fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,706 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from mlx_vlm.models.qwen3_omni_moe.code2wav import Code2WavModel
|
|
8
|
+
from mlx_vlm.models.qwen3_omni_moe.talker import Talker
|
|
9
|
+
from mlx_vlm.models.qwen3_omni_moe.thinker import Thinker
|
|
10
|
+
|
|
11
|
+
from .config import ModelConfig
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def masked_scatter(
|
|
15
|
+
final_embedding: mx.array,
|
|
16
|
+
image_mask_expanded: mx.array,
|
|
17
|
+
scaled_image_features: mx.array,
|
|
18
|
+
):
|
|
19
|
+
final_embedding_shape = final_embedding.shape
|
|
20
|
+
scaled_image_features_flattened = mx.flatten(scaled_image_features)
|
|
21
|
+
final_embedding_flattened = mx.flatten(final_embedding)
|
|
22
|
+
image_mask_expanded_flattened = mx.flatten(image_mask_expanded)
|
|
23
|
+
|
|
24
|
+
image_positions = mx.array(np.where(image_mask_expanded_flattened)[0], mx.uint32)
|
|
25
|
+
final_embedding_flattened[image_positions] = scaled_image_features_flattened
|
|
26
|
+
|
|
27
|
+
final_embedding = mx.reshape(final_embedding_flattened, final_embedding_shape)
|
|
28
|
+
|
|
29
|
+
return final_embedding
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class Model(nn.Module):
|
|
33
|
+
def __init__(self, config: ModelConfig):
|
|
34
|
+
super().__init__()
|
|
35
|
+
self.config = config
|
|
36
|
+
|
|
37
|
+
self.thinker = Thinker(config.thinker_config)
|
|
38
|
+
self.has_talker = config.enable_audio_output
|
|
39
|
+
if self.has_talker:
|
|
40
|
+
self.talker = Talker(config.talker_config)
|
|
41
|
+
self.code2wav = Code2WavModel(config.code2wav_config)
|
|
42
|
+
else:
|
|
43
|
+
self.talker = None
|
|
44
|
+
self.code2wav = None
|
|
45
|
+
|
|
46
|
+
def enable_talker(self):
|
|
47
|
+
if not self.has_talker:
|
|
48
|
+
self.talker = Talker(self.config.talker_config)
|
|
49
|
+
self.code2wav = Code2WavModel(self.config.code2wav_config)
|
|
50
|
+
self.has_talker = True
|
|
51
|
+
|
|
52
|
+
def disable_talker(self):
|
|
53
|
+
if self.has_talker:
|
|
54
|
+
self.talker = None
|
|
55
|
+
self.code2wav = None
|
|
56
|
+
self.has_talker = False
|
|
57
|
+
|
|
58
|
+
def get_input_embeddings(
|
|
59
|
+
self,
|
|
60
|
+
input_ids: Optional[mx.array] = None,
|
|
61
|
+
pixel_values: Optional[mx.array] = None,
|
|
62
|
+
pixel_values_videos: Optional[mx.array] = None,
|
|
63
|
+
input_features: Optional[mx.array] = None,
|
|
64
|
+
input_features_mask: Optional[mx.array] = None,
|
|
65
|
+
image_grid_thw: Optional[mx.array] = None,
|
|
66
|
+
video_grid_thw: Optional[mx.array] = None,
|
|
67
|
+
audio_feature_lengths: Optional[mx.array] = None,
|
|
68
|
+
**kwargs,
|
|
69
|
+
):
|
|
70
|
+
return self.thinker.get_input_embeddings(
|
|
71
|
+
input_ids=input_ids,
|
|
72
|
+
pixel_values=pixel_values,
|
|
73
|
+
pixel_values_videos=pixel_values_videos,
|
|
74
|
+
image_grid_thw=image_grid_thw,
|
|
75
|
+
video_grid_thw=video_grid_thw,
|
|
76
|
+
input_features=input_features,
|
|
77
|
+
feature_attention_mask=input_features_mask,
|
|
78
|
+
audio_feature_lengths=audio_feature_lengths,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
def get_audio_features(
|
|
82
|
+
self,
|
|
83
|
+
input_features: mx.array,
|
|
84
|
+
input_features_mask: Optional[mx.array] = None,
|
|
85
|
+
audio_feature_lengths: Optional[mx.array] = None,
|
|
86
|
+
):
|
|
87
|
+
return self.thinker.get_audio_features(
|
|
88
|
+
input_features=input_features,
|
|
89
|
+
feature_attention_mask=input_features_mask,
|
|
90
|
+
audio_feature_lengths=audio_feature_lengths,
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
def get_image_features(
|
|
94
|
+
self,
|
|
95
|
+
pixel_values: mx.array,
|
|
96
|
+
image_grid_thw: Optional[mx.array] = None,
|
|
97
|
+
):
|
|
98
|
+
dtype = self.thinker.vision_tower.patch_embed.proj.weight.dtype
|
|
99
|
+
pixel_values = pixel_values.astype(dtype)
|
|
100
|
+
vision_output = self.thinker.vision_tower(pixel_values, image_grid_thw)
|
|
101
|
+
if isinstance(vision_output, tuple):
|
|
102
|
+
return vision_output[0]
|
|
103
|
+
return vision_output
|
|
104
|
+
|
|
105
|
+
@property
|
|
106
|
+
def layers(self):
|
|
107
|
+
return self.thinker.language_model.layers
|
|
108
|
+
|
|
109
|
+
def extract_thinker_hidden_states(self, input_ids, target_layer_idx, **kwargs):
|
|
110
|
+
embed_kwargs = {
|
|
111
|
+
k: v
|
|
112
|
+
for k, v in kwargs.items()
|
|
113
|
+
if k
|
|
114
|
+
in [
|
|
115
|
+
"pixel_values",
|
|
116
|
+
"pixel_values_videos",
|
|
117
|
+
"image_grid_thw",
|
|
118
|
+
"video_grid_thw",
|
|
119
|
+
"input_features",
|
|
120
|
+
"feature_attention_mask",
|
|
121
|
+
"audio_feature_lengths",
|
|
122
|
+
]
|
|
123
|
+
}
|
|
124
|
+
inputs_embeds, _, _ = self.thinker.get_input_embeddings(
|
|
125
|
+
input_ids, **embed_kwargs
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
lm_kwargs = {
|
|
129
|
+
k: v for k, v in kwargs.items() if k in ["image_grid_thw", "video_grid_thw"]
|
|
130
|
+
}
|
|
131
|
+
|
|
132
|
+
outputs = self.thinker.language_model(
|
|
133
|
+
input_ids,
|
|
134
|
+
inputs_embeds=inputs_embeds,
|
|
135
|
+
output_hidden_states=True,
|
|
136
|
+
**lm_kwargs,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
hidden_states = outputs.hidden_states[target_layer_idx + 1]
|
|
140
|
+
|
|
141
|
+
return hidden_states, inputs_embeds
|
|
142
|
+
|
|
143
|
+
def _get_talker_user_parts(
|
|
144
|
+
self,
|
|
145
|
+
im_start_index: int,
|
|
146
|
+
segment_end_index: int,
|
|
147
|
+
multimodal_mask: mx.array,
|
|
148
|
+
thinker_hidden: mx.array,
|
|
149
|
+
thinker_embed: mx.array,
|
|
150
|
+
):
|
|
151
|
+
seq_len = segment_end_index - im_start_index
|
|
152
|
+
user_talker_part = mx.zeros(
|
|
153
|
+
(1, seq_len, self.config.talker_config.text_config.hidden_size),
|
|
154
|
+
dtype=thinker_embed.dtype,
|
|
155
|
+
)
|
|
156
|
+
user_mm_mask = multimodal_mask[:, im_start_index:segment_end_index]
|
|
157
|
+
user_thinker_hidden_mm = thinker_hidden[:, im_start_index:segment_end_index]
|
|
158
|
+
user_thinker_embed_seg = thinker_embed[:, im_start_index:segment_end_index]
|
|
159
|
+
|
|
160
|
+
if mx.any(user_mm_mask):
|
|
161
|
+
mm_indices = mx.array(
|
|
162
|
+
np.where(np.array(mx.reshape(user_mm_mask, (-1,))))[0]
|
|
163
|
+
)
|
|
164
|
+
user_thinker_hidden_mm_flat = mx.reshape(
|
|
165
|
+
user_thinker_hidden_mm, (-1, user_thinker_hidden_mm.shape[-1])
|
|
166
|
+
)
|
|
167
|
+
mm_hidden_flat = mx.take(user_thinker_hidden_mm_flat, mm_indices, axis=0)
|
|
168
|
+
mm_hidden = self.talker.hidden_projection(mm_hidden_flat)
|
|
169
|
+
user_talker_part_flat = mx.reshape(
|
|
170
|
+
user_talker_part, (-1, user_talker_part.shape[-1])
|
|
171
|
+
)
|
|
172
|
+
user_talker_part_flat[mm_indices] = mm_hidden
|
|
173
|
+
user_talker_part = mx.reshape(user_talker_part_flat, user_talker_part.shape)
|
|
174
|
+
|
|
175
|
+
text_mask = ~user_mm_mask
|
|
176
|
+
if mx.any(text_mask):
|
|
177
|
+
text_indices = mx.array(np.where(np.array(mx.reshape(text_mask, (-1,))))[0])
|
|
178
|
+
user_thinker_embed_flat = mx.reshape(
|
|
179
|
+
user_thinker_embed_seg, (-1, user_thinker_embed_seg.shape[-1])
|
|
180
|
+
)
|
|
181
|
+
text_embed_flat = mx.take(user_thinker_embed_flat, text_indices, axis=0)
|
|
182
|
+
user_text_hidden = self.talker.text_projection(text_embed_flat)
|
|
183
|
+
user_talker_part_flat = mx.reshape(
|
|
184
|
+
user_talker_part, (-1, user_talker_part.shape[-1])
|
|
185
|
+
)
|
|
186
|
+
user_talker_part_flat[text_indices] = user_text_hidden
|
|
187
|
+
user_talker_part = mx.reshape(user_talker_part_flat, user_talker_part.shape)
|
|
188
|
+
|
|
189
|
+
return user_talker_part
|
|
190
|
+
|
|
191
|
+
def _get_talker_assistant_parts(
|
|
192
|
+
self,
|
|
193
|
+
im_start_index: int,
|
|
194
|
+
segment_end_index: int,
|
|
195
|
+
speaker_id: int,
|
|
196
|
+
thinker_embed: mx.array,
|
|
197
|
+
tts_pad_embed: mx.array,
|
|
198
|
+
tts_bos_embed: mx.array,
|
|
199
|
+
tts_eos_embed: mx.array,
|
|
200
|
+
):
|
|
201
|
+
assistant_hidden = self.talker.text_projection(
|
|
202
|
+
thinker_embed[:, im_start_index:segment_end_index]
|
|
203
|
+
)
|
|
204
|
+
assistant_text_hidden = mx.concatenate(
|
|
205
|
+
(
|
|
206
|
+
assistant_hidden[:, :3],
|
|
207
|
+
mx.broadcast_to(tts_pad_embed, (1, 4, tts_pad_embed.shape[-1])),
|
|
208
|
+
tts_bos_embed,
|
|
209
|
+
assistant_hidden[:, 3:4],
|
|
210
|
+
),
|
|
211
|
+
axis=1,
|
|
212
|
+
)
|
|
213
|
+
codec_special_tokens = mx.array(
|
|
214
|
+
[
|
|
215
|
+
[
|
|
216
|
+
self.config.talker_config.codec_nothink_id,
|
|
217
|
+
self.config.talker_config.codec_think_bos_id,
|
|
218
|
+
self.config.talker_config.codec_think_eos_id,
|
|
219
|
+
speaker_id,
|
|
220
|
+
self.config.talker_config.codec_pad_id,
|
|
221
|
+
self.config.talker_config.codec_bos_id,
|
|
222
|
+
]
|
|
223
|
+
],
|
|
224
|
+
dtype=mx.int32,
|
|
225
|
+
)
|
|
226
|
+
assistant_codec_hidden = mx.concatenate(
|
|
227
|
+
(
|
|
228
|
+
mx.zeros(
|
|
229
|
+
(1, 3, self.config.talker_config.text_config.hidden_size),
|
|
230
|
+
dtype=thinker_embed.dtype,
|
|
231
|
+
),
|
|
232
|
+
self.talker.model.codec_embedding(codec_special_tokens),
|
|
233
|
+
),
|
|
234
|
+
axis=1,
|
|
235
|
+
)
|
|
236
|
+
trailing_text_hidden = mx.concatenate(
|
|
237
|
+
(
|
|
238
|
+
assistant_hidden[:, 4:],
|
|
239
|
+
tts_eos_embed,
|
|
240
|
+
),
|
|
241
|
+
axis=1,
|
|
242
|
+
)
|
|
243
|
+
input_embeds = assistant_text_hidden + assistant_codec_hidden
|
|
244
|
+
input_ids = mx.full(
|
|
245
|
+
(1, assistant_text_hidden.shape[1]),
|
|
246
|
+
self.config.tts_pad_token_id,
|
|
247
|
+
dtype=mx.int32,
|
|
248
|
+
)
|
|
249
|
+
return input_embeds, input_ids, trailing_text_hidden
|
|
250
|
+
|
|
251
|
+
def __call__(
|
|
252
|
+
self,
|
|
253
|
+
input_ids: mx.array,
|
|
254
|
+
pixel_values: Optional[mx.array] = None,
|
|
255
|
+
pixel_values_videos: Optional[mx.array] = None,
|
|
256
|
+
mask: Optional[mx.array] = None,
|
|
257
|
+
cache=None,
|
|
258
|
+
**kwargs,
|
|
259
|
+
):
|
|
260
|
+
return self.thinker(
|
|
261
|
+
input_ids=input_ids,
|
|
262
|
+
pixel_values=pixel_values,
|
|
263
|
+
pixel_values_videos=pixel_values_videos,
|
|
264
|
+
mask=mask,
|
|
265
|
+
cache=cache,
|
|
266
|
+
**kwargs,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
def generate(
|
|
270
|
+
self,
|
|
271
|
+
input_ids: mx.array,
|
|
272
|
+
speaker: str = "Ethan",
|
|
273
|
+
use_audio_in_video: bool = False,
|
|
274
|
+
return_audio: Optional[bool] = None,
|
|
275
|
+
thinker_max_new_tokens: int = 1024,
|
|
276
|
+
thinker_eos_token_id: int = 151645,
|
|
277
|
+
talker_max_new_tokens: int = 4096,
|
|
278
|
+
talker_do_sample: bool = True,
|
|
279
|
+
talker_top_k: int = 50,
|
|
280
|
+
talker_top_p: float = 1.0,
|
|
281
|
+
talker_temperature: float = 0.9,
|
|
282
|
+
talker_repetition_penalty: float = 1.05,
|
|
283
|
+
**kwargs,
|
|
284
|
+
):
|
|
285
|
+
if return_audio and not self.has_talker:
|
|
286
|
+
raise ValueError(
|
|
287
|
+
"Cannot use talker when talker module not initialized. Use `enable_talker` method or set enable_audio_output in config to enable talker."
|
|
288
|
+
)
|
|
289
|
+
if return_audio is None:
|
|
290
|
+
return_audio = self.has_talker
|
|
291
|
+
|
|
292
|
+
if not return_audio:
|
|
293
|
+
from mlx_vlm.generate import generate_step
|
|
294
|
+
|
|
295
|
+
thinker_kwargs = {
|
|
296
|
+
"max_tokens": thinker_max_new_tokens,
|
|
297
|
+
"eos_tokens": [thinker_eos_token_id],
|
|
298
|
+
}
|
|
299
|
+
for key, value in kwargs.items():
|
|
300
|
+
if key.startswith("thinker_"):
|
|
301
|
+
thinker_kwargs[key[len("thinker_") :]] = value
|
|
302
|
+
elif key in (
|
|
303
|
+
"input_features",
|
|
304
|
+
"feature_attention_mask",
|
|
305
|
+
"audio_feature_lengths",
|
|
306
|
+
"pixel_values",
|
|
307
|
+
"pixel_values_videos",
|
|
308
|
+
"image_grid_thw",
|
|
309
|
+
"video_grid_thw",
|
|
310
|
+
):
|
|
311
|
+
thinker_kwargs[key] = value
|
|
312
|
+
|
|
313
|
+
generator = generate_step(
|
|
314
|
+
input_ids,
|
|
315
|
+
self.thinker,
|
|
316
|
+
thinker_kwargs.get("pixel_values"),
|
|
317
|
+
kwargs.get("mask"),
|
|
318
|
+
**{
|
|
319
|
+
k: v
|
|
320
|
+
for k, v in thinker_kwargs.items()
|
|
321
|
+
if k not in ("pixel_values", "mask")
|
|
322
|
+
},
|
|
323
|
+
)
|
|
324
|
+
sequences = [input_ids]
|
|
325
|
+
for token, _ in generator:
|
|
326
|
+
sequences.append(mx.array([[token]]))
|
|
327
|
+
if token == thinker_eos_token_id:
|
|
328
|
+
break
|
|
329
|
+
thinker_result = type(
|
|
330
|
+
"obj",
|
|
331
|
+
(object,),
|
|
332
|
+
{
|
|
333
|
+
"sequences": mx.concatenate(sequences, axis=1),
|
|
334
|
+
"hidden_states": None,
|
|
335
|
+
},
|
|
336
|
+
)()
|
|
337
|
+
return thinker_result, None
|
|
338
|
+
|
|
339
|
+
if input_ids.shape[0] != 1:
|
|
340
|
+
raise NotImplementedError(
|
|
341
|
+
"Qwen3-Omni currently does not support batched inference with audio output"
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
speaker_id = self.config.talker_config.speaker_id.get(speaker.lower())
|
|
345
|
+
if speaker_id is None:
|
|
346
|
+
raise NotImplementedError(f"Speaker {speaker} not implemented")
|
|
347
|
+
|
|
348
|
+
from mlx_vlm.generate import generate_step
|
|
349
|
+
|
|
350
|
+
thinker_kwargs = {
|
|
351
|
+
"max_tokens": thinker_max_new_tokens,
|
|
352
|
+
"eos_tokens": [thinker_eos_token_id],
|
|
353
|
+
"output_hidden_states": True,
|
|
354
|
+
}
|
|
355
|
+
for key, value in kwargs.items():
|
|
356
|
+
if key.startswith("thinker_"):
|
|
357
|
+
thinker_kwargs[key[len("thinker_") :]] = value
|
|
358
|
+
elif key in (
|
|
359
|
+
"input_features",
|
|
360
|
+
"feature_attention_mask",
|
|
361
|
+
"audio_feature_lengths",
|
|
362
|
+
"pixel_values",
|
|
363
|
+
"pixel_values_videos",
|
|
364
|
+
"image_grid_thw",
|
|
365
|
+
"video_grid_thw",
|
|
366
|
+
):
|
|
367
|
+
thinker_kwargs[key] = value
|
|
368
|
+
|
|
369
|
+
generator = generate_step(
|
|
370
|
+
input_ids,
|
|
371
|
+
self.thinker,
|
|
372
|
+
thinker_kwargs.get("pixel_values"),
|
|
373
|
+
kwargs.get("mask"),
|
|
374
|
+
**{
|
|
375
|
+
k: v
|
|
376
|
+
for k, v in thinker_kwargs.items()
|
|
377
|
+
if k not in ("pixel_values", "mask", "output_hidden_states")
|
|
378
|
+
},
|
|
379
|
+
)
|
|
380
|
+
sequences = [input_ids]
|
|
381
|
+
hidden_states_list = []
|
|
382
|
+
for token, _ in generator:
|
|
383
|
+
sequences.append(mx.array([[token]]))
|
|
384
|
+
if token == thinker_eos_token_id:
|
|
385
|
+
break
|
|
386
|
+
|
|
387
|
+
thinker_result_sequences = mx.concatenate(sequences, axis=1)
|
|
388
|
+
|
|
389
|
+
thinker_hidden_all, thinker_embed_all = self.extract_thinker_hidden_states(
|
|
390
|
+
thinker_result_sequences,
|
|
391
|
+
target_layer_idx=self.config.talker_config.accept_hidden_layer,
|
|
392
|
+
**kwargs,
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
im_start_indexes = mx.concatenate(
|
|
396
|
+
(
|
|
397
|
+
mx.array(
|
|
398
|
+
np.where(np.array(input_ids[0] == self.config.im_start_token_id))[0]
|
|
399
|
+
),
|
|
400
|
+
mx.array([thinker_result_sequences.shape[-1]], dtype=mx.int32),
|
|
401
|
+
),
|
|
402
|
+
axis=0,
|
|
403
|
+
)
|
|
404
|
+
multimodal_mask = (
|
|
405
|
+
(thinker_result_sequences == self.config.thinker_config.audio_token_id)
|
|
406
|
+
| (thinker_result_sequences == self.config.thinker_config.image_token_id)
|
|
407
|
+
| (thinker_result_sequences == self.config.thinker_config.video_token_id)
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
talker_special_tokens = mx.array(
|
|
411
|
+
[
|
|
412
|
+
[
|
|
413
|
+
self.config.tts_bos_token_id,
|
|
414
|
+
self.config.tts_eos_token_id,
|
|
415
|
+
self.config.tts_pad_token_id,
|
|
416
|
+
]
|
|
417
|
+
],
|
|
418
|
+
dtype=input_ids.dtype,
|
|
419
|
+
)
|
|
420
|
+
talker_special_embeds = self.thinker.language_model.model.embed_tokens(
|
|
421
|
+
talker_special_tokens
|
|
422
|
+
)
|
|
423
|
+
talker_special_embeds_proj = self.talker.text_projection(talker_special_embeds)
|
|
424
|
+
tts_bos_embed = talker_special_embeds_proj[:, 0:1]
|
|
425
|
+
tts_eos_embed = talker_special_embeds_proj[:, 1:2]
|
|
426
|
+
tts_pad_embed = talker_special_embeds_proj[:, 2:3]
|
|
427
|
+
|
|
428
|
+
talker_input_embeds = []
|
|
429
|
+
talker_input_ids = []
|
|
430
|
+
|
|
431
|
+
for i in range(len(im_start_indexes) - 1):
|
|
432
|
+
im_start_index = int(im_start_indexes[i])
|
|
433
|
+
segment_end_index = int(im_start_indexes[i + 1])
|
|
434
|
+
role_token = int(input_ids[0, im_start_index + 1])
|
|
435
|
+
|
|
436
|
+
if role_token == self.config.system_token_id:
|
|
437
|
+
continue
|
|
438
|
+
elif role_token == self.config.user_token_id:
|
|
439
|
+
talker_user_part = self._get_talker_user_parts(
|
|
440
|
+
im_start_index,
|
|
441
|
+
segment_end_index,
|
|
442
|
+
multimodal_mask,
|
|
443
|
+
thinker_hidden_all,
|
|
444
|
+
thinker_embed_all,
|
|
445
|
+
)
|
|
446
|
+
talker_input_embeds.append(talker_user_part)
|
|
447
|
+
talker_input_ids.append(
|
|
448
|
+
thinker_result_sequences[:, im_start_index:segment_end_index]
|
|
449
|
+
)
|
|
450
|
+
elif (
|
|
451
|
+
role_token == self.config.assistant_token_id
|
|
452
|
+
and i == len(im_start_indexes) - 2
|
|
453
|
+
):
|
|
454
|
+
talker_assistant_embeds, talker_assistant_ids, trailing_text_hidden = (
|
|
455
|
+
self._get_talker_assistant_parts(
|
|
456
|
+
im_start_index,
|
|
457
|
+
segment_end_index,
|
|
458
|
+
speaker_id,
|
|
459
|
+
thinker_embed_all,
|
|
460
|
+
tts_pad_embed,
|
|
461
|
+
tts_bos_embed,
|
|
462
|
+
tts_eos_embed,
|
|
463
|
+
)
|
|
464
|
+
)
|
|
465
|
+
talker_input_embeds.append(talker_assistant_embeds)
|
|
466
|
+
talker_input_ids.append(talker_assistant_ids)
|
|
467
|
+
elif (
|
|
468
|
+
role_token == self.config.assistant_token_id
|
|
469
|
+
and i != len(im_start_indexes) - 2
|
|
470
|
+
):
|
|
471
|
+
continue
|
|
472
|
+
else:
|
|
473
|
+
raise AssertionError(
|
|
474
|
+
"Expect role id after <|im_start|> (assistant, user, system)"
|
|
475
|
+
)
|
|
476
|
+
|
|
477
|
+
if len(talker_input_embeds) == 0:
|
|
478
|
+
return (
|
|
479
|
+
type(
|
|
480
|
+
"obj",
|
|
481
|
+
(object,),
|
|
482
|
+
{
|
|
483
|
+
"sequences": thinker_result_sequences,
|
|
484
|
+
"hidden_states": None,
|
|
485
|
+
},
|
|
486
|
+
)(),
|
|
487
|
+
None,
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
talker_input_embed = mx.concatenate(talker_input_embeds, axis=1)
|
|
491
|
+
talker_input_id = mx.concatenate(talker_input_ids, axis=1)
|
|
492
|
+
|
|
493
|
+
talker_result = self.talker.generate(
|
|
494
|
+
inputs_embeds=talker_input_embed,
|
|
495
|
+
trailing_text_hidden=trailing_text_hidden,
|
|
496
|
+
tts_pad_embed=tts_pad_embed,
|
|
497
|
+
talker_input_ids=talker_input_id,
|
|
498
|
+
max_new_tokens=talker_max_new_tokens,
|
|
499
|
+
temperature=talker_temperature,
|
|
500
|
+
top_p=talker_top_p,
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
valid_codes = [
|
|
504
|
+
hid[-1] for hid in talker_result.hidden_states if hid[-1] is not None
|
|
505
|
+
]
|
|
506
|
+
if not valid_codes:
|
|
507
|
+
talker_wavs = mx.zeros((1, 1, 1000))
|
|
508
|
+
else:
|
|
509
|
+
talker_codes = mx.stack(valid_codes, axis=1).transpose(0, 2, 1)
|
|
510
|
+
talker_wavs = self.code2wav.chunked_decode(
|
|
511
|
+
talker_codes, chunk_size=300, left_context_size=25
|
|
512
|
+
)
|
|
513
|
+
|
|
514
|
+
thinker_result = type(
|
|
515
|
+
"obj",
|
|
516
|
+
(object,),
|
|
517
|
+
{
|
|
518
|
+
"sequences": thinker_result_sequences,
|
|
519
|
+
"hidden_states": None,
|
|
520
|
+
},
|
|
521
|
+
)()
|
|
522
|
+
|
|
523
|
+
return thinker_result, talker_wavs.astype(mx.float32)
|
|
524
|
+
|
|
525
|
+
def generate_stream(
|
|
526
|
+
self,
|
|
527
|
+
input_ids: mx.array,
|
|
528
|
+
speaker: str = "Ethan",
|
|
529
|
+
thinker_max_new_tokens: int = 1024,
|
|
530
|
+
thinker_eos_token_id: int = 151645,
|
|
531
|
+
talker_max_new_tokens: int = 4096,
|
|
532
|
+
talker_top_p: float = 1.0,
|
|
533
|
+
talker_temperature: float = 0.9,
|
|
534
|
+
chunk_size: int = 300,
|
|
535
|
+
left_context_size: int = 25,
|
|
536
|
+
**kwargs,
|
|
537
|
+
):
|
|
538
|
+
if not self.has_talker:
|
|
539
|
+
raise ValueError("Cannot stream audio without talker module")
|
|
540
|
+
if input_ids.shape[0] != 1:
|
|
541
|
+
raise NotImplementedError("Streaming does not support batched inference")
|
|
542
|
+
|
|
543
|
+
speaker_id = self.config.talker_config.speaker_id.get(speaker.lower())
|
|
544
|
+
if speaker_id is None:
|
|
545
|
+
raise NotImplementedError(f"Speaker {speaker} not implemented")
|
|
546
|
+
|
|
547
|
+
from mlx_vlm.generate import generate_step
|
|
548
|
+
|
|
549
|
+
thinker_kwargs = {
|
|
550
|
+
"max_tokens": thinker_max_new_tokens,
|
|
551
|
+
"eos_tokens": [thinker_eos_token_id],
|
|
552
|
+
}
|
|
553
|
+
for key, value in kwargs.items():
|
|
554
|
+
if key.startswith("thinker_"):
|
|
555
|
+
thinker_kwargs[key[len("thinker_") :]] = value
|
|
556
|
+
elif key in (
|
|
557
|
+
"input_features",
|
|
558
|
+
"feature_attention_mask",
|
|
559
|
+
"audio_feature_lengths",
|
|
560
|
+
"pixel_values",
|
|
561
|
+
"pixel_values_videos",
|
|
562
|
+
"image_grid_thw",
|
|
563
|
+
"video_grid_thw",
|
|
564
|
+
):
|
|
565
|
+
thinker_kwargs[key] = value
|
|
566
|
+
|
|
567
|
+
generator = generate_step(
|
|
568
|
+
input_ids,
|
|
569
|
+
self.thinker,
|
|
570
|
+
thinker_kwargs.get("pixel_values"),
|
|
571
|
+
kwargs.get("mask"),
|
|
572
|
+
**{
|
|
573
|
+
k: v
|
|
574
|
+
for k, v in thinker_kwargs.items()
|
|
575
|
+
if k not in ("pixel_values", "mask")
|
|
576
|
+
},
|
|
577
|
+
)
|
|
578
|
+
sequences = [input_ids]
|
|
579
|
+
for token, _ in generator:
|
|
580
|
+
sequences.append(mx.array([[token]]))
|
|
581
|
+
if token == thinker_eos_token_id:
|
|
582
|
+
break
|
|
583
|
+
|
|
584
|
+
thinker_result_sequences = mx.concatenate(sequences, axis=1)
|
|
585
|
+
thinker_hidden_all, thinker_embed_all = self.extract_thinker_hidden_states(
|
|
586
|
+
thinker_result_sequences,
|
|
587
|
+
target_layer_idx=self.config.talker_config.accept_hidden_layer,
|
|
588
|
+
**kwargs,
|
|
589
|
+
)
|
|
590
|
+
|
|
591
|
+
im_start_indexes = mx.concatenate(
|
|
592
|
+
(
|
|
593
|
+
mx.array(
|
|
594
|
+
np.where(np.array(input_ids[0] == self.config.im_start_token_id))[0]
|
|
595
|
+
),
|
|
596
|
+
mx.array([thinker_result_sequences.shape[-1]], dtype=mx.int32),
|
|
597
|
+
),
|
|
598
|
+
axis=0,
|
|
599
|
+
)
|
|
600
|
+
multimodal_mask = (
|
|
601
|
+
(thinker_result_sequences == self.config.thinker_config.audio_token_id)
|
|
602
|
+
| (thinker_result_sequences == self.config.thinker_config.image_token_id)
|
|
603
|
+
| (thinker_result_sequences == self.config.thinker_config.video_token_id)
|
|
604
|
+
)
|
|
605
|
+
|
|
606
|
+
talker_special_tokens = mx.array(
|
|
607
|
+
[
|
|
608
|
+
[
|
|
609
|
+
self.config.tts_bos_token_id,
|
|
610
|
+
self.config.tts_eos_token_id,
|
|
611
|
+
self.config.tts_pad_token_id,
|
|
612
|
+
]
|
|
613
|
+
],
|
|
614
|
+
dtype=input_ids.dtype,
|
|
615
|
+
)
|
|
616
|
+
talker_special_embeds = self.thinker.language_model.model.embed_tokens(
|
|
617
|
+
talker_special_tokens
|
|
618
|
+
)
|
|
619
|
+
talker_special_embeds_proj = self.talker.text_projection(talker_special_embeds)
|
|
620
|
+
tts_bos_embed, tts_eos_embed, tts_pad_embed = (
|
|
621
|
+
talker_special_embeds_proj[:, 0:1],
|
|
622
|
+
talker_special_embeds_proj[:, 1:2],
|
|
623
|
+
talker_special_embeds_proj[:, 2:3],
|
|
624
|
+
)
|
|
625
|
+
|
|
626
|
+
talker_input_embeds, talker_input_ids = [], []
|
|
627
|
+
trailing_text_hidden = None
|
|
628
|
+
|
|
629
|
+
for i in range(len(im_start_indexes) - 1):
|
|
630
|
+
im_start_index, segment_end_index = int(im_start_indexes[i]), int(
|
|
631
|
+
im_start_indexes[i + 1]
|
|
632
|
+
)
|
|
633
|
+
role_token = int(input_ids[0, im_start_index + 1])
|
|
634
|
+
|
|
635
|
+
if role_token == self.config.system_token_id:
|
|
636
|
+
continue
|
|
637
|
+
elif role_token == self.config.user_token_id:
|
|
638
|
+
talker_input_embeds.append(
|
|
639
|
+
self._get_talker_user_parts(
|
|
640
|
+
im_start_index,
|
|
641
|
+
segment_end_index,
|
|
642
|
+
multimodal_mask,
|
|
643
|
+
thinker_hidden_all,
|
|
644
|
+
thinker_embed_all,
|
|
645
|
+
)
|
|
646
|
+
)
|
|
647
|
+
talker_input_ids.append(
|
|
648
|
+
thinker_result_sequences[:, im_start_index:segment_end_index]
|
|
649
|
+
)
|
|
650
|
+
elif (
|
|
651
|
+
role_token == self.config.assistant_token_id
|
|
652
|
+
and i == len(im_start_indexes) - 2
|
|
653
|
+
):
|
|
654
|
+
talker_assistant_embeds, talker_assistant_ids, trailing_text_hidden = (
|
|
655
|
+
self._get_talker_assistant_parts(
|
|
656
|
+
im_start_index,
|
|
657
|
+
segment_end_index,
|
|
658
|
+
speaker_id,
|
|
659
|
+
thinker_embed_all,
|
|
660
|
+
tts_pad_embed,
|
|
661
|
+
tts_bos_embed,
|
|
662
|
+
tts_eos_embed,
|
|
663
|
+
)
|
|
664
|
+
)
|
|
665
|
+
talker_input_embeds.append(talker_assistant_embeds)
|
|
666
|
+
talker_input_ids.append(talker_assistant_ids)
|
|
667
|
+
|
|
668
|
+
if not talker_input_embeds:
|
|
669
|
+
return
|
|
670
|
+
|
|
671
|
+
talker_input_embed = mx.concatenate(talker_input_embeds, axis=1)
|
|
672
|
+
talker_input_id = mx.concatenate(talker_input_ids, axis=1)
|
|
673
|
+
|
|
674
|
+
generated_tokens = thinker_result_sequences[0, input_ids.shape[1] :].tolist()
|
|
675
|
+
yield ("text", generated_tokens)
|
|
676
|
+
|
|
677
|
+
codes_list = []
|
|
678
|
+
decoded_len = 0
|
|
679
|
+
|
|
680
|
+
for residual_codes in self.talker.generate_stream(
|
|
681
|
+
inputs_embeds=talker_input_embed,
|
|
682
|
+
trailing_text_hidden=trailing_text_hidden,
|
|
683
|
+
tts_pad_embed=tts_pad_embed,
|
|
684
|
+
talker_input_ids=talker_input_id,
|
|
685
|
+
max_new_tokens=talker_max_new_tokens,
|
|
686
|
+
temperature=talker_temperature,
|
|
687
|
+
top_p=talker_top_p,
|
|
688
|
+
):
|
|
689
|
+
codes_list.append(residual_codes)
|
|
690
|
+
if len(codes_list) >= chunk_size:
|
|
691
|
+
codes_buffer = mx.stack(codes_list, axis=1).transpose(0, 2, 1)
|
|
692
|
+
wav_chunk, decoded_len = self.code2wav.stream_decode(
|
|
693
|
+
codes_buffer, chunk_size, left_context_size, decoded_len
|
|
694
|
+
)
|
|
695
|
+
if wav_chunk is not None:
|
|
696
|
+
mx.eval(wav_chunk)
|
|
697
|
+
yield ("audio", wav_chunk.astype(mx.float32))
|
|
698
|
+
|
|
699
|
+
if codes_list:
|
|
700
|
+
codes_buffer = mx.stack(codes_list, axis=1).transpose(0, 2, 1)
|
|
701
|
+
wav_chunk = self.code2wav.flush_decode(
|
|
702
|
+
codes_buffer, left_context_size, decoded_len
|
|
703
|
+
)
|
|
704
|
+
if wav_chunk is not None:
|
|
705
|
+
mx.eval(wav_chunk)
|
|
706
|
+
yield ("audio", wav_chunk.astype(mx.float32))
|