
99
|
+
r = self.mlp(self.post_attention_layernorm(h))
|
|
100
|
+
out = h + r
|
|
101
|
+
return out
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
class LanguageModel(nn.Module):
|
|
105
|
+
def __init__(self, config: TextConfig):
|
|
106
|
+
super().__init__()
|
|
107
|
+
self.config = config
|
|
108
|
+
self.model_type = config.model_type
|
|
109
|
+
self.vocab_size = config.vocab_size
|
|
110
|
+
self.num_hidden_layers = config.num_hidden_layers
|
|
111
|
+
assert self.vocab_size > 0
|
|
112
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
113
|
+
self.layers = [
|
|
114
|
+
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
|
|
115
|
+
]
|
|
116
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
117
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
118
|
+
|
|
119
|
+
def __call__(
|
|
120
|
+
self,
|
|
121
|
+
inputs: mx.array,
|
|
122
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
123
|
+
mask: Optional[mx.array] = None,
|
|
124
|
+
cache=None,
|
|
125
|
+
**kwargs,
|
|
126
|
+
):
|
|
127
|
+
# for passing merged input embeddings
|
|
128
|
+
if inputs_embeds is None:
|
|
129
|
+
h = self.embed_tokens(inputs)
|
|
130
|
+
else:
|
|
131
|
+
h = inputs_embeds
|
|
132
|
+
|
|
133
|
+
if cache is None:
|
|
134
|
+
cache = [None] * len(self.layers)
|
|
135
|
+
|
|
136
|
+
if mask is None:
|
|
137
|
+
mask = create_attention_mask(h, cache)
|
|
138
|
+
|
|
139
|
+
for layer, c in zip(self.layers, cache):
|
|
140
|
+
h = layer(h, mask, c)
|
|
141
|
+
|
|
142
|
+
logits = self.lm_head(self.norm(h))
|
|
143
|
+
return LanguageModelOutput(logits=logits)
|
|
144
|
+
|
|
145
|
+
def sanitize(self, weights):
|
|
146
|
+
# Remove unused precomputed rotary freqs
|
|
147
|
+
return {
|
|
148
|
+
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
@property
|
|
152
|
+
def layers(self):
|
|
153
|
+
return self.model.layers
|
|
154
|
+
|
|
155
|
+
@property
|
|
156
|
+
def head_dim(self):
|
|
157
|
+
return self.config.hidden_size // self.config.num_attention_heads
|
|
158
|
+
|
|
159
|
+
@property
|
|
160
|
+
def n_kv_heads(self):
|
|
161
|
+
return self.config.num_key_value_heads
|
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from .config import VisionConfig
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def check_array_shape(arr):
|
|
11
|
+
shape = arr.shape
|
|
12
|
+
|
|
13
|
+
# Check if the shape has 4 dimensions
|
|
14
|
+
if len(shape) != 4:
|
|
15
|
+
return False
|
|
16
|
+
|
|
17
|
+
out_channels, kH, KW, _ = shape
|
|
18
|
+
|
|
19
|
+
# Check if out_channels is the largest, and kH and KW are the same
|
|
20
|
+
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
21
|
+
return True
|
|
22
|
+
else:
|
|
23
|
+
return False
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Attention(nn.Module):
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
dims: int,
|
|
30
|
+
num_heads: int,
|
|
31
|
+
query_input_dims: Optional[int] = None,
|
|
32
|
+
key_input_dims: Optional[int] = None,
|
|
33
|
+
value_input_dims: Optional[int] = None,
|
|
34
|
+
value_dims: Optional[int] = None,
|
|
35
|
+
value_output_dims: Optional[int] = None,
|
|
36
|
+
):
|
|
37
|
+
super().__init__()
|
|
38
|
+
|
|
39
|
+
if (dims % num_heads) != 0:
|
|
40
|
+
raise ValueError(
|
|
41
|
+
"The input feature dimensions should be divisible by the "
|
|
42
|
+
f"number of heads ({dims} % {num_heads}) != 0"
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
query_input_dims = query_input_dims or dims
|
|
46
|
+
key_input_dims = key_input_dims or dims
|
|
47
|
+
value_input_dims = value_input_dims or key_input_dims
|
|
48
|
+
value_dims = value_dims or dims
|
|
49
|
+
value_output_dims = value_output_dims or dims
|
|
50
|
+
|
|
51
|
+
self.num_heads = num_heads
|
|
52
|
+
head_dim = dims // num_heads
|
|
53
|
+
self.scale = head_dim**-0.5
|
|
54
|
+
|
|
55
|
+
self.q_proj = nn.Linear(query_input_dims, dims, bias=True)
|
|
56
|
+
self.k_proj = nn.Linear(key_input_dims, dims, bias=True)
|
|
57
|
+
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=True)
|
|
58
|
+
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=True)
|
|
59
|
+
|
|
60
|
+
def __call__(self, x: mx.array, mask=None):
|
|
61
|
+
B, L, _ = x.shape
|
|
62
|
+
queries = self.q_proj(x)
|
|
63
|
+
keys = self.k_proj(x)
|
|
64
|
+
values = self.v_proj(x)
|
|
65
|
+
|
|
66
|
+
num_heads = self.num_heads
|
|
67
|
+
|
|
68
|
+
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
69
|
+
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
70
|
+
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
71
|
+
if mask is not None:
|
|
72
|
+
mask = mask[:, :, mask.shape[-2] :, :]
|
|
73
|
+
|
|
74
|
+
output = mx.fast.scaled_dot_product_attention(
|
|
75
|
+
queries, keys, values, scale=self.scale, mask=mask
|
|
76
|
+
)
|
|
77
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
78
|
+
return self.out_proj(output)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class MLP(nn.Module):
|
|
82
|
+
def __init__(self, config: VisionConfig):
|
|
83
|
+
super().__init__()
|
|
84
|
+
self.activation_fn = nn.GELU(approx="fast")
|
|
85
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
86
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
87
|
+
|
|
88
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
89
|
+
x = self.activation_fn(self.fc1(x))
|
|
90
|
+
x = self.fc2(x)
|
|
91
|
+
return x
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class EncoderLayer(nn.Module):
|
|
95
|
+
def __init__(self, config: VisionConfig):
|
|
96
|
+
super().__init__()
|
|
97
|
+
self.embed_dim = config.hidden_size
|
|
98
|
+
self.self_attn = Attention(config.hidden_size, config.num_attention_heads)
|
|
99
|
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
100
|
+
self.mlp = MLP(config)
|
|
101
|
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
102
|
+
|
|
103
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
104
|
+
y = self.layer_norm1(x)
|
|
105
|
+
y = self.self_attn(y, mask)
|
|
106
|
+
x = x + y
|
|
107
|
+
y = self.layer_norm2(x)
|
|
108
|
+
y = self.mlp(y)
|
|
109
|
+
return x + y
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
class Encoder(nn.Module):
|
|
113
|
+
def __init__(self, config: VisionConfig):
|
|
114
|
+
super().__init__()
|
|
115
|
+
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
116
|
+
|
|
117
|
+
def __call__(
|
|
118
|
+
self,
|
|
119
|
+
x: mx.array,
|
|
120
|
+
output_hidden_states: Optional[bool] = None,
|
|
121
|
+
mask: Optional[mx.array] = None,
|
|
122
|
+
) -> mx.array:
|
|
123
|
+
encoder_states = (x,) if output_hidden_states else None
|
|
124
|
+
h = x
|
|
125
|
+
for l in self.layers:
|
|
126
|
+
x = l(x, mask=mask)
|
|
127
|
+
if output_hidden_states:
|
|
128
|
+
encoder_states = encoder_states + (x,)
|
|
129
|
+
|
|
130
|
+
h = x
|
|
131
|
+
|
|
132
|
+
return (h, encoder_states)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
class VisionEmbeddings(nn.Module):
|
|
136
|
+
def __init__(self, config: VisionConfig):
|
|
137
|
+
super().__init__()
|
|
138
|
+
self.config = config
|
|
139
|
+
self.embed_dim = config.hidden_size
|
|
140
|
+
self.image_size = config.image_size
|
|
141
|
+
self.patch_size = config.patch_size
|
|
142
|
+
|
|
143
|
+
self.patch_embedding = nn.Conv2d(
|
|
144
|
+
in_channels=config.num_channels,
|
|
145
|
+
out_channels=self.embed_dim,
|
|
146
|
+
kernel_size=self.patch_size,
|
|
147
|
+
stride=self.patch_size,
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
self.num_patches = self.image_size // self.patch_size
|
|
151
|
+
self.num_positions = self.num_patches**2
|
|
152
|
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
153
|
+
|
|
154
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
155
|
+
B, H, W, C = x.shape
|
|
156
|
+
patch_embeddings = self.patch_embedding(x)
|
|
157
|
+
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
158
|
+
max_nb_patches_h, max_nb_patches_w = (
|
|
159
|
+
H // self.patch_size,
|
|
160
|
+
W // self.patch_size,
|
|
161
|
+
)
|
|
162
|
+
boundaries = np.linspace(
|
|
163
|
+
1 / self.num_patches, 1.0, self.num_patches, endpoint=False
|
|
164
|
+
)
|
|
165
|
+
position_ids = np.zeros((B, max_nb_patches_h * max_nb_patches_w), dtype=int)
|
|
166
|
+
|
|
167
|
+
for batch_idx, p_attn_mask in enumerate(mask):
|
|
168
|
+
p_attn_mask = np.array(p_attn_mask)
|
|
169
|
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
|
170
|
+
nb_patches_w = p_attn_mask[0, :].sum()
|
|
171
|
+
|
|
172
|
+
fractional_coords_h = np.linspace(0, 1, nb_patches_h, endpoint=False)
|
|
173
|
+
fractional_coords_w = np.linspace(0, 1, nb_patches_w, endpoint=False)
|
|
174
|
+
|
|
175
|
+
bucket_coords_h = (
|
|
176
|
+
np.digitize(fractional_coords_h, boundaries, right=True) - 1
|
|
177
|
+
)
|
|
178
|
+
bucket_coords_w = (
|
|
179
|
+
np.digitize(fractional_coords_w, boundaries, right=True) - 1
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
pos_ids = (
|
|
183
|
+
bucket_coords_h[:, None] * self.num_patches + bucket_coords_w
|
|
184
|
+
).flatten()
|
|
185
|
+
position_ids[batch_idx][p_attn_mask.reshape(-1)] = pos_ids
|
|
186
|
+
|
|
187
|
+
embeddings = patch_embeddings
|
|
188
|
+
embeddings += self.position_embedding(mx.array(position_ids))
|
|
189
|
+
return embeddings
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
class VisionModel(nn.Module):
|
|
193
|
+
def __init__(self, config: VisionConfig):
|
|
194
|
+
super().__init__()
|
|
195
|
+
self.config = config
|
|
196
|
+
self.model_type = config.model_type
|
|
197
|
+
if self.model_type not in ["idefics2", "idefics2_vision"]:
|
|
198
|
+
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
199
|
+
self.embeddings = VisionEmbeddings(config)
|
|
200
|
+
self.encoder = Encoder(config)
|
|
201
|
+
self.post_layernorm = nn.LayerNorm(config.hidden_size)
|
|
202
|
+
|
|
203
|
+
def __call__(
|
|
204
|
+
self,
|
|
205
|
+
x: mx.array,
|
|
206
|
+
patch_attention_mask: Optional[mx.array] = None,
|
|
207
|
+
output_hidden_states: Optional[bool] = None,
|
|
208
|
+
) -> mx.array:
|
|
209
|
+
|
|
210
|
+
B, L, D, C = x.shape
|
|
211
|
+
if patch_attention_mask is None:
|
|
212
|
+
patch_size = self.config.patch_size
|
|
213
|
+
patch_attention_mask = mx.ones(
|
|
214
|
+
(
|
|
215
|
+
B,
|
|
216
|
+
L // patch_size,
|
|
217
|
+
D // patch_size,
|
|
218
|
+
),
|
|
219
|
+
dtype=mx.bool_,
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
x = self.embeddings(x, mask=patch_attention_mask)
|
|
223
|
+
encoder_outputs = self.encoder(x=x, output_hidden_states=output_hidden_states)
|
|
224
|
+
|
|
225
|
+
pooler_output = self.post_layernorm(encoder_outputs[0])
|
|
226
|
+
|
|
227
|
+
return pooler_output, x, encoder_outputs[-1]
|
|
228
|
+
|
|
229
|
+
def sanitize(self, weights):
|
|
230
|
+
sanitized_weights = {}
|
|
231
|
+
for k, v in weights.items():
|
|
232
|
+
if "patch_embedding.weight" in k:
|
|
233
|
+
# PyTorch conv2d weight tensors have shape:
|
|
234
|
+
# [out_channels, in_channels, kH, KW]
|
|
235
|
+
# MLX conv2d expects the weight be of shape:
|
|
236
|
+
# [out_channels, kH, KW, in_channels]
|
|
237
|
+
if check_array_shape(v):
|
|
238
|
+
sanitized_weights[k] = v
|
|
239
|
+
else:
|
|
240
|
+
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
241
|
+
else:
|
|
242
|
+
sanitized_weights[k] = v
|
|
243
|
+
|
|
244
|
+
return sanitized_weights
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import List, Optional
|
|
3
|
+
|
|
4
|
+
from ..base import BaseModelConfig
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@dataclass
|
|
8
|
+
class TextConfig(BaseModelConfig):
|
|
9
|
+
model_type: str
|
|
10
|
+
hidden_size: int
|
|
11
|
+
intermediate_size: int
|
|
12
|
+
num_attention_heads: int
|
|
13
|
+
rms_norm_eps: float
|
|
14
|
+
vocab_size: int
|
|
15
|
+
num_key_value_heads: int
|
|
16
|
+
rope_theta: float = 1000000.0
|
|
17
|
+
num_hidden_layers: int = 32
|
|
18
|
+
rope_traditional: bool = False
|
|
19
|
+
max_position_embeddings: int = 4096
|
|
20
|
+
tie_word_embeddings: bool = False
|
|
21
|
+
|
|
22
|
+
def __post_init__(self):
|
|
23
|
+
if self.num_key_value_heads is None:
|
|
24
|
+
self.num_key_value_heads = self.num_attention_heads
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class VisionConfig(BaseModelConfig):
|
|
29
|
+
model_type: str
|
|
30
|
+
hidden_size: int
|
|
31
|
+
num_attention_heads: int
|
|
32
|
+
patch_size: int
|
|
33
|
+
num_hidden_layers: int = 12
|
|
34
|
+
intermediate_size: int = 3072
|
|
35
|
+
image_size: int = 224
|
|
36
|
+
num_channels: int = 3
|
|
37
|
+
layer_norm_eps: float = 1e-6
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@dataclass
|
|
41
|
+
class ModelConfig(BaseModelConfig):
|
|
42
|
+
text_config: TextConfig
|
|
43
|
+
vision_config: VisionConfig
|
|
44
|
+
model_type: str
|
|
45
|
+
ignore_index: int = -100
|
|
46
|
+
vocab_size: int = 128259
|
|
47
|
+
scale_factor: int = 2
|
|
48
|
+
image_token_id: int = 49153
|
|
49
|
+
image_token_index: Optional[int] = None
|
|
50
|
+
eos_token_id: Optional[List[int]] = None
|
|
51
|
+
|
|
52
|
+
def __post_init__(self):
|
|
53
|
+
if self.image_token_index is None:
|
|
54
|
+
self.image_token_index = self.image_token_id
|
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from ..base import InputEmbeddingsFeatures
|
|
9
|
+
from .config import ModelConfig
|
|
10
|
+
from .language import LanguageModel
|
|
11
|
+
from .vision import VisionModel
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def masked_scatter(
|
|
15
|
+
final_embedding: mx.array,
|
|
16
|
+
image_mask_expanded: mx.array,
|
|
17
|
+
scaled_image_features: mx.array,
|
|
18
|
+
):
|
|
19
|
+
# Reshape the tensors to 1D
|
|
20
|
+
final_embedding_shape = final_embedding.shape
|
|
21
|
+
scaled_image_features_flattened = mx.flatten(scaled_image_features)
|
|
22
|
+
final_embedding_flattened = mx.flatten(final_embedding)
|
|
23
|
+
image_mask_expanded_flattened = mx.flatten(image_mask_expanded)
|
|
24
|
+
|
|
25
|
+
# Scatter the scaled image features into the special image token positions
|
|
26
|
+
image_positions = mx.array(np.where(image_mask_expanded_flattened)[0], mx.uint32)
|
|
27
|
+
final_embedding_flattened[image_positions] = scaled_image_features_flattened
|
|
28
|
+
|
|
29
|
+
# Reshape back to the original shape
|
|
30
|
+
final_embedding = mx.reshape(final_embedding_flattened, final_embedding_shape)
|
|
31
|
+
|
|
32
|
+
return final_embedding
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class MLP(nn.Module):
|
|
36
|
+
def __init__(self, config: ModelConfig):
|
|
37
|
+
super().__init__()
|
|
38
|
+
input_size = config.vision_config.hidden_size * (config.scale_factor**2)
|
|
39
|
+
output_size = config.text_config.hidden_size
|
|
40
|
+
self.proj = nn.Linear(input_size, output_size, bias=False)
|
|
41
|
+
|
|
42
|
+
def __call__(self, x):
|
|
43
|
+
return self.proj(x)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class Idefics3Connector(nn.Module):
|
|
47
|
+
def __init__(self, config: ModelConfig):
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.scale_factor = config.scale_factor
|
|
50
|
+
self.modality_projection = MLP(config)
|
|
51
|
+
|
|
52
|
+
def pixel_shuffle(self, x, scale_factor=2):
|
|
53
|
+
bsz, seq, embed_dim = x.shape
|
|
54
|
+
height = width = int(seq**0.5)
|
|
55
|
+
x = x.reshape(bsz, height, width, embed_dim)
|
|
56
|
+
x = x.reshape(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
|
|
57
|
+
x = x.transpose(0, 2, 1, 3)
|
|
58
|
+
x = x.reshape(
|
|
59
|
+
bsz,
|
|
60
|
+
int(width / scale_factor),
|
|
61
|
+
int(height / scale_factor),
|
|
62
|
+
embed_dim * (scale_factor**2),
|
|
63
|
+
)
|
|
64
|
+
x = x.transpose(0, 2, 1, 3)
|
|
65
|
+
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
|
|
66
|
+
return x
|
|
67
|
+
|
|
68
|
+
def __call__(self, image_hidden_states):
|
|
69
|
+
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
|
|
70
|
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
|
71
|
+
return image_hidden_states
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
class Model(nn.Module):
|
|
75
|
+
def __init__(self, config: ModelConfig):
|
|
76
|
+
super().__init__()
|
|
77
|
+
self.model_type = config.model_type
|
|
78
|
+
self.config = config
|
|
79
|
+
|
|
80
|
+
self.vision_model = VisionModel(config.vision_config)
|
|
81
|
+
self.language_model = LanguageModel(config.text_config)
|
|
82
|
+
self.connector = Idefics3Connector(config)
|
|
83
|
+
|
|
84
|
+
def get_input_embeddings(
|
|
85
|
+
self,
|
|
86
|
+
input_ids: Optional[mx.array] = None,
|
|
87
|
+
pixel_values: Optional[mx.array] = None,
|
|
88
|
+
**kwargs,
|
|
89
|
+
):
|
|
90
|
+
pixel_attention_mask = kwargs.get("pixel_attention_mask", None)
|
|
91
|
+
|
|
92
|
+
if pixel_values is None:
|
|
93
|
+
return InputEmbeddingsFeatures(
|
|
94
|
+
inputs_embeds=self.language_model.embed_tokens(input_ids)
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
inputs_embeds = self.language_model.embed_tokens(input_ids)
|
|
98
|
+
|
|
99
|
+
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
|
100
|
+
pixel_values = pixel_values.reshape(
|
|
101
|
+
batch_size * num_images, num_channels, height, width
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
# Remove padding images - padding image are full 0.
|
|
105
|
+
nb_values_per_image = np.prod(pixel_values.shape[1:])
|
|
106
|
+
real_images_mask = (pixel_values == 0.0).sum(
|
|
107
|
+
axis=(-1, -2, -3)
|
|
108
|
+
) != nb_values_per_image
|
|
109
|
+
real_images_inds = np.where(real_images_mask)[0].tolist()
|
|
110
|
+
pixel_values = pixel_values[real_images_inds, ...]
|
|
111
|
+
|
|
112
|
+
if pixel_attention_mask is None:
|
|
113
|
+
pixel_attention_mask = mx.ones(
|
|
114
|
+
(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
|
|
115
|
+
dtype=mx.bool,
|
|
116
|
+
)
|
|
117
|
+
else:
|
|
118
|
+
# Remove padding images from the mask
|
|
119
|
+
pixel_attention_mask = pixel_attention_mask.reshape(
|
|
120
|
+
batch_size * num_images, height, width
|
|
121
|
+
)
|
|
122
|
+
pixel_attention_mask = pixel_attention_mask[real_images_inds]
|
|
123
|
+
|
|
124
|
+
patch_size = self.config.vision_config.patch_size
|
|
125
|
+
batch_size, height, width = pixel_attention_mask.shape
|
|
126
|
+
|
|
127
|
+
# Calculate number of patches
|
|
128
|
+
patches_h = height // patch_size
|
|
129
|
+
patches_w = width // patch_size
|
|
130
|
+
|
|
131
|
+
# Reshape to extract patches
|
|
132
|
+
reshaped = pixel_attention_mask[
|
|
133
|
+
:, : patches_h * patch_size, : patches_w * patch_size
|
|
134
|
+
]
|
|
135
|
+
reshaped = reshaped.reshape(
|
|
136
|
+
batch_size, patches_h, patch_size, patches_w, patch_size
|
|
137
|
+
)
|
|
138
|
+
reshaped = reshaped.transpose(
|
|
139
|
+
0, 1, 3, 2, 4
|
|
140
|
+
) # (batch, patches_h, patches_w, patch_size, patch_size)
|
|
141
|
+
|
|
142
|
+
# Sum over patch dimensions and check if any pixels are active
|
|
143
|
+
patch_attention_mask = reshaped.sum(axis=(-1, -2)) > 0
|
|
144
|
+
|
|
145
|
+
pooler_output, *_ = self.vision_model(
|
|
146
|
+
pixel_values.transpose(0, 2, 3, 1),
|
|
147
|
+
patch_attention_mask=patch_attention_mask,
|
|
148
|
+
output_hidden_states=True,
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
image_features = pooler_output.astype(pixel_values.dtype)
|
|
152
|
+
image_features = self.connector(image_features)
|
|
153
|
+
|
|
154
|
+
final_inputs_embeds = self._prepare_inputs_for_multimodal(
|
|
155
|
+
image_features, inputs_embeds, input_ids
|
|
156
|
+
)
|
|
157
|
+
return InputEmbeddingsFeatures(inputs_embeds=final_inputs_embeds)
|
|
158
|
+
|
|
159
|
+
def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
|
|
160
|
+
special_image_mask = input_ids == self.config.image_token_index
|
|
161
|
+
n_image_tokens = special_image_mask.sum()
|
|
162
|
+
special_image_mask = special_image_mask[..., None]
|
|
163
|
+
special_image_mask = mx.broadcast_to(special_image_mask, inputs_embeds.shape)
|
|
164
|
+
|
|
165
|
+
n_image_features = image_features.shape[0]
|
|
166
|
+
n_image_mask_elements = special_image_mask.sum()
|
|
167
|
+
if n_image_mask_elements != image_features.size:
|
|
168
|
+
raise ValueError(
|
|
169
|
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
inputs_embeds = masked_scatter(
|
|
173
|
+
inputs_embeds, special_image_mask, image_features
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
return inputs_embeds
|
|
177
|
+
|
|
178
|
+
@property
|
|
179
|
+
def layers(self):
|
|
180
|
+
return self.language_model.layers
|
|
181
|
+
|
|
182
|
+
def __call__(
|
|
183
|
+
self,
|
|
184
|
+
input_ids: mx.array,
|
|
185
|
+
pixel_values: mx.array,
|
|
186
|
+
cache=None,
|
|
187
|
+
**kwargs,
|
|
188
|
+
):
|
|
189
|
+
input_embeddings_features = self.get_input_embeddings(
|
|
190
|
+
input_ids, pixel_values, **kwargs
|
|
191
|
+
)
|
|
192
|
+
logits = self.language_model(
|
|
193
|
+
inputs=input_ids,
|
|
194
|
+
cache=cache,
|
|
195
|
+
inputs_embeds=input_embeddings_features.inputs_embeds,
|
|
196
|
+
)
|
|
197
|
+
return logits
|
|
198
|
+
|
|
199
|
+
def sanitize(self, weights):
|
|
200
|
+
weights = {
|
|
201
|
+
(
|
|
202
|
+
f"{k.split('.', 1)[1]}"
|
|
203
|
+
if re.match(r"^model\.", k)
|
|
204
|
+
else (f"language_model.{k}" if re.match(r"^lm_head\.", k) else k)
|
|
205
|
+
): v
|
|
206
|
+
for k, v in weights.items()
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
weights = {
|
|
210
|
+
(
|
|
211
|
+
f"language_model.{k.split('.', 1)[1]}"
|
|
212
|
+
if re.match(
|
|
213
|
+
r"^text_model\.",
|
|
214
|
+
k,
|
|
215
|
+
)
|
|
216
|
+
else k
|
|
217
|
+
): v
|
|
218
|
+
for k, v in weights.items()
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
return weights
|