fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,317 @@
1
+ import math
2
+ from typing import Optional
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+ import numpy as np
7
+
8
+ from mlx_vlm.models.qwen3_omni_moe.config import AudioConfig
9
+
10
+
11
+ def _get_feat_extract_output_lengths(input_lengths):
12
+ input_lengths_leave = input_lengths % 100
13
+ feat_lengths = (input_lengths_leave - 1) // 2 + 1
14
+ output_lengths = (
15
+ ((feat_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
16
+ )
17
+ return output_lengths
18
+
19
+
20
+ class Attention(nn.Module):
21
+ def __init__(self, config: AudioConfig):
22
+ super().__init__()
23
+ self.embed_dim = config.d_model
24
+ self.num_heads = config.encoder_attention_heads
25
+ self.head_dim = self.embed_dim // self.num_heads
26
+ self.scaling = self.head_dim**-0.5
27
+
28
+ self.k_proj = nn.Linear(config.d_model, config.d_model, bias=True)
29
+ self.v_proj = nn.Linear(config.d_model, config.d_model, bias=True)
30
+ self.q_proj = nn.Linear(config.d_model, config.d_model, bias=True)
31
+ self.out_proj = nn.Linear(config.d_model, config.d_model, bias=True)
32
+
33
+ def __call__(
34
+ self,
35
+ hidden_states: mx.array,
36
+ cu_seqlens: mx.array,
37
+ attention_mask: Optional[mx.array] = None,
38
+ ) -> mx.array:
39
+ seq_length = hidden_states.shape[0]
40
+
41
+ query_states = self.q_proj(hidden_states).reshape(
42
+ seq_length, self.num_heads, -1
43
+ )
44
+ key_states = self.k_proj(hidden_states).reshape(seq_length, self.num_heads, -1)
45
+ value_states = self.v_proj(hidden_states).reshape(
46
+ seq_length, self.num_heads, -1
47
+ )
48
+
49
+ query_states = query_states.transpose(1, 0, 2)[None]
50
+ key_states = key_states.transpose(1, 0, 2)[None]
51
+ value_states = value_states.transpose(1, 0, 2)[None]
52
+
53
+ lengths = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
54
+ if len(lengths) == 0:
55
+ lengths = [seq_length]
56
+
57
+ attn_outputs = []
58
+ offset = 0
59
+ for length in lengths:
60
+ if length <= 0:
61
+ continue
62
+ end = offset + length
63
+ q_chunk = query_states[:, :, offset:end]
64
+ k_chunk = key_states[:, :, offset:end]
65
+ v_chunk = value_states[:, :, offset:end]
66
+ attn_weights = (q_chunk @ k_chunk.swapaxes(-2, -1)) * self.scaling
67
+ attn_weights = mx.softmax(attn_weights, axis=-1)
68
+ attn_output = attn_weights @ v_chunk
69
+ attn_outputs.append(attn_output)
70
+ offset = end
71
+
72
+ attn_output = (
73
+ mx.concatenate(attn_outputs, axis=2)
74
+ if attn_outputs
75
+ else mx.zeros_like(query_states)
76
+ )
77
+ attn_output = attn_output.transpose(0, 2, 1, 3).reshape(seq_length, -1)
78
+ attn_output = self.out_proj(attn_output)
79
+
80
+ return attn_output
81
+
82
+
83
+ class AudioEncoderLayer(nn.Module):
84
+ def __init__(self, config: AudioConfig, idx: int):
85
+ super().__init__()
86
+ self.embed_dim = config.d_model
87
+ self.self_attn = Attention(config)
88
+ self.self_attn_layer_norm = nn.LayerNorm(config.d_model)
89
+ self.fc1 = nn.Linear(config.d_model, config.encoder_ffn_dim)
90
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, config.d_model)
91
+ self.final_layer_norm = nn.LayerNorm(config.d_model)
92
+
93
+ if config.activation_function == "gelu":
94
+ self.activation_fn = nn.gelu
95
+ else:
96
+ raise ValueError(f"Unsupported activation: {config.activation_function}")
97
+
98
+ def __call__(
99
+ self,
100
+ hidden_states: mx.array,
101
+ cu_seqlens: mx.array,
102
+ attention_mask: Optional[mx.array] = None,
103
+ ) -> mx.array:
104
+ residual = hidden_states
105
+ hidden_states = self.self_attn_layer_norm(hidden_states)
106
+ hidden_states = self.self_attn(
107
+ hidden_states=hidden_states,
108
+ cu_seqlens=cu_seqlens,
109
+ attention_mask=attention_mask,
110
+ )
111
+ hidden_states = residual + hidden_states
112
+
113
+ residual = hidden_states
114
+ hidden_states = self.final_layer_norm(hidden_states)
115
+ hidden_states = self.fc1(hidden_states)
116
+ hidden_states = self.activation_fn(hidden_states)
117
+ hidden_states = self.fc2(hidden_states)
118
+ hidden_states = residual + hidden_states
119
+
120
+ return hidden_states
121
+
122
+
123
+ class SinusoidsPositionEmbedding(nn.Module):
124
+ def __init__(self, length, channels, max_timescale=10000):
125
+ super().__init__()
126
+ if channels % 2 != 0:
127
+ raise ValueError("SinusoidsPositionEmbedding needs even channels input")
128
+ log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
129
+ inv_timescales = np.exp(
130
+ -log_timescale_increment * np.arange(channels // 2, dtype=np.float32)
131
+ )
132
+ scaled_time = np.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
133
+ positional_embedding = np.concatenate(
134
+ [np.sin(scaled_time), np.cos(scaled_time)], axis=1
135
+ )
136
+ self.positional_embedding = positional_embedding
137
+
138
+ def __call__(self, seqlen: int) -> mx.array:
139
+ return mx.array(self.positional_embedding[:seqlen, :])
140
+
141
+
142
+ class AudioModel(nn.Module):
143
+ def __init__(self, config: AudioConfig):
144
+ super().__init__()
145
+
146
+ self.dropout = config.dropout
147
+ embed_dim = config.d_model
148
+ self.num_mel_bins = config.num_mel_bins
149
+ self.max_source_positions = config.max_source_positions
150
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
151
+ self.n_window = config.n_window
152
+ self.n_window_infer = config.n_window_infer
153
+ self.conv_chunksize = config.conv_chunksize
154
+
155
+ self.positional_embedding = SinusoidsPositionEmbedding(
156
+ self.max_source_positions, embed_dim
157
+ )
158
+ self.layers = [
159
+ AudioEncoderLayer(config, idx) for idx in range(config.encoder_layers)
160
+ ]
161
+ self.ln_post = nn.LayerNorm(config.d_model)
162
+
163
+ self.conv2d1 = nn.Conv2d(1, config.downsample_hidden_size, 3, 2, padding=1)
164
+ self.conv2d2 = nn.Conv2d(
165
+ config.downsample_hidden_size,
166
+ config.downsample_hidden_size,
167
+ 3,
168
+ 2,
169
+ padding=1,
170
+ )
171
+ self.conv2d3 = nn.Conv2d(
172
+ config.downsample_hidden_size,
173
+ config.downsample_hidden_size,
174
+ 3,
175
+ 2,
176
+ padding=1,
177
+ )
178
+ self.conv_out = nn.Linear(
179
+ config.downsample_hidden_size
180
+ * ((((config.num_mel_bins + 1) // 2 + 1) // 2 + 1) // 2),
181
+ config.d_model,
182
+ bias=False,
183
+ )
184
+ self.proj1 = nn.Linear(config.d_model, config.d_model)
185
+
186
+ if config.activation_function == "gelu":
187
+ self.act = nn.gelu
188
+ else:
189
+ raise ValueError(f"Unsupported activation: {config.activation_function}")
190
+
191
+ self.proj2 = nn.Linear(config.d_model, config.output_dim)
192
+
193
+ def __call__(
194
+ self,
195
+ input_features: mx.array,
196
+ feature_lens: Optional[mx.array] = None,
197
+ aftercnn_lens: Optional[mx.array] = None,
198
+ ):
199
+ if feature_lens is None:
200
+ feature_lens = mx.array([input_features.shape[-1]], dtype=mx.int32)
201
+
202
+ aftercnn_lens = _get_feat_extract_output_lengths(feature_lens)
203
+ feature_lens_np = np.array(feature_lens).astype(np.int32)
204
+ n_window_step = self.n_window * 2
205
+ chunk_num = np.ceil(feature_lens_np / n_window_step).astype(np.int32)
206
+
207
+ chunk_lengths_list = []
208
+ tail_chunk_info = []
209
+ cumsum = 0
210
+ for sample_idx, num_chunks in enumerate(chunk_num.tolist()):
211
+ num_int = int(num_chunks)
212
+ chunk_lengths_list.extend([n_window_step] * num_int)
213
+ if num_int > 0:
214
+ tail_chunk_info.append((cumsum + num_int - 1, sample_idx))
215
+ cumsum += num_int
216
+
217
+ for tail_idx, sample_idx in tail_chunk_info:
218
+ remainder = feature_lens_np[sample_idx] % n_window_step
219
+ if remainder == 0:
220
+ remainder = n_window_step
221
+ chunk_lengths_list[tail_idx] = int(remainder)
222
+
223
+ chunk_lengths = mx.array(chunk_lengths_list, dtype=mx.int32)
224
+
225
+ total_chunks = len(chunk_lengths_list)
226
+ max_chunk_len = int(chunk_lengths.max())
227
+ padded_feature = mx.zeros(
228
+ (total_chunks, self.num_mel_bins, max_chunk_len), dtype=input_features.dtype
229
+ )
230
+
231
+ start_idx = 0
232
+ for i, chunk_len in enumerate(chunk_lengths_list):
233
+ end_idx = start_idx + chunk_len
234
+ padded_feature[i, :, :chunk_len] = input_features[:, start_idx:end_idx]
235
+ start_idx = end_idx
236
+
237
+ padded_feature = padded_feature[:, None, :, :]
238
+
239
+ feature_lens_after_cnn = _get_feat_extract_output_lengths(feature_lens)
240
+ max_len_after_cnn = int(feature_lens_after_cnn.max())
241
+ padded_mask_after_cnn = mx.zeros(
242
+ (total_chunks, max_len_after_cnn), dtype=mx.bool_
243
+ )
244
+ for i, length in enumerate(feature_lens_after_cnn):
245
+ padded_mask_after_cnn[i, : int(length)] = True
246
+
247
+ padded_embeds = []
248
+ for i in range(0, total_chunks, self.conv_chunksize):
249
+ end_idx = min(i + self.conv_chunksize, total_chunks)
250
+ chunk = padded_feature[i:end_idx]
251
+ chunk = chunk.transpose(0, 2, 3, 1)
252
+ padded_embed = nn.gelu(self.conv2d1(chunk))
253
+ padded_embed = nn.gelu(self.conv2d2(padded_embed))
254
+ padded_embed = nn.gelu(self.conv2d3(padded_embed))
255
+ padded_embeds.append(padded_embed)
256
+
257
+ padded_embed = mx.concatenate(padded_embeds, axis=0)
258
+ b, h, w, c = padded_embed.shape
259
+ padded_embed = padded_embed.transpose(0, 2, 3, 1).reshape(b, w, c * h)
260
+ padded_embed = self.conv_out(padded_embed)
261
+
262
+ seq_len = padded_embed.shape[1]
263
+ positional_embedding = self.positional_embedding(seq_len)[None]
264
+ padded_embed = padded_embed + positional_embedding
265
+
266
+ linear_indices = []
267
+ for i in range(total_chunks):
268
+ mask_array = np.array(padded_mask_after_cnn[i])
269
+ chunk_indices = np.where(mask_array)[0]
270
+ linear_indices.extend([i * seq_len + idx for idx in chunk_indices])
271
+
272
+ padded_embed_flat = padded_embed.reshape(-1, padded_embed.shape[-1])
273
+ hidden_states = mx.take(
274
+ padded_embed_flat,
275
+ mx.array(np.array(linear_indices, dtype=np.int32)),
276
+ axis=0,
277
+ )
278
+
279
+ cu_chunk_lens = []
280
+ window_aftercnn = max_len_after_cnn * (
281
+ self.n_window_infer // (self.n_window * 2)
282
+ )
283
+ for cnn_len in feature_lens_after_cnn:
284
+ cnn_len_int = int(cnn_len)
285
+ num_windows = cnn_len_int // window_aftercnn
286
+ cu_chunk_lens.extend([window_aftercnn] * num_windows)
287
+ remainder = cnn_len_int % window_aftercnn
288
+ if remainder != 0:
289
+ cu_chunk_lens.append(remainder)
290
+
291
+ cu_seqlens = mx.cumsum(mx.array(cu_chunk_lens, dtype=mx.int32), axis=0)
292
+ cu_seqlens = mx.pad(cu_seqlens, (1, 0), constant_values=0)
293
+
294
+ for i, encoder_layer in enumerate(self.layers):
295
+ hidden_states = encoder_layer(
296
+ hidden_states,
297
+ cu_seqlens,
298
+ )
299
+ if i % 2 == 0:
300
+ mx.eval(hidden_states)
301
+
302
+ hidden_states = self.ln_post(hidden_states)
303
+ hidden_states = self.proj1(hidden_states)
304
+ hidden_states = self.act(hidden_states)
305
+ hidden_states = self.proj2(hidden_states)
306
+
307
+ return hidden_states
308
+
309
+ def sanitize(self, weights):
310
+ sanitized_weights = {}
311
+ for k, v in weights.items():
312
+ if "audio_tower.conv2d" in k and "weight" in k:
313
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
314
+ else:
315
+ sanitized_weights[k] = v
316
+
317
+ return sanitized_weights