fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,377 @@
|
|
|
1
|
+
from typing import Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from ..cache import KVCache
|
|
12
|
+
from .config import TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class MllamaTextCrossAttention(nn.Module):
|
|
16
|
+
def __init__(self, config: TextConfig, layer_idx: Optional[int] = None):
|
|
17
|
+
super().__init__()
|
|
18
|
+
self.config = config
|
|
19
|
+
self.hidden_size = config.hidden_size
|
|
20
|
+
self.num_heads = config.num_attention_heads
|
|
21
|
+
self.head_dim = self.hidden_size // self.num_heads
|
|
22
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
23
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
24
|
+
self.layer_idx = layer_idx
|
|
25
|
+
self.scale = self.head_dim**-0.5
|
|
26
|
+
self.q_proj = nn.Linear(
|
|
27
|
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
|
28
|
+
)
|
|
29
|
+
self.k_proj = nn.Linear(
|
|
30
|
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
31
|
+
)
|
|
32
|
+
self.v_proj = nn.Linear(
|
|
33
|
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
34
|
+
)
|
|
35
|
+
self.o_proj = nn.Linear(
|
|
36
|
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
self.q_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
40
|
+
self.k_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
41
|
+
|
|
42
|
+
def __call__(
|
|
43
|
+
self,
|
|
44
|
+
hidden_states: mx.array,
|
|
45
|
+
cross_attention_states: Optional[mx.array] = None,
|
|
46
|
+
attention_mask: Optional[mx.array] = None,
|
|
47
|
+
cache: Optional[KVCache] = None,
|
|
48
|
+
) -> mx.array:
|
|
49
|
+
|
|
50
|
+
bsz, q_len, _ = hidden_states.shape
|
|
51
|
+
query = (
|
|
52
|
+
self.q_proj(hidden_states)
|
|
53
|
+
.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
|
54
|
+
.transpose(0, 2, 1, 3)
|
|
55
|
+
)
|
|
56
|
+
query_states = self.q_norm(query)
|
|
57
|
+
|
|
58
|
+
if cross_attention_states is not None:
|
|
59
|
+
key_states = (
|
|
60
|
+
self.k_proj(cross_attention_states)
|
|
61
|
+
.reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
|
|
62
|
+
.transpose(0, 2, 1, 3)
|
|
63
|
+
)
|
|
64
|
+
value_states = (
|
|
65
|
+
self.v_proj(cross_attention_states)
|
|
66
|
+
.reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
|
|
67
|
+
.transpose(0, 2, 1, 3)
|
|
68
|
+
)
|
|
69
|
+
key_states = self.k_norm(key_states)
|
|
70
|
+
elif cache is not None and cache.offset > 0:
|
|
71
|
+
key_states, value_states = cache.fetch()
|
|
72
|
+
else:
|
|
73
|
+
key_states, value_states = mx.split(query, 2, axis=1)
|
|
74
|
+
key_states = self.k_norm(key_states)
|
|
75
|
+
|
|
76
|
+
attn_output = scaled_dot_product_attention(
|
|
77
|
+
query_states,
|
|
78
|
+
key_states,
|
|
79
|
+
value_states,
|
|
80
|
+
cache,
|
|
81
|
+
scale=self.scale,
|
|
82
|
+
mask=attention_mask, # add a dim for batch processing
|
|
83
|
+
)
|
|
84
|
+
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
|
|
85
|
+
bsz, q_len, self.hidden_size
|
|
86
|
+
)
|
|
87
|
+
return self.o_proj(attn_output)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class MllamaTextSelfAttention(nn.Module):
|
|
91
|
+
def __init__(self, config: TextConfig, layer_idx: int):
|
|
92
|
+
super().__init__()
|
|
93
|
+
self.config = config
|
|
94
|
+
self.hidden_size = config.hidden_size
|
|
95
|
+
self.num_heads = config.num_attention_heads
|
|
96
|
+
self.head_dim = self.hidden_size // self.num_heads
|
|
97
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
98
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
99
|
+
self.scale = self.head_dim**-0.5
|
|
100
|
+
self.layer_idx = layer_idx
|
|
101
|
+
|
|
102
|
+
self.q_proj = nn.Linear(
|
|
103
|
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
|
104
|
+
)
|
|
105
|
+
self.k_proj = nn.Linear(
|
|
106
|
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
107
|
+
)
|
|
108
|
+
self.v_proj = nn.Linear(
|
|
109
|
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
|
110
|
+
)
|
|
111
|
+
self.o_proj = nn.Linear(
|
|
112
|
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
self.rope = nn.RoPE(
|
|
116
|
+
self.head_dim,
|
|
117
|
+
traditional=config.rope_traditional,
|
|
118
|
+
base=config.rope_theta,
|
|
119
|
+
scale=1,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
def __call__(
|
|
123
|
+
self,
|
|
124
|
+
x: mx.array,
|
|
125
|
+
mask: Optional[mx.array] = None,
|
|
126
|
+
cache: Optional[KVCache] = None,
|
|
127
|
+
) -> mx.array:
|
|
128
|
+
bsz, q_len, _ = x.shape
|
|
129
|
+
query_states = (
|
|
130
|
+
self.q_proj(x).reshape(bsz, q_len, self.num_heads, -1).transpose(0, 2, 1, 3)
|
|
131
|
+
)
|
|
132
|
+
key_states = (
|
|
133
|
+
self.k_proj(x)
|
|
134
|
+
.reshape(bsz, q_len, self.num_key_value_heads, -1)
|
|
135
|
+
.transpose(0, 2, 1, 3)
|
|
136
|
+
)
|
|
137
|
+
value_states = (
|
|
138
|
+
self.v_proj(x)
|
|
139
|
+
.reshape(bsz, q_len, self.num_key_value_heads, -1)
|
|
140
|
+
.transpose(0, 2, 1, 3)
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
if cache is not None:
|
|
144
|
+
query_states = self.rope(query_states, offset=cache.offset)
|
|
145
|
+
key_states = self.rope(key_states, offset=cache.offset)
|
|
146
|
+
key_states, value_states = cache.update_and_fetch(key_states, value_states)
|
|
147
|
+
else:
|
|
148
|
+
query_states = self.rope(query_states)
|
|
149
|
+
key_states = self.rope(key_states)
|
|
150
|
+
|
|
151
|
+
attn_output = scaled_dot_product_attention(
|
|
152
|
+
query_states, key_states, value_states, cache, scale=self.scale, mask=mask
|
|
153
|
+
)
|
|
154
|
+
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
|
|
155
|
+
bsz, q_len, self.hidden_size
|
|
156
|
+
)
|
|
157
|
+
return self.o_proj(attn_output)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class MllamaTextMLP(nn.Module):
|
|
161
|
+
def __init__(self, config: TextConfig):
|
|
162
|
+
super().__init__()
|
|
163
|
+
self.gate_proj = nn.Linear(
|
|
164
|
+
config.hidden_size, config.intermediate_size, bias=False
|
|
165
|
+
)
|
|
166
|
+
self.up_proj = nn.Linear(
|
|
167
|
+
config.hidden_size, config.intermediate_size, bias=False
|
|
168
|
+
)
|
|
169
|
+
self.down_proj = nn.Linear(
|
|
170
|
+
config.intermediate_size, config.hidden_size, bias=False
|
|
171
|
+
)
|
|
172
|
+
self.act_fn = lambda x: x * mx.sigmoid(x)
|
|
173
|
+
|
|
174
|
+
def __call__(self, x):
|
|
175
|
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class MllamaSelfAttentionDecoderLayer(nn.Module):
|
|
179
|
+
def __init__(self, config: TextConfig, layer_idx: int):
|
|
180
|
+
super().__init__()
|
|
181
|
+
self.hidden_size = config.hidden_size
|
|
182
|
+
self.self_attn = MllamaTextSelfAttention(config, layer_idx=layer_idx)
|
|
183
|
+
self.mlp = MllamaTextMLP(config)
|
|
184
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
185
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
186
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
def __call__(
|
|
190
|
+
self,
|
|
191
|
+
hidden_states: mx.array,
|
|
192
|
+
mask: Optional[mx.array] = None,
|
|
193
|
+
cache: Optional[KVCache] = None,
|
|
194
|
+
) -> mx.array:
|
|
195
|
+
residual = hidden_states
|
|
196
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
197
|
+
hidden_states = self.self_attn(
|
|
198
|
+
x=hidden_states,
|
|
199
|
+
mask=mask,
|
|
200
|
+
cache=cache,
|
|
201
|
+
)
|
|
202
|
+
hidden_states = residual + hidden_states
|
|
203
|
+
|
|
204
|
+
residual = hidden_states
|
|
205
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
206
|
+
hidden_states = self.mlp(hidden_states)
|
|
207
|
+
hidden_states = residual + hidden_states
|
|
208
|
+
|
|
209
|
+
return hidden_states
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
class MllamaCrossAttentionDecoderLayer(nn.Module):
|
|
213
|
+
def __init__(self, config: TextConfig, layer_idx: int):
|
|
214
|
+
super().__init__()
|
|
215
|
+
self.hidden_size = config.hidden_size
|
|
216
|
+
self.cross_attn = MllamaTextCrossAttention(config, layer_idx=layer_idx)
|
|
217
|
+
self.mlp = MllamaTextMLP(config)
|
|
218
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
219
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
220
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
221
|
+
)
|
|
222
|
+
self.cross_attn_attn_gate = mx.zeros(1)
|
|
223
|
+
self.cross_attn_mlp_gate = mx.zeros(1)
|
|
224
|
+
|
|
225
|
+
def __call__(
|
|
226
|
+
self,
|
|
227
|
+
hidden_states: mx.array,
|
|
228
|
+
cross_attention_states: mx.array,
|
|
229
|
+
attention_mask: Optional[mx.array] = None,
|
|
230
|
+
full_text_row_masked_out_mask: Optional[mx.array] = None,
|
|
231
|
+
cache: Optional[KVCache] = None,
|
|
232
|
+
) -> mx.array:
|
|
233
|
+
residual = hidden_states
|
|
234
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
235
|
+
hidden_states = self.cross_attn(
|
|
236
|
+
hidden_states=hidden_states,
|
|
237
|
+
cross_attention_states=cross_attention_states,
|
|
238
|
+
attention_mask=attention_mask,
|
|
239
|
+
cache=cache,
|
|
240
|
+
)
|
|
241
|
+
hidden_states = residual + mx.tanh(self.cross_attn_attn_gate) * hidden_states
|
|
242
|
+
|
|
243
|
+
residual = hidden_states
|
|
244
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
245
|
+
hidden_states = self.mlp(hidden_states)
|
|
246
|
+
if full_text_row_masked_out_mask is not None:
|
|
247
|
+
hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states
|
|
248
|
+
hidden_states = residual + mx.tanh(self.cross_attn_mlp_gate) * hidden_states
|
|
249
|
+
|
|
250
|
+
return hidden_states
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
class MllamaTextModel(nn.Module):
|
|
254
|
+
def __init__(self, config: TextConfig):
|
|
255
|
+
super().__init__()
|
|
256
|
+
self.config = config
|
|
257
|
+
self.vocab_size = config.vocab_size
|
|
258
|
+
self.hidden_size = config.hidden_size
|
|
259
|
+
|
|
260
|
+
self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size)
|
|
261
|
+
self.layers = [
|
|
262
|
+
(
|
|
263
|
+
MllamaCrossAttentionDecoderLayer(config, layer_idx)
|
|
264
|
+
if layer_idx in config.cross_attention_layers
|
|
265
|
+
else MllamaSelfAttentionDecoderLayer(config, layer_idx)
|
|
266
|
+
)
|
|
267
|
+
for layer_idx in range(config.num_hidden_layers)
|
|
268
|
+
]
|
|
269
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
270
|
+
|
|
271
|
+
def __call__(
|
|
272
|
+
self,
|
|
273
|
+
input_ids: Optional[mx.array] = None,
|
|
274
|
+
mask: Optional[mx.array] = None,
|
|
275
|
+
position_ids: Optional[mx.array] = None,
|
|
276
|
+
cross_attention_states: Optional[mx.array] = None,
|
|
277
|
+
cross_attention_mask: Optional[mx.array] = None,
|
|
278
|
+
full_text_row_masked_out_mask: Optional[mx.array] = None,
|
|
279
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
280
|
+
cache: Optional[KVCache] = None,
|
|
281
|
+
) -> mx.array:
|
|
282
|
+
# Prioritize inputs_embeds if provided
|
|
283
|
+
if inputs_embeds is not None:
|
|
284
|
+
batch_size, seq_length, _ = inputs_embeds.shape
|
|
285
|
+
elif input_ids is not None:
|
|
286
|
+
batch_size, seq_length = input_ids.shape
|
|
287
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
288
|
+
else:
|
|
289
|
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
290
|
+
|
|
291
|
+
if position_ids is None:
|
|
292
|
+
position_ids = mx.expand_dims(mx.arange(seq_length), 0)
|
|
293
|
+
position_ids = mx.repeat(position_ids, batch_size, axis=0)
|
|
294
|
+
|
|
295
|
+
hidden_states = inputs_embeds
|
|
296
|
+
|
|
297
|
+
if cache is None:
|
|
298
|
+
cache = [None] * len(self.layers)
|
|
299
|
+
|
|
300
|
+
if mask is None:
|
|
301
|
+
mask = create_attention_mask(hidden_states, cache)
|
|
302
|
+
|
|
303
|
+
for idx, (decoder_layer, c) in enumerate(zip(self.layers, cache)):
|
|
304
|
+
if idx in self.config.cross_attention_layers:
|
|
305
|
+
layer_outputs = decoder_layer(
|
|
306
|
+
hidden_states,
|
|
307
|
+
cross_attention_states=cross_attention_states,
|
|
308
|
+
attention_mask=cross_attention_mask,
|
|
309
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
310
|
+
cache=c,
|
|
311
|
+
)
|
|
312
|
+
else:
|
|
313
|
+
layer_outputs = decoder_layer(
|
|
314
|
+
hidden_states,
|
|
315
|
+
mask=mask,
|
|
316
|
+
cache=c,
|
|
317
|
+
)
|
|
318
|
+
hidden_states = layer_outputs
|
|
319
|
+
|
|
320
|
+
hidden_states = self.norm(hidden_states)
|
|
321
|
+
|
|
322
|
+
return hidden_states
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
class LanguageModel(nn.Module):
|
|
326
|
+
def __init__(self, config: TextConfig):
|
|
327
|
+
super().__init__()
|
|
328
|
+
self.config = config
|
|
329
|
+
self.model = MllamaTextModel(config)
|
|
330
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
331
|
+
|
|
332
|
+
def __call__(
|
|
333
|
+
self,
|
|
334
|
+
inputs: Optional[mx.array] = None,
|
|
335
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
336
|
+
mask: Optional[mx.array] = None,
|
|
337
|
+
cache: Optional[KVCache] = None,
|
|
338
|
+
cross_attention_states: Optional[mx.array] = None,
|
|
339
|
+
cross_attention_mask: Optional[mx.array] = None,
|
|
340
|
+
full_text_row_masked_out_mask: Optional[mx.array] = None,
|
|
341
|
+
**kwargs,
|
|
342
|
+
) -> Tuple[mx.array, Optional[mx.array]]:
|
|
343
|
+
|
|
344
|
+
hidden_states = self.model(
|
|
345
|
+
input_ids=inputs,
|
|
346
|
+
mask=mask,
|
|
347
|
+
cross_attention_states=cross_attention_states,
|
|
348
|
+
cross_attention_mask=cross_attention_mask,
|
|
349
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
350
|
+
inputs_embeds=inputs_embeds,
|
|
351
|
+
cache=cache,
|
|
352
|
+
)
|
|
353
|
+
|
|
354
|
+
logits = self.lm_head(hidden_states)
|
|
355
|
+
|
|
356
|
+
return LanguageModelOutput(
|
|
357
|
+
logits=logits, cross_attention_states=cross_attention_states
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
@staticmethod
|
|
361
|
+
def sanitize(weights):
|
|
362
|
+
# Remove unused precomputed rotary freqs
|
|
363
|
+
return {
|
|
364
|
+
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
365
|
+
}
|
|
366
|
+
|
|
367
|
+
@property
|
|
368
|
+
def layers(self):
|
|
369
|
+
return self.model.layers
|
|
370
|
+
|
|
371
|
+
@property
|
|
372
|
+
def head_dim(self):
|
|
373
|
+
return self.config.hidden_size // self.config.num_attention_heads
|
|
374
|
+
|
|
375
|
+
@property
|
|
376
|
+
def n_kv_heads(self):
|
|
377
|
+
return self.config.num_key_value_heads
|
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
from typing import Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import InputEmbeddingsFeatures
|
|
7
|
+
from ..cache import KVCache
|
|
8
|
+
from .config import ModelConfig
|
|
9
|
+
from .language import LanguageModel
|
|
10
|
+
from .vision import VisionModel
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Model(nn.Module):
|
|
14
|
+
def __init__(self, config: ModelConfig):
|
|
15
|
+
super().__init__()
|
|
16
|
+
self.config = config
|
|
17
|
+
self.vision_tower = VisionModel(config.vision_config)
|
|
18
|
+
self.language_model = LanguageModel(config.text_config)
|
|
19
|
+
self.multi_modal_projector = nn.Linear(
|
|
20
|
+
config.vision_config.vision_output_dim,
|
|
21
|
+
config.text_config.hidden_size,
|
|
22
|
+
bias=True,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
@property
|
|
26
|
+
def layers(self):
|
|
27
|
+
return self.language_model.model.layers
|
|
28
|
+
|
|
29
|
+
def get_input_embeddings(
|
|
30
|
+
self,
|
|
31
|
+
input_ids: Optional[mx.array] = None,
|
|
32
|
+
pixel_values: Optional[mx.array] = None,
|
|
33
|
+
**kwargs,
|
|
34
|
+
):
|
|
35
|
+
aspect_ratio_ids = kwargs.get("aspect_ratio_ids", None)
|
|
36
|
+
aspect_ratio_mask = kwargs.get("aspect_ratio_mask", None)
|
|
37
|
+
cross_attention_mask = kwargs.get("cross_attention_mask", None)
|
|
38
|
+
|
|
39
|
+
# Get text embeddings
|
|
40
|
+
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
41
|
+
|
|
42
|
+
cross_attention_states = None
|
|
43
|
+
full_text_row_masked_out_mask = None
|
|
44
|
+
|
|
45
|
+
# Process vision input if provided
|
|
46
|
+
if pixel_values is not None:
|
|
47
|
+
if aspect_ratio_ids is None:
|
|
48
|
+
raise ValueError(
|
|
49
|
+
"`aspect_ratio_ids` must be provided if `pixel_values` is provided"
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
vision_outputs = self.vision_tower(
|
|
53
|
+
pixel_values=pixel_values,
|
|
54
|
+
aspect_ratio_ids=aspect_ratio_ids,
|
|
55
|
+
aspect_ratio_mask=aspect_ratio_mask,
|
|
56
|
+
)
|
|
57
|
+
cross_attention_states = vision_outputs[0]
|
|
58
|
+
|
|
59
|
+
cross_attention_states = self.multi_modal_projector(
|
|
60
|
+
cross_attention_states
|
|
61
|
+
).reshape(
|
|
62
|
+
-1,
|
|
63
|
+
cross_attention_states.shape[-2],
|
|
64
|
+
self.config.text_config.hidden_size,
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
# Prepare cross attention mask
|
|
68
|
+
if cross_attention_mask is not None:
|
|
69
|
+
cross_attention_mask, full_text_row_masked_out_mask = (
|
|
70
|
+
self._prepare_cross_attention_mask(
|
|
71
|
+
cross_attention_mask,
|
|
72
|
+
num_vision_tokens=(
|
|
73
|
+
self.config.vision_config.image_size
|
|
74
|
+
// self.config.vision_config.patch_size
|
|
75
|
+
)
|
|
76
|
+
** 2
|
|
77
|
+
+ 1,
|
|
78
|
+
)
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
cache_position = mx.arange(input_ids.shape[1], dtype=mx.int32)
|
|
82
|
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
|
83
|
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[
|
|
84
|
+
:, :, cache_position
|
|
85
|
+
]
|
|
86
|
+
|
|
87
|
+
return InputEmbeddingsFeatures(
|
|
88
|
+
inputs_embeds=inputs_embeds,
|
|
89
|
+
cross_attention_states=cross_attention_states,
|
|
90
|
+
cross_attention_mask=cross_attention_mask,
|
|
91
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
def __call__(
|
|
95
|
+
self,
|
|
96
|
+
input_ids: mx.array,
|
|
97
|
+
pixel_values: Optional[mx.array] = None,
|
|
98
|
+
mask: Optional[mx.array] = None,
|
|
99
|
+
cache: Optional[KVCache] = None,
|
|
100
|
+
**kwargs,
|
|
101
|
+
) -> Tuple[mx.array, Optional[mx.array]]:
|
|
102
|
+
|
|
103
|
+
aspect_ratio_ids = kwargs.pop("aspect_ratio_ids", None)
|
|
104
|
+
aspect_ratio_mask = kwargs.pop("aspect_ratio_mask", None)
|
|
105
|
+
cross_attention_mask = kwargs.pop("cross_attention_mask", None)
|
|
106
|
+
|
|
107
|
+
inputs_embeds = None
|
|
108
|
+
|
|
109
|
+
# Process vision input if provided
|
|
110
|
+
if pixel_values is not None:
|
|
111
|
+
if aspect_ratio_ids is None:
|
|
112
|
+
raise ValueError(
|
|
113
|
+
"`aspect_ratio_ids` must be provided if `pixel_values` is provided"
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
vision_outputs = self.vision_tower(
|
|
117
|
+
pixel_values=pixel_values,
|
|
118
|
+
aspect_ratio_ids=aspect_ratio_ids,
|
|
119
|
+
aspect_ratio_mask=aspect_ratio_mask,
|
|
120
|
+
)
|
|
121
|
+
cross_attention_states = vision_outputs[0]
|
|
122
|
+
|
|
123
|
+
cross_attention_states = self.multi_modal_projector(
|
|
124
|
+
cross_attention_states
|
|
125
|
+
).reshape(
|
|
126
|
+
-1,
|
|
127
|
+
cross_attention_states.shape[-2],
|
|
128
|
+
self.config.text_config.hidden_size,
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
else:
|
|
132
|
+
cross_attention_states = None
|
|
133
|
+
|
|
134
|
+
# Prepare cross attention mask
|
|
135
|
+
if cross_attention_mask is not None:
|
|
136
|
+
cross_attention_mask, full_text_row_masked_out_mask = (
|
|
137
|
+
self._prepare_cross_attention_mask(
|
|
138
|
+
cross_attention_mask,
|
|
139
|
+
num_vision_tokens=(
|
|
140
|
+
self.config.vision_config.image_size
|
|
141
|
+
// self.config.vision_config.patch_size
|
|
142
|
+
)
|
|
143
|
+
** 2
|
|
144
|
+
+ 1,
|
|
145
|
+
)
|
|
146
|
+
)
|
|
147
|
+
else:
|
|
148
|
+
full_text_row_masked_out_mask = None
|
|
149
|
+
|
|
150
|
+
if cross_attention_mask is not None:
|
|
151
|
+
cache_position = mx.arange(input_ids.shape[1], dtype=mx.int32)
|
|
152
|
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
|
153
|
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[
|
|
154
|
+
:, :, cache_position
|
|
155
|
+
]
|
|
156
|
+
|
|
157
|
+
# Process language input
|
|
158
|
+
outputs = self.language_model(
|
|
159
|
+
inputs=input_ids,
|
|
160
|
+
mask=mask,
|
|
161
|
+
cross_attention_states=cross_attention_states,
|
|
162
|
+
cross_attention_mask=cross_attention_mask,
|
|
163
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
164
|
+
inputs_embeds=inputs_embeds,
|
|
165
|
+
cache=cache,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
return outputs
|
|
169
|
+
|
|
170
|
+
def _prepare_cross_attention_mask(
|
|
171
|
+
self,
|
|
172
|
+
cross_attention_mask: mx.array,
|
|
173
|
+
num_vision_tokens: int,
|
|
174
|
+
) -> Tuple[mx.array, mx.array]:
|
|
175
|
+
batch_size, text_total_length, *_ = cross_attention_mask.shape
|
|
176
|
+
cross_attention_mask = mx.repeat(
|
|
177
|
+
cross_attention_mask, num_vision_tokens, axis=3
|
|
178
|
+
)
|
|
179
|
+
cross_attention_mask = cross_attention_mask.reshape(
|
|
180
|
+
batch_size, text_total_length, -1
|
|
181
|
+
)
|
|
182
|
+
cross_attention_mask = mx.expand_dims(cross_attention_mask, 1)
|
|
183
|
+
|
|
184
|
+
# Invert the mask
|
|
185
|
+
inverted_cross_attn_mask = 1.0 - cross_attention_mask
|
|
186
|
+
fill_array = mx.array(-1e9)
|
|
187
|
+
fill_array = mx.broadcast_to(fill_array, inverted_cross_attn_mask.shape)
|
|
188
|
+
cross_attention_mask = mx.where(
|
|
189
|
+
inverted_cross_attn_mask,
|
|
190
|
+
fill_array,
|
|
191
|
+
cross_attention_mask,
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Apply full-row bias
|
|
195
|
+
full_text_row_masked_out_mask = mx.any(
|
|
196
|
+
cross_attention_mask != -1e9,
|
|
197
|
+
axis=-1,
|
|
198
|
+
keepdims=True,
|
|
199
|
+
)
|
|
200
|
+
cross_attention_mask *= full_text_row_masked_out_mask
|
|
201
|
+
|
|
202
|
+
return cross_attention_mask, full_text_row_masked_out_mask
|
|
203
|
+
|
|
204
|
+
def sanitize(self, weights):
|
|
205
|
+
def transform_key(key):
|
|
206
|
+
if "vision_tower" not in key:
|
|
207
|
+
key = key.replace("vision_model", "vision_tower")
|
|
208
|
+
return key
|
|
209
|
+
|
|
210
|
+
return {transform_key(k): v for k, v in weights.items()}
|