fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,317 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from mlx_vlm.models.qwen3_omni_moe.config import AudioConfig
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def _get_feat_extract_output_lengths(input_lengths):
|
|
12
|
+
input_lengths_leave = input_lengths % 100
|
|
13
|
+
feat_lengths = (input_lengths_leave - 1) // 2 + 1
|
|
14
|
+
output_lengths = (
|
|
15
|
+
((feat_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
|
|
16
|
+
)
|
|
17
|
+
return output_lengths
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class Attention(nn.Module):
|
|
21
|
+
def __init__(self, config: AudioConfig):
|
|
22
|
+
super().__init__()
|
|
23
|
+
self.embed_dim = config.d_model
|
|
24
|
+
self.num_heads = config.encoder_attention_heads
|
|
25
|
+
self.head_dim = self.embed_dim // self.num_heads
|
|
26
|
+
self.scaling = self.head_dim**-0.5
|
|
27
|
+
|
|
28
|
+
self.k_proj = nn.Linear(config.d_model, config.d_model, bias=True)
|
|
29
|
+
self.v_proj = nn.Linear(config.d_model, config.d_model, bias=True)
|
|
30
|
+
self.q_proj = nn.Linear(config.d_model, config.d_model, bias=True)
|
|
31
|
+
self.out_proj = nn.Linear(config.d_model, config.d_model, bias=True)
|
|
32
|
+
|
|
33
|
+
def __call__(
|
|
34
|
+
self,
|
|
35
|
+
hidden_states: mx.array,
|
|
36
|
+
cu_seqlens: mx.array,
|
|
37
|
+
attention_mask: Optional[mx.array] = None,
|
|
38
|
+
) -> mx.array:
|
|
39
|
+
seq_length = hidden_states.shape[0]
|
|
40
|
+
|
|
41
|
+
query_states = self.q_proj(hidden_states).reshape(
|
|
42
|
+
seq_length, self.num_heads, -1
|
|
43
|
+
)
|
|
44
|
+
key_states = self.k_proj(hidden_states).reshape(seq_length, self.num_heads, -1)
|
|
45
|
+
value_states = self.v_proj(hidden_states).reshape(
|
|
46
|
+
seq_length, self.num_heads, -1
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
query_states = query_states.transpose(1, 0, 2)[None]
|
|
50
|
+
key_states = key_states.transpose(1, 0, 2)[None]
|
|
51
|
+
value_states = value_states.transpose(1, 0, 2)[None]
|
|
52
|
+
|
|
53
|
+
lengths = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
|
54
|
+
if len(lengths) == 0:
|
|
55
|
+
lengths = [seq_length]
|
|
56
|
+
|
|
57
|
+
attn_outputs = []
|
|
58
|
+
offset = 0
|
|
59
|
+
for length in lengths:
|
|
60
|
+
if length <= 0:
|
|
61
|
+
continue
|
|
62
|
+
end = offset + length
|
|
63
|
+
q_chunk = query_states[:, :, offset:end]
|
|
64
|
+
k_chunk = key_states[:, :, offset:end]
|
|
65
|
+
v_chunk = value_states[:, :, offset:end]
|
|
66
|
+
attn_weights = (q_chunk @ k_chunk.swapaxes(-2, -1)) * self.scaling
|
|
67
|
+
attn_weights = mx.softmax(attn_weights, axis=-1)
|
|
68
|
+
attn_output = attn_weights @ v_chunk
|
|
69
|
+
attn_outputs.append(attn_output)
|
|
70
|
+
offset = end
|
|
71
|
+
|
|
72
|
+
attn_output = (
|
|
73
|
+
mx.concatenate(attn_outputs, axis=2)
|
|
74
|
+
if attn_outputs
|
|
75
|
+
else mx.zeros_like(query_states)
|
|
76
|
+
)
|
|
77
|
+
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(seq_length, -1)
|
|
78
|
+
attn_output = self.out_proj(attn_output)
|
|
79
|
+
|
|
80
|
+
return attn_output
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class AudioEncoderLayer(nn.Module):
|
|
84
|
+
def __init__(self, config: AudioConfig, idx: int):
|
|
85
|
+
super().__init__()
|
|
86
|
+
self.embed_dim = config.d_model
|
|
87
|
+
self.self_attn = Attention(config)
|
|
88
|
+
self.self_attn_layer_norm = nn.LayerNorm(config.d_model)
|
|
89
|
+
self.fc1 = nn.Linear(config.d_model, config.encoder_ffn_dim)
|
|
90
|
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, config.d_model)
|
|
91
|
+
self.final_layer_norm = nn.LayerNorm(config.d_model)
|
|
92
|
+
|
|
93
|
+
if config.activation_function == "gelu":
|
|
94
|
+
self.activation_fn = nn.gelu
|
|
95
|
+
else:
|
|
96
|
+
raise ValueError(f"Unsupported activation: {config.activation_function}")
|
|
97
|
+
|
|
98
|
+
def __call__(
|
|
99
|
+
self,
|
|
100
|
+
hidden_states: mx.array,
|
|
101
|
+
cu_seqlens: mx.array,
|
|
102
|
+
attention_mask: Optional[mx.array] = None,
|
|
103
|
+
) -> mx.array:
|
|
104
|
+
residual = hidden_states
|
|
105
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
106
|
+
hidden_states = self.self_attn(
|
|
107
|
+
hidden_states=hidden_states,
|
|
108
|
+
cu_seqlens=cu_seqlens,
|
|
109
|
+
attention_mask=attention_mask,
|
|
110
|
+
)
|
|
111
|
+
hidden_states = residual + hidden_states
|
|
112
|
+
|
|
113
|
+
residual = hidden_states
|
|
114
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
115
|
+
hidden_states = self.fc1(hidden_states)
|
|
116
|
+
hidden_states = self.activation_fn(hidden_states)
|
|
117
|
+
hidden_states = self.fc2(hidden_states)
|
|
118
|
+
hidden_states = residual + hidden_states
|
|
119
|
+
|
|
120
|
+
return hidden_states
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
class SinusoidsPositionEmbedding(nn.Module):
|
|
124
|
+
def __init__(self, length, channels, max_timescale=10000):
|
|
125
|
+
super().__init__()
|
|
126
|
+
if channels % 2 != 0:
|
|
127
|
+
raise ValueError("SinusoidsPositionEmbedding needs even channels input")
|
|
128
|
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
|
129
|
+
inv_timescales = np.exp(
|
|
130
|
+
-log_timescale_increment * np.arange(channels // 2, dtype=np.float32)
|
|
131
|
+
)
|
|
132
|
+
scaled_time = np.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
|
133
|
+
positional_embedding = np.concatenate(
|
|
134
|
+
[np.sin(scaled_time), np.cos(scaled_time)], axis=1
|
|
135
|
+
)
|
|
136
|
+
self.positional_embedding = positional_embedding
|
|
137
|
+
|
|
138
|
+
def __call__(self, seqlen: int) -> mx.array:
|
|
139
|
+
return mx.array(self.positional_embedding[:seqlen, :])
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class AudioModel(nn.Module):
|
|
143
|
+
def __init__(self, config: AudioConfig):
|
|
144
|
+
super().__init__()
|
|
145
|
+
|
|
146
|
+
self.dropout = config.dropout
|
|
147
|
+
embed_dim = config.d_model
|
|
148
|
+
self.num_mel_bins = config.num_mel_bins
|
|
149
|
+
self.max_source_positions = config.max_source_positions
|
|
150
|
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
|
151
|
+
self.n_window = config.n_window
|
|
152
|
+
self.n_window_infer = config.n_window_infer
|
|
153
|
+
self.conv_chunksize = config.conv_chunksize
|
|
154
|
+
|
|
155
|
+
self.positional_embedding = SinusoidsPositionEmbedding(
|
|
156
|
+
self.max_source_positions, embed_dim
|
|
157
|
+
)
|
|
158
|
+
self.layers = [
|
|
159
|
+
AudioEncoderLayer(config, idx) for idx in range(config.encoder_layers)
|
|
160
|
+
]
|
|
161
|
+
self.ln_post = nn.LayerNorm(config.d_model)
|
|
162
|
+
|
|
163
|
+
self.conv2d1 = nn.Conv2d(1, config.downsample_hidden_size, 3, 2, padding=1)
|
|
164
|
+
self.conv2d2 = nn.Conv2d(
|
|
165
|
+
config.downsample_hidden_size,
|
|
166
|
+
config.downsample_hidden_size,
|
|
167
|
+
3,
|
|
168
|
+
2,
|
|
169
|
+
padding=1,
|
|
170
|
+
)
|
|
171
|
+
self.conv2d3 = nn.Conv2d(
|
|
172
|
+
config.downsample_hidden_size,
|
|
173
|
+
config.downsample_hidden_size,
|
|
174
|
+
3,
|
|
175
|
+
2,
|
|
176
|
+
padding=1,
|
|
177
|
+
)
|
|
178
|
+
self.conv_out = nn.Linear(
|
|
179
|
+
config.downsample_hidden_size
|
|
180
|
+
* ((((config.num_mel_bins + 1) // 2 + 1) // 2 + 1) // 2),
|
|
181
|
+
config.d_model,
|
|
182
|
+
bias=False,
|
|
183
|
+
)
|
|
184
|
+
self.proj1 = nn.Linear(config.d_model, config.d_model)
|
|
185
|
+
|
|
186
|
+
if config.activation_function == "gelu":
|
|
187
|
+
self.act = nn.gelu
|
|
188
|
+
else:
|
|
189
|
+
raise ValueError(f"Unsupported activation: {config.activation_function}")
|
|
190
|
+
|
|
191
|
+
self.proj2 = nn.Linear(config.d_model, config.output_dim)
|
|
192
|
+
|
|
193
|
+
def __call__(
|
|
194
|
+
self,
|
|
195
|
+
input_features: mx.array,
|
|
196
|
+
feature_lens: Optional[mx.array] = None,
|
|
197
|
+
aftercnn_lens: Optional[mx.array] = None,
|
|
198
|
+
):
|
|
199
|
+
if feature_lens is None:
|
|
200
|
+
feature_lens = mx.array([input_features.shape[-1]], dtype=mx.int32)
|
|
201
|
+
|
|
202
|
+
aftercnn_lens = _get_feat_extract_output_lengths(feature_lens)
|
|
203
|
+
feature_lens_np = np.array(feature_lens).astype(np.int32)
|
|
204
|
+
n_window_step = self.n_window * 2
|
|
205
|
+
chunk_num = np.ceil(feature_lens_np / n_window_step).astype(np.int32)
|
|
206
|
+
|
|
207
|
+
chunk_lengths_list = []
|
|
208
|
+
tail_chunk_info = []
|
|
209
|
+
cumsum = 0
|
|
210
|
+
for sample_idx, num_chunks in enumerate(chunk_num.tolist()):
|
|
211
|
+
num_int = int(num_chunks)
|
|
212
|
+
chunk_lengths_list.extend([n_window_step] * num_int)
|
|
213
|
+
if num_int > 0:
|
|
214
|
+
tail_chunk_info.append((cumsum + num_int - 1, sample_idx))
|
|
215
|
+
cumsum += num_int
|
|
216
|
+
|
|
217
|
+
for tail_idx, sample_idx in tail_chunk_info:
|
|
218
|
+
remainder = feature_lens_np[sample_idx] % n_window_step
|
|
219
|
+
if remainder == 0:
|
|
220
|
+
remainder = n_window_step
|
|
221
|
+
chunk_lengths_list[tail_idx] = int(remainder)
|
|
222
|
+
|
|
223
|
+
chunk_lengths = mx.array(chunk_lengths_list, dtype=mx.int32)
|
|
224
|
+
|
|
225
|
+
total_chunks = len(chunk_lengths_list)
|
|
226
|
+
max_chunk_len = int(chunk_lengths.max())
|
|
227
|
+
padded_feature = mx.zeros(
|
|
228
|
+
(total_chunks, self.num_mel_bins, max_chunk_len), dtype=input_features.dtype
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
start_idx = 0
|
|
232
|
+
for i, chunk_len in enumerate(chunk_lengths_list):
|
|
233
|
+
end_idx = start_idx + chunk_len
|
|
234
|
+
padded_feature[i, :, :chunk_len] = input_features[:, start_idx:end_idx]
|
|
235
|
+
start_idx = end_idx
|
|
236
|
+
|
|
237
|
+
padded_feature = padded_feature[:, None, :, :]
|
|
238
|
+
|
|
239
|
+
feature_lens_after_cnn = _get_feat_extract_output_lengths(feature_lens)
|
|
240
|
+
max_len_after_cnn = int(feature_lens_after_cnn.max())
|
|
241
|
+
padded_mask_after_cnn = mx.zeros(
|
|
242
|
+
(total_chunks, max_len_after_cnn), dtype=mx.bool_
|
|
243
|
+
)
|
|
244
|
+
for i, length in enumerate(feature_lens_after_cnn):
|
|
245
|
+
padded_mask_after_cnn[i, : int(length)] = True
|
|
246
|
+
|
|
247
|
+
padded_embeds = []
|
|
248
|
+
for i in range(0, total_chunks, self.conv_chunksize):
|
|
249
|
+
end_idx = min(i + self.conv_chunksize, total_chunks)
|
|
250
|
+
chunk = padded_feature[i:end_idx]
|
|
251
|
+
chunk = chunk.transpose(0, 2, 3, 1)
|
|
252
|
+
padded_embed = nn.gelu(self.conv2d1(chunk))
|
|
253
|
+
padded_embed = nn.gelu(self.conv2d2(padded_embed))
|
|
254
|
+
padded_embed = nn.gelu(self.conv2d3(padded_embed))
|
|
255
|
+
padded_embeds.append(padded_embed)
|
|
256
|
+
|
|
257
|
+
padded_embed = mx.concatenate(padded_embeds, axis=0)
|
|
258
|
+
b, h, w, c = padded_embed.shape
|
|
259
|
+
padded_embed = padded_embed.transpose(0, 2, 3, 1).reshape(b, w, c * h)
|
|
260
|
+
padded_embed = self.conv_out(padded_embed)
|
|
261
|
+
|
|
262
|
+
seq_len = padded_embed.shape[1]
|
|
263
|
+
positional_embedding = self.positional_embedding(seq_len)[None]
|
|
264
|
+
padded_embed = padded_embed + positional_embedding
|
|
265
|
+
|
|
266
|
+
linear_indices = []
|
|
267
|
+
for i in range(total_chunks):
|
|
268
|
+
mask_array = np.array(padded_mask_after_cnn[i])
|
|
269
|
+
chunk_indices = np.where(mask_array)[0]
|
|
270
|
+
linear_indices.extend([i * seq_len + idx for idx in chunk_indices])
|
|
271
|
+
|
|
272
|
+
padded_embed_flat = padded_embed.reshape(-1, padded_embed.shape[-1])
|
|
273
|
+
hidden_states = mx.take(
|
|
274
|
+
padded_embed_flat,
|
|
275
|
+
mx.array(np.array(linear_indices, dtype=np.int32)),
|
|
276
|
+
axis=0,
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
cu_chunk_lens = []
|
|
280
|
+
window_aftercnn = max_len_after_cnn * (
|
|
281
|
+
self.n_window_infer // (self.n_window * 2)
|
|
282
|
+
)
|
|
283
|
+
for cnn_len in feature_lens_after_cnn:
|
|
284
|
+
cnn_len_int = int(cnn_len)
|
|
285
|
+
num_windows = cnn_len_int // window_aftercnn
|
|
286
|
+
cu_chunk_lens.extend([window_aftercnn] * num_windows)
|
|
287
|
+
remainder = cnn_len_int % window_aftercnn
|
|
288
|
+
if remainder != 0:
|
|
289
|
+
cu_chunk_lens.append(remainder)
|
|
290
|
+
|
|
291
|
+
cu_seqlens = mx.cumsum(mx.array(cu_chunk_lens, dtype=mx.int32), axis=0)
|
|
292
|
+
cu_seqlens = mx.pad(cu_seqlens, (1, 0), constant_values=0)
|
|
293
|
+
|
|
294
|
+
for i, encoder_layer in enumerate(self.layers):
|
|
295
|
+
hidden_states = encoder_layer(
|
|
296
|
+
hidden_states,
|
|
297
|
+
cu_seqlens,
|
|
298
|
+
)
|
|
299
|
+
if i % 2 == 0:
|
|
300
|
+
mx.eval(hidden_states)
|
|
301
|
+
|
|
302
|
+
hidden_states = self.ln_post(hidden_states)
|
|
303
|
+
hidden_states = self.proj1(hidden_states)
|
|
304
|
+
hidden_states = self.act(hidden_states)
|
|
305
|
+
hidden_states = self.proj2(hidden_states)
|
|
306
|
+
|
|
307
|
+
return hidden_states
|
|
308
|
+
|
|
309
|
+
def sanitize(self, weights):
|
|
310
|
+
sanitized_weights = {}
|
|
311
|
+
for k, v in weights.items():
|
|
312
|
+
if "audio_tower.conv2d" in k and "weight" in k:
|
|
313
|
+
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
314
|
+
else:
|
|
315
|
+
sanitized_weights[k] = v
|
|
316
|
+
|
|
317
|
+
return sanitized_weights
|