fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,267 @@
|
|
|
1
|
+
from typing import Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from .config import TextConfig
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class Attention(nn.Module):
|
|
15
|
+
"""Multi-head attention with partial RoPE (32 dims)."""
|
|
16
|
+
|
|
17
|
+
def __init__(self, config: TextConfig):
|
|
18
|
+
super().__init__()
|
|
19
|
+
self.config = config
|
|
20
|
+
self.hidden_size = config.hidden_size
|
|
21
|
+
self.num_heads = config.num_attention_heads
|
|
22
|
+
self.num_kv_heads = config.num_key_value_heads
|
|
23
|
+
self.head_dim = self.hidden_size // self.num_heads
|
|
24
|
+
self.scale = self.head_dim**-0.5
|
|
25
|
+
|
|
26
|
+
# Combined QKV projection (like original moondream)
|
|
27
|
+
qkv_dim = self.hidden_size + 2 * (self.num_kv_heads * self.head_dim)
|
|
28
|
+
self.qkv_proj = nn.Linear(self.hidden_size, qkv_dim, bias=True)
|
|
29
|
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
|
30
|
+
|
|
31
|
+
# Partial RoPE: only apply to first half of head_dim (32 out of 64)
|
|
32
|
+
rope_dims = int(self.head_dim * config.partial_rotary_factor)
|
|
33
|
+
self.rope = nn.RoPE(
|
|
34
|
+
dims=rope_dims,
|
|
35
|
+
traditional=False,
|
|
36
|
+
base=config.rope_theta,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
def __call__(
|
|
40
|
+
self,
|
|
41
|
+
x: mx.array,
|
|
42
|
+
mask: Optional[mx.array] = None,
|
|
43
|
+
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
44
|
+
) -> mx.array:
|
|
45
|
+
B, L, _ = x.shape
|
|
46
|
+
|
|
47
|
+
# Combined QKV projection
|
|
48
|
+
qkv = self.qkv_proj(x)
|
|
49
|
+
|
|
50
|
+
# Split into Q, K, V
|
|
51
|
+
q_dim = self.num_heads * self.head_dim
|
|
52
|
+
kv_dim = self.num_kv_heads * self.head_dim
|
|
53
|
+
q, k, v = mx.split(qkv, [q_dim, q_dim + kv_dim], axis=-1)
|
|
54
|
+
|
|
55
|
+
# Reshape for attention
|
|
56
|
+
q = q.reshape(B, L, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
57
|
+
k = k.reshape(B, L, self.num_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
58
|
+
v = v.reshape(B, L, self.num_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
59
|
+
|
|
60
|
+
# Apply partial RoPE
|
|
61
|
+
if cache is not None:
|
|
62
|
+
q = self.rope(q, offset=cache.offset)
|
|
63
|
+
k = self.rope(k, offset=cache.offset)
|
|
64
|
+
k, v = cache.update_and_fetch(k, v)
|
|
65
|
+
else:
|
|
66
|
+
q = self.rope(q)
|
|
67
|
+
k = self.rope(k)
|
|
68
|
+
|
|
69
|
+
# Attention
|
|
70
|
+
output = scaled_dot_product_attention(
|
|
71
|
+
q, k, v, cache=cache, scale=self.scale, mask=mask
|
|
72
|
+
)
|
|
73
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
74
|
+
|
|
75
|
+
return self.o_proj(output)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class MLP(nn.Module):
|
|
79
|
+
"""Simple MLP with GELU activation (not gated like Phi3)."""
|
|
80
|
+
|
|
81
|
+
def __init__(self, config: TextConfig):
|
|
82
|
+
super().__init__()
|
|
83
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
|
|
84
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
|
|
85
|
+
self.activation = nn.GELU(approx="precise")
|
|
86
|
+
|
|
87
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
88
|
+
x = self.activation(self.fc1(x))
|
|
89
|
+
x = self.fc2(x)
|
|
90
|
+
return x
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class TransformerBlock(nn.Module):
|
|
94
|
+
"""Transformer block with pre-norm using LayerNorm."""
|
|
95
|
+
|
|
96
|
+
def __init__(self, config: TextConfig):
|
|
97
|
+
super().__init__()
|
|
98
|
+
self.self_attn = Attention(config)
|
|
99
|
+
self.mlp = MLP(config)
|
|
100
|
+
# Moondream uses a single LayerNorm before both attention and MLP
|
|
101
|
+
# The residual pattern is: x + attn(ln(x)) + mlp(ln(x))
|
|
102
|
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
103
|
+
|
|
104
|
+
def __call__(
|
|
105
|
+
self,
|
|
106
|
+
x: mx.array,
|
|
107
|
+
mask: Optional[mx.array] = None,
|
|
108
|
+
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
109
|
+
) -> mx.array:
|
|
110
|
+
# Moondream uses parallel attention and MLP
|
|
111
|
+
# x = x + attn(ln(x)) + mlp(ln(x))
|
|
112
|
+
normalized = self.input_layernorm(x)
|
|
113
|
+
attn_out = self.self_attn(normalized, mask, cache)
|
|
114
|
+
mlp_out = self.mlp(normalized)
|
|
115
|
+
return x + attn_out + mlp_out
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class PhiModel(nn.Module):
|
|
119
|
+
"""Core transformer model."""
|
|
120
|
+
|
|
121
|
+
def __init__(self, config: TextConfig):
|
|
122
|
+
super().__init__()
|
|
123
|
+
self.config = config
|
|
124
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
125
|
+
self.layers = [TransformerBlock(config) for _ in range(config.num_hidden_layers)]
|
|
126
|
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
127
|
+
|
|
128
|
+
def __call__(
|
|
129
|
+
self,
|
|
130
|
+
inputs: mx.array,
|
|
131
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
132
|
+
mask: Optional[mx.array] = None,
|
|
133
|
+
cache=None,
|
|
134
|
+
):
|
|
135
|
+
if inputs_embeds is None:
|
|
136
|
+
h = self.embed_tokens(inputs)
|
|
137
|
+
else:
|
|
138
|
+
h = inputs_embeds
|
|
139
|
+
|
|
140
|
+
if cache is None:
|
|
141
|
+
cache = [None] * len(self.layers)
|
|
142
|
+
|
|
143
|
+
if mask is None:
|
|
144
|
+
mask = create_attention_mask(h, cache)
|
|
145
|
+
|
|
146
|
+
# Moondream uses a special "prefix attention" mask where the
|
|
147
|
+
# BOS+image patch tokens attend fully within the prefix.
|
|
148
|
+
prefix_len = getattr(self.config, "prefix_attn_len", None)
|
|
149
|
+
try:
|
|
150
|
+
# Only apply during prefill (offset == 0) and only if prefix fits.
|
|
151
|
+
cache0 = cache[0] if isinstance(cache, list) and len(cache) > 0 else None
|
|
152
|
+
offset0 = getattr(cache0, "offset", None)
|
|
153
|
+
|
|
154
|
+
if (
|
|
155
|
+
prefix_len is not None
|
|
156
|
+
and offset0 == 0
|
|
157
|
+
and hasattr(mask, "ndim")
|
|
158
|
+
and mask.ndim >= 4
|
|
159
|
+
and h.shape[1] >= prefix_len
|
|
160
|
+
):
|
|
161
|
+
if str(mask.dtype) == "bool":
|
|
162
|
+
mask[..., :prefix_len, :prefix_len] = True
|
|
163
|
+
else:
|
|
164
|
+
# For additive masks, 0 indicates "allowed"
|
|
165
|
+
mask[..., :prefix_len, :prefix_len] = 0
|
|
166
|
+
except Exception:
|
|
167
|
+
pass
|
|
168
|
+
|
|
169
|
+
for layer, c in zip(self.layers, cache):
|
|
170
|
+
h = layer(h, mask, c)
|
|
171
|
+
|
|
172
|
+
return self.norm(h)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
class LanguageModel(nn.Module):
|
|
176
|
+
"""Language model with LM head."""
|
|
177
|
+
|
|
178
|
+
def __init__(self, config: TextConfig):
|
|
179
|
+
super().__init__()
|
|
180
|
+
self.config = config
|
|
181
|
+
self.model = PhiModel(config)
|
|
182
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
|
183
|
+
|
|
184
|
+
def __call__(
|
|
185
|
+
self,
|
|
186
|
+
inputs: mx.array,
|
|
187
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
188
|
+
mask: Optional[mx.array] = None,
|
|
189
|
+
cache=None,
|
|
190
|
+
**kwargs,
|
|
191
|
+
):
|
|
192
|
+
# #region agent log
|
|
193
|
+
import json
|
|
194
|
+
log_file = "/Users/zekieldee/Desktop/code/mlx-vlm/.cursor/debug.log"
|
|
195
|
+
def log_lm(location, message, data, hypothesis_id):
|
|
196
|
+
try:
|
|
197
|
+
with open(log_file, "a") as f:
|
|
198
|
+
f.write(json.dumps({"sessionId": "debug-session", "runId": "inference", "hypothesisId": hypothesis_id, "location": location, "message": message, "data": data, "timestamp": __import__("time").time_ns() // 1000000}) + "\n")
|
|
199
|
+
except: pass
|
|
200
|
+
|
|
201
|
+
if inputs_embeds is not None:
|
|
202
|
+
log_lm("language.py:lm_input_embeds", "Language model input embeddings", {
|
|
203
|
+
"shape": str(inputs_embeds.shape),
|
|
204
|
+
"dtype": str(inputs_embeds.dtype),
|
|
205
|
+
"mean": float(mx.mean(inputs_embeds)),
|
|
206
|
+
"std": float(mx.std(inputs_embeds)),
|
|
207
|
+
"min": float(mx.min(inputs_embeds)),
|
|
208
|
+
"max": float(mx.max(inputs_embeds)),
|
|
209
|
+
"has_nan": bool(mx.any(mx.isnan(inputs_embeds))),
|
|
210
|
+
"has_inf": bool(mx.any(mx.isinf(inputs_embeds)))
|
|
211
|
+
}, "H9")
|
|
212
|
+
# #endregion
|
|
213
|
+
|
|
214
|
+
h = self.model(inputs, inputs_embeds=inputs_embeds, mask=mask, cache=cache)
|
|
215
|
+
|
|
216
|
+
# #region agent log
|
|
217
|
+
log_lm("language.py:lm_hidden_states", "Language model hidden states after layers", {
|
|
218
|
+
"shape": str(h.shape),
|
|
219
|
+
"dtype": str(h.dtype),
|
|
220
|
+
"mean": float(mx.mean(h)),
|
|
221
|
+
"std": float(mx.std(h)),
|
|
222
|
+
"min": float(mx.min(h)),
|
|
223
|
+
"max": float(mx.max(h)),
|
|
224
|
+
"last_token_mean": float(mx.mean(h[:, -1, :])),
|
|
225
|
+
"last_token_std": float(mx.std(h[:, -1, :]))
|
|
226
|
+
}, "H9")
|
|
227
|
+
# #endregion
|
|
228
|
+
|
|
229
|
+
logits = self.lm_head(h)
|
|
230
|
+
|
|
231
|
+
# #region agent log
|
|
232
|
+
last_logits = logits[0, -1, :]
|
|
233
|
+
top5_idx = mx.argsort(last_logits)[-5:].tolist()
|
|
234
|
+
top5_val = mx.sort(last_logits)[-5:].tolist()
|
|
235
|
+
log_lm("language.py:lm_logits", "Language model logits output", {
|
|
236
|
+
"shape": str(logits.shape),
|
|
237
|
+
"dtype": str(logits.dtype),
|
|
238
|
+
"mean": float(mx.mean(logits)),
|
|
239
|
+
"std": float(mx.std(logits)),
|
|
240
|
+
"min": float(mx.min(logits)),
|
|
241
|
+
"max": float(mx.max(logits)),
|
|
242
|
+
"last_token_logits_mean": float(mx.mean(logits[:, -1, :])),
|
|
243
|
+
"last_token_logits_std": float(mx.std(logits[:, -1, :])),
|
|
244
|
+
"last_token_top5_indices": top5_idx,
|
|
245
|
+
"last_token_top5_values": top5_val
|
|
246
|
+
}, "H9,H10")
|
|
247
|
+
# #endregion
|
|
248
|
+
|
|
249
|
+
return LanguageModelOutput(logits=logits)
|
|
250
|
+
|
|
251
|
+
def sanitize(self, weights):
|
|
252
|
+
"""Sanitize language model weights."""
|
|
253
|
+
return {
|
|
254
|
+
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
255
|
+
}
|
|
256
|
+
|
|
257
|
+
@property
|
|
258
|
+
def layers(self):
|
|
259
|
+
return self.model.layers
|
|
260
|
+
|
|
261
|
+
@property
|
|
262
|
+
def head_dim(self):
|
|
263
|
+
return self.config.hidden_size // self.config.num_attention_heads
|
|
264
|
+
|
|
265
|
+
@property
|
|
266
|
+
def n_kv_heads(self):
|
|
267
|
+
return self.config.num_key_value_heads
|