fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,536 @@
1
+ """
2
+ From https://github.com/deepseek-ai/DeepSeek-VL2
3
+ """
4
+
5
+ import math
6
+ from dataclasses import dataclass
7
+ from typing import Dict, List, Literal, Optional, Tuple
8
+
9
+ import mlx.core as mx
10
+ import numpy as np
11
+ from PIL import Image, ImageOps
12
+ from transformers import LlamaTokenizerFast
13
+ from transformers.processing_utils import ProcessorMixin
14
+
15
+
16
+ def select_best_resolution(image_size, candidate_resolutions):
17
+ # used for cropping
18
+ original_width, original_height = image_size
19
+ best_fit = None
20
+ max_effective_resolution = 0
21
+ min_wasted_resolution = float("inf")
22
+
23
+ for width, height in candidate_resolutions:
24
+ scale = min(width / original_width, height / original_height)
25
+ downscaled_width, downscaled_height = int(original_width * scale), int(
26
+ original_height * scale
27
+ )
28
+ effective_resolution = min(
29
+ downscaled_width * downscaled_height, original_width * original_height
30
+ )
31
+ wasted_resolution = (width * height) - effective_resolution
32
+
33
+ if effective_resolution > max_effective_resolution or (
34
+ effective_resolution == max_effective_resolution
35
+ and wasted_resolution < min_wasted_resolution
36
+ ):
37
+ max_effective_resolution = effective_resolution
38
+ min_wasted_resolution = wasted_resolution
39
+ best_fit = (width, height)
40
+
41
+ return best_fit
42
+
43
+
44
+ class DictOutput(object):
45
+ def keys(self):
46
+ return self.__dict__.keys()
47
+
48
+ def __getitem__(self, item):
49
+ if isinstance(item, int):
50
+ return list(self.__dict__.values())[item]
51
+ if item not in self.__dict__:
52
+ raise KeyError(item)
53
+ return self.__dict__[item]
54
+
55
+ def __setitem__(self, key, value):
56
+ self.__dict__[key] = value
57
+
58
+
59
+ @dataclass
60
+ class VLChatProcessorOutput(DictOutput):
61
+ sft_format: str
62
+ input_ids: mx.array
63
+ target_ids: mx.array
64
+ images: mx.array
65
+ images_seq_mask: mx.array
66
+ images_spatial_crop: mx.array
67
+ num_image_tokens: List[int]
68
+
69
+ def __len__(self):
70
+ return len(self.input_ids)
71
+
72
+
73
+ @dataclass
74
+ class BatchCollateOutput(DictOutput):
75
+ sft_format: List[str]
76
+ input_ids: mx.array
77
+ labels: mx.array
78
+ images: mx.array
79
+ attention_mask: mx.array
80
+ images_seq_mask: mx.array
81
+ images_spatial_crop: mx.array
82
+ seq_lens: List[int]
83
+
84
+
85
+ class ImageTransform:
86
+ def __init__(
87
+ self,
88
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
89
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
90
+ normalize: bool = True,
91
+ ):
92
+ self.mean = mean
93
+ self.std = std
94
+ self.normalize = normalize
95
+
96
+ def __call__(self, pil_img: Image.Image):
97
+ # Convert PIL image to numpy array and normalize
98
+
99
+ img = mx.array(np.array(pil_img)) / 255.0
100
+
101
+ # Transpose from HWC to CHW format
102
+ img = mx.transpose(img, [2, 0, 1])
103
+
104
+ if self.normalize:
105
+ mean = mx.array(self.mean).reshape(-1, 1, 1)
106
+ std = mx.array(self.std).reshape(-1, 1, 1)
107
+ img = (img - mean) / std
108
+
109
+ return img
110
+
111
+
112
+ class DeepseekVLV2Processor(ProcessorMixin):
113
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
114
+ attributes = ["tokenizer"]
115
+
116
+ def __init__(
117
+ self,
118
+ tokenizer: LlamaTokenizerFast,
119
+ candidate_resolutions: Tuple[Tuple[int, int]],
120
+ patch_size: int,
121
+ downsample_ratio: int,
122
+ image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
123
+ image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
124
+ normalize: bool = True,
125
+ image_token: str = "<image>",
126
+ pad_token: str = "<|▁pad▁|>",
127
+ add_special_token: bool = False,
128
+ sft_format: str = "deepseek",
129
+ mask_prompt: bool = True,
130
+ ignore_id: int = -100,
131
+ **kwargs,
132
+ ):
133
+ self.candidate_resolutions = candidate_resolutions
134
+ self.image_size = candidate_resolutions[0][0]
135
+ self.patch_size = patch_size
136
+ self.image_mean = image_mean
137
+ self.image_std = image_std
138
+ self.normalize = normalize
139
+ self.downsample_ratio = downsample_ratio
140
+
141
+ self.image_transform = ImageTransform(
142
+ mean=image_mean, std=image_std, normalize=normalize
143
+ )
144
+ self.tokenizer = tokenizer
145
+ self.tokenizer.padding_side = "left"
146
+
147
+ # Add special tokens
148
+ if tokenizer.pad_token is None:
149
+ self.tokenizer.add_special_tokens({"pad_token": pad_token})
150
+ print(
151
+ f"Add pad token = ['{pad_token}'] to the tokenizer\n"
152
+ f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}"
153
+ )
154
+
155
+ image_token_id = self.tokenizer.vocab.get(image_token)
156
+ if image_token_id is None:
157
+ special_tokens = [image_token]
158
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
159
+ self.tokenizer.add_special_tokens(special_tokens_dict)
160
+ self.image_token_id = self.tokenizer.vocab.get(image_token)
161
+ print(
162
+ f"Add image token = ['{image_token}'] to the tokenizer\n"
163
+ f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}"
164
+ )
165
+
166
+ # Add grounding-related tokens
167
+ special_tokens = ["<|ref|>", "<|/ref|>", "<|det|>", "<|/det|>", "<|grounding|>"]
168
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
169
+ self.tokenizer.add_special_tokens(special_tokens_dict)
170
+ print("Added grounding-related tokens")
171
+
172
+ # Add chat tokens
173
+ special_tokens = ["<|User|>", "<|Assistant|>"]
174
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
175
+ self.tokenizer.add_special_tokens(special_tokens_dict)
176
+ print("Added chat tokens")
177
+
178
+ self.image_token = image_token
179
+ self.pad_token = pad_token
180
+ self.add_special_token = add_special_token
181
+ self.sft_format = sft_format
182
+ self.mask_prompt = mask_prompt
183
+ self.ignore_id = ignore_id
184
+ super().__init__(tokenizer, **kwargs)
185
+
186
+ # Add chat template
187
+ self.chat_template = kwargs.pop("chat_template", self.default_chat_template)
188
+
189
+ @property
190
+ def default_chat_template(self):
191
+ return (
192
+ "{% for message in messages %}"
193
+ "{% if message['role'] == 'user' %}<|User|>:"
194
+ "{% elif message['role'] == 'assistant' %}<|Assistant|>{% endif %} "
195
+ "{{message['content']}}\n\n"
196
+ "{% endfor %}"
197
+ "{% if add_generation_prompt %}<|Assistant|>:{% endif %}"
198
+ )
199
+
200
+ @property
201
+ def bos_id(self):
202
+ return self.tokenizer.bos_token_id
203
+
204
+ @property
205
+ def eos_id(self):
206
+ return self.tokenizer.eos_token_id
207
+
208
+ @property
209
+ def pad_id(self):
210
+ return self.tokenizer.pad_token_id
211
+
212
+ def encode(self, text: str, bos: bool = True, eos: bool = False):
213
+ t = self.tokenizer.encode(text, add_special_tokens=False)
214
+
215
+ if bos:
216
+ t = [self.bos_id] + t
217
+ if eos:
218
+ t = t + [self.eos_id]
219
+
220
+ return t
221
+
222
+ def decode(self, t: List[int], **kwargs) -> str:
223
+ return self.tokenizer.decode(t, **kwargs)
224
+
225
+ def process_one(
226
+ self,
227
+ prompt: str = None,
228
+ conversations: List[Dict[str, str]] = None,
229
+ images: List[Image.Image] = None,
230
+ apply_sft_format: bool = False,
231
+ inference_mode: bool = True,
232
+ system_prompt: str = "",
233
+ **kwargs,
234
+ ):
235
+ assert (
236
+ prompt is None or conversations is None
237
+ ), "prompt and conversations cannot be used at the same time."
238
+
239
+ if apply_sft_format:
240
+ sft_format = self.format_prompts(
241
+ prompts=prompt, sft_format=self.sft_format, system_prompt=system_prompt
242
+ )
243
+ else:
244
+ sft_format = prompt
245
+ (
246
+ tokenized_str,
247
+ images_list,
248
+ images_seq_mask,
249
+ images_spatial_crop,
250
+ num_image_tokens,
251
+ ) = self.tokenize_with_images(
252
+ sft_format, images, bos=True, eos=True, cropping=len(images) <= 2
253
+ )
254
+ masked_tokenized_str = []
255
+ for token_index in tokenized_str:
256
+ if token_index != self.image_token_id:
257
+ masked_tokenized_str.append(token_index)
258
+ else:
259
+ masked_tokenized_str.append(self.ignore_id)
260
+
261
+ input_ids = mx.array(tokenized_str)
262
+ target_ids = mx.array(masked_tokenized_str)
263
+ images_seq_mask = mx.array(images_seq_mask)
264
+
265
+ # Set ignored indices
266
+ target_ids = mx.where(
267
+ (input_ids < 0) | (input_ids == self.image_token_id),
268
+ self.ignore_id,
269
+ target_ids,
270
+ )
271
+ input_ids = mx.where(input_ids < 0, self.pad_id, input_ids)
272
+
273
+ if inference_mode:
274
+ input_ids = input_ids[:-1]
275
+ target_ids = target_ids[:-1]
276
+ images_seq_mask = images_seq_mask[:-1]
277
+
278
+ if len(images_list) == 0:
279
+ images = mx.zeros((1, 3, self.image_size, self.image_size))
280
+ images_spatial_crop = mx.zeros((1, 2))
281
+ else:
282
+ images = mx.stack(images_list)
283
+ images_spatial_crop = mx.array(images_spatial_crop)
284
+
285
+ return VLChatProcessorOutput(
286
+ sft_format=sft_format,
287
+ input_ids=input_ids,
288
+ target_ids=target_ids,
289
+ images=images,
290
+ images_seq_mask=images_seq_mask,
291
+ images_spatial_crop=images_spatial_crop,
292
+ num_image_tokens=num_image_tokens,
293
+ )
294
+
295
+ def pad_sequence(self, sequences, padding_value):
296
+ # Get max length of sequences
297
+ max_len = max(len(seq) for seq in sequences)
298
+
299
+ # Pad each sequence to max length
300
+ padded_seqs = []
301
+ for seq in sequences:
302
+ pad_length = max_len - len(seq)
303
+ if pad_length > 0:
304
+ padding = mx.full((pad_length,), padding_value)
305
+ padded_seq = mx.concatenate([seq, padding])
306
+ else:
307
+ padded_seq = seq
308
+ padded_seqs.append(padded_seq)
309
+
310
+ return mx.stack(padded_seqs)
311
+
312
+ def tokenize_with_images(
313
+ self,
314
+ conversation: str,
315
+ images: List[Image.Image],
316
+ bos: bool = True,
317
+ eos: bool = True,
318
+ cropping: bool = True,
319
+ ):
320
+ """Tokenize text with <image> tags."""
321
+ assert conversation.count(self.image_token) == len(images)
322
+ text_splits = conversation.split(self.image_token)
323
+ images_list, images_seq_mask, images_spatial_crop = [], [], []
324
+ num_image_tokens = []
325
+ tokenized_str = []
326
+ for text_sep, image in zip(text_splits, images):
327
+ """encode text_sep"""
328
+ tokenized_sep = self.encode(text_sep, bos=False, eos=False)
329
+ tokenized_str += tokenized_sep
330
+ images_seq_mask += [False] * len(tokenized_sep)
331
+
332
+ """select best resolution for anyres"""
333
+ if cropping:
334
+ best_width, best_height = select_best_resolution(
335
+ image.size, self.candidate_resolutions
336
+ )
337
+ else:
338
+ best_width, best_height = self.image_size, self.image_size
339
+
340
+ """process the global view"""
341
+ global_view = ImageOps.pad(
342
+ image,
343
+ (self.image_size, self.image_size),
344
+ color=tuple(int(x * 255) for x in self.image_transform.mean),
345
+ )
346
+ images_list.append(self.image_transform(global_view))
347
+
348
+ """process the local views"""
349
+ local_view = ImageOps.pad(
350
+ image,
351
+ (best_width, best_height),
352
+ color=tuple(int(x * 255) for x in self.image_transform.mean),
353
+ )
354
+ for i in range(0, best_height, self.image_size):
355
+ for j in range(0, best_width, self.image_size):
356
+ images_list.append(
357
+ self.image_transform(
358
+ local_view.crop(
359
+ (j, i, j + self.image_size, i + self.image_size)
360
+ )
361
+ )
362
+ )
363
+
364
+ """record height / width crop num"""
365
+ num_width_tiles, num_height_tiles = (
366
+ best_width // self.image_size,
367
+ best_height // self.image_size,
368
+ )
369
+ images_spatial_crop.append([num_width_tiles, num_height_tiles])
370
+
371
+ """add image tokens"""
372
+ h = w = math.ceil(
373
+ (self.image_size // self.patch_size) / self.downsample_ratio
374
+ )
375
+ # global views tokens h * (w + 1), 1 is for line seperator
376
+ tokenized_image = [self.image_token_id] * h * (w + 1)
377
+ # add a seperator between global and local views
378
+ tokenized_image += [self.image_token_id]
379
+ # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
380
+ tokenized_image += (
381
+ [self.image_token_id]
382
+ * (num_height_tiles * h)
383
+ * (num_width_tiles * w + 1)
384
+ )
385
+
386
+ tokenized_str += tokenized_image
387
+ images_seq_mask += [True] * len(tokenized_image)
388
+ num_image_tokens.append(len(tokenized_image))
389
+
390
+ """process the last text split"""
391
+ tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
392
+ tokenized_str += tokenized_sep
393
+ images_seq_mask += [False] * len(tokenized_sep)
394
+
395
+ """add the bos and eos tokens"""
396
+ if bos:
397
+ tokenized_str = [self.bos_id] + tokenized_str
398
+ images_seq_mask = [False] + images_seq_mask
399
+ if eos:
400
+ tokenized_str = tokenized_str + [self.eos_id]
401
+ images_seq_mask = images_seq_mask + [False]
402
+
403
+ assert len(tokenized_str) == len(
404
+ images_seq_mask
405
+ ), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
406
+
407
+ return (
408
+ tokenized_str,
409
+ images_list,
410
+ images_seq_mask,
411
+ images_spatial_crop,
412
+ num_image_tokens,
413
+ )
414
+
415
+ def batchify(
416
+ self,
417
+ sample_list: List[VLChatProcessorOutput],
418
+ padding: Literal["left", "right"] = "left",
419
+ ) -> BatchCollateOutput:
420
+ batched_sft_format = [sample.sft_format for sample in sample_list]
421
+ batched_input_ids = [sample.input_ids for sample in sample_list]
422
+ batched_labels = [sample.target_ids for sample in sample_list]
423
+ batched_images_seq_mask = [sample.images_seq_mask for sample in sample_list]
424
+ seq_lens = [len(sample) for sample in sample_list]
425
+
426
+ # Padding
427
+ if padding == "left":
428
+ # MLX implementation of padding
429
+ max_len = max(len(ids) for ids in batched_input_ids)
430
+
431
+ def pad_left(sequence, pad_val):
432
+ pad_len = max_len - len(sequence)
433
+ if pad_len > 0:
434
+ padding = mx.full((pad_len,), pad_val)
435
+ return mx.concatenate([padding, sequence])
436
+ return sequence
437
+
438
+ batched_input_ids = mx.stack(
439
+ [pad_left(ids, self.pad_id) for ids in batched_input_ids]
440
+ )
441
+ batched_labels = mx.stack(
442
+ [pad_left(ids, self.ignore_id) for ids in batched_labels]
443
+ )
444
+ batched_images_seq_mask = mx.stack(
445
+ [pad_left(mask, False) for mask in batched_images_seq_mask]
446
+ )
447
+ batched_attention_mask = batched_input_ids != self.pad_id
448
+
449
+ else:
450
+ batched_input_ids = self.pad_sequence(batched_input_ids, self.pad_id)
451
+ batched_labels = self.pad_sequence(batched_labels, self.ignore_id)
452
+ batched_images_seq_mask = self.pad_sequence(batched_images_seq_mask, False)
453
+ batched_attention_mask = batched_input_ids != self.pad_id
454
+
455
+ # Padding images
456
+ max_n_patches = max(sample.images.shape[0] for sample in sample_list)
457
+ batched_images = []
458
+ for sample in sample_list:
459
+ images = sample.images
460
+ n_pads = max_n_patches - images.shape[0]
461
+ if n_pads > 0:
462
+ pad_shape = (n_pads,) + images.shape[1:]
463
+ pad_images = mx.zeros(pad_shape)
464
+ images = mx.concatenate([images, pad_images])
465
+ batched_images.append(images)
466
+ batched_images = mx.stack(batched_images)
467
+
468
+ # Padding spatial crop info
469
+ max_n_images = max(
470
+ sample.images_spatial_crop.shape[0] for sample in sample_list
471
+ )
472
+ batched_images_spatial_crop = []
473
+ for sample in sample_list:
474
+ spatial_crop = sample.images_spatial_crop
475
+ n_pads = max_n_images - spatial_crop.shape[0]
476
+ if n_pads > 0:
477
+ pad_spatial = mx.zeros((n_pads, 2))
478
+ spatial_crop = mx.concatenate([spatial_crop, pad_spatial])
479
+ batched_images_spatial_crop.append(spatial_crop)
480
+ batched_images_spatial_crop = mx.stack(batched_images_spatial_crop)
481
+
482
+ return {
483
+ "input_ids": batched_input_ids,
484
+ "attention_mask": batched_attention_mask,
485
+ "labels": batched_labels,
486
+ "images": batched_images,
487
+ "images_seq_mask": batched_images_seq_mask,
488
+ "images_spatial_crop": batched_images_spatial_crop,
489
+ "sft_format": batched_sft_format,
490
+ "seq_lens": seq_lens,
491
+ }
492
+
493
+ def __call__(
494
+ self,
495
+ *,
496
+ text: str = None,
497
+ images: List[Image.Image] = None,
498
+ apply_sft_format: bool = False,
499
+ force_batchify: bool = True,
500
+ inference_mode: bool = True,
501
+ system_prompt: str = "",
502
+ **kwargs,
503
+ ):
504
+ """
505
+
506
+ Args:
507
+ prompt (str): the formatted prompt;
508
+ conversations (List[Dict]): conversations with a list of messages;
509
+ images (List[ImageType]): the list of images;
510
+ apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
511
+ if conversations is not None, then it will always apply the SFT format to conversations;
512
+ force_batchify (bool): force batchify the inputs;
513
+ inference_mode (bool): if True, then remove the last eos token;
514
+ system_prompt (str): the system prompt;
515
+ **kwargs:
516
+
517
+ Returns:
518
+ outputs (BaseProcessorOutput): the output of the processor,
519
+ - input_ids (torch.LongTensor): [N + image tokens]
520
+ - images (torch.FloatTensor): [n_images, 3, H, W]
521
+ - image_id (int): the id of the image token
522
+ - num_image_tokens (List[int]): the number of image tokens
523
+ """
524
+
525
+ prepare = self.process_one(
526
+ prompt=text,
527
+ images=images,
528
+ apply_sft_format=apply_sft_format,
529
+ inference_mode=inference_mode,
530
+ system_prompt=system_prompt,
531
+ )
532
+
533
+ if force_batchify:
534
+ prepare = self.batchify([prepare])
535
+
536
+ return prepare