fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,552 @@
1
+ from typing import Optional, Tuple
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+
6
+ from .config import VisionConfig
7
+
8
+
9
+ def check_array_shape(arr):
10
+ shape = arr.shape
11
+
12
+ # Check if the shape has 4 dimensions
13
+ if len(shape) != 4:
14
+ return False
15
+
16
+ out_channels, kH, KW, _ = shape
17
+
18
+ # Check if out_channels is the largest, and kH and KW are the same
19
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
20
+ return True
21
+ else:
22
+ return False
23
+
24
+
25
+ class MlpFC(nn.Module):
26
+ """MLP FC module"""
27
+
28
+ def __init__(
29
+ self,
30
+ in_features: int,
31
+ hidden_features: Optional[int] = None,
32
+ out_features: Optional[int] = None,
33
+ ):
34
+ super().__init__()
35
+ self.fc1 = nn.Linear(in_features, hidden_features)
36
+ self.fc2 = nn.Linear(hidden_features, out_features)
37
+ self.gelu = nn.GELU()
38
+
39
+ def __call__(self, x):
40
+ return self.fc2(self.gelu(self.fc1(x)))
41
+
42
+
43
+ class Mlp(nn.Module):
44
+ """MLP module"""
45
+
46
+ def __init__(
47
+ self,
48
+ in_features: int,
49
+ hidden_features: Optional[int] = None,
50
+ out_features: Optional[int] = None,
51
+ ):
52
+ super().__init__()
53
+ out_features = out_features or in_features
54
+ hidden_features = hidden_features or in_features
55
+
56
+ self.net = MlpFC(in_features, hidden_features, out_features)
57
+
58
+ def __call__(self, x, size):
59
+ return self.net(x), size
60
+
61
+
62
+ class DepthWiseConv2d(nn.Module):
63
+ """Depthwise Convolution"""
64
+
65
+ def __init__(
66
+ self,
67
+ dim_in: int,
68
+ kernel_size: int,
69
+ padding: int,
70
+ stride: int,
71
+ bias: bool = True,
72
+ ):
73
+ super().__init__()
74
+
75
+ self.dw = nn.Conv2d(
76
+ dim_in,
77
+ dim_in,
78
+ kernel_size=kernel_size,
79
+ padding=padding,
80
+ stride=stride,
81
+ bias=bias,
82
+ groups=dim_in,
83
+ )
84
+
85
+ def __call__(self, x, size):
86
+ B, N, C = x.shape
87
+ H, W = size
88
+ assert N == H * W
89
+
90
+ x = self.dw(x.reshape(B, H, W, C))
91
+
92
+ x = x.transpose(0, 3, 1, 2)
93
+
94
+ size = (x.shape[-2], x.shape[-1])
95
+ x = x.flatten(2).transpose(0, 2, 1)
96
+ return x, size
97
+
98
+
99
+ class ConvEmbed(nn.Module):
100
+ """Image to Patch Embedding"""
101
+
102
+ def __init__(
103
+ self,
104
+ patch_size: int = 7,
105
+ in_chans: int = 3,
106
+ embed_dim: int = 64,
107
+ stride: int = 4,
108
+ padding: int = 2,
109
+ norm_layer: Optional[nn.Module] = None,
110
+ pre_norm: bool = True,
111
+ ):
112
+ super().__init__()
113
+ self.proj = nn.Conv2d(
114
+ in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding
115
+ )
116
+
117
+ if norm_layer and pre_norm:
118
+ self.norm = norm_layer(in_chans)
119
+ elif norm_layer:
120
+ self.norm = norm_layer(embed_dim)
121
+ else:
122
+ self.norm = None
123
+
124
+ self.pre_norm = pre_norm
125
+
126
+ def __call__(self, x, size):
127
+ H, W = size
128
+ if len(x.shape) == 3:
129
+
130
+ if self.norm and self.pre_norm:
131
+ x = self.norm(x)
132
+
133
+ x = x.reshape(-1, H, W, x.shape[-1])
134
+ else:
135
+ x = x.transpose(0, 2, 3, 1)
136
+
137
+ x = self.proj(x)
138
+
139
+ B, H, W, C = x.shape
140
+
141
+ x = x.reshape(B, H * W, C)
142
+
143
+ if self.norm and not self.pre_norm:
144
+ x = self.norm(x)
145
+
146
+ return x, (H, W)
147
+
148
+
149
+ class ChannelAttention(nn.Module):
150
+ """Channel Attention module"""
151
+
152
+ def __init__(self, dim: int, groups: int = 8, qkv_bias: bool = True):
153
+ super().__init__()
154
+ self.groups = groups
155
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
156
+ self.proj = nn.Linear(dim, dim)
157
+
158
+ def __call__(self, x, size):
159
+ B, N, C = x.shape
160
+
161
+ qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups)
162
+ qkv = qkv.transpose(2, 0, 3, 1, 4)
163
+ q, k, v = qkv[0], qkv[1], qkv[2] # Each has shape (B, groups, N, C//groups)
164
+
165
+ q = q * (float(N) ** -0.5)
166
+
167
+ # For multi-head attention, we need to keep the groups dimension
168
+ attention = mx.matmul(q.transpose(0, 1, 3, 2), k) # (B, groups, N, N)
169
+ attention = mx.softmax(attention, axis=-1)
170
+
171
+ x = mx.matmul(attention, v.transpose(0, 1, 3, 2)).transpose(
172
+ 0, 1, 3, 2
173
+ ) # (B, groups, N, C//groups)
174
+ x = x.transpose(0, 2, 1, 3).reshape(B, N, C)
175
+ x = self.proj(x)
176
+
177
+ return x, size
178
+
179
+
180
+ def window_partition(x: mx.array, window_size: int):
181
+ """Partition into non-overlapping windows"""
182
+ B, H, W, C = x.shape
183
+ x = mx.reshape(
184
+ x, (B, H // window_size, window_size, W // window_size, window_size, C)
185
+ )
186
+ windows = mx.reshape(
187
+ mx.transpose(x, (0, 1, 3, 2, 4, 5)), (-1, window_size, window_size, C)
188
+ )
189
+ return windows
190
+
191
+
192
+ def window_reverse(
193
+ windows: mx.array, batch_size: int, window_size: int, H: int, W: int
194
+ ):
195
+ """Merge windows back to feature map"""
196
+ B = batch_size
197
+ x = mx.reshape(
198
+ windows, (B, H // window_size, W // window_size, window_size, window_size, -1)
199
+ )
200
+ x = mx.reshape(mx.transpose(x, (0, 1, 3, 2, 4, 5)), (B, H, W, -1))
201
+ return x
202
+
203
+
204
+ class WindowAttention(nn.Module):
205
+ """Window based multi-head self attention module"""
206
+
207
+ def __init__(
208
+ self, dim: int, num_heads: int, window_size: int, qkv_bias: bool = True
209
+ ):
210
+ super().__init__()
211
+ self.dim = dim
212
+ self.window_size = window_size
213
+ self.num_heads = num_heads
214
+ head_dim = dim // num_heads
215
+ self.scale = float(head_dim) ** -0.5
216
+
217
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
218
+ self.proj = nn.Linear(dim, dim)
219
+
220
+ def __call__(self, x, size):
221
+ H, W = size
222
+ B, L, C = x.shape
223
+
224
+ assert L == H * W, f"input feature has wrong size {L} == {H * W}"
225
+
226
+ x = mx.reshape(x, (B, H, W, C))
227
+
228
+ # Calculate padding
229
+ pad_l = pad_t = 0
230
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
231
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
232
+
233
+ # MLX padding
234
+ x = mx.pad(x, [(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)])
235
+
236
+ _, Hp, Wp, _ = x.shape
237
+
238
+ # Window partition
239
+ x = window_partition(x, self.window_size)
240
+ x = mx.reshape(x, (-1, self.window_size * self.window_size, C))
241
+
242
+ # Multi-head self attention
243
+ B_, N, C = x.shape
244
+ qkv = mx.reshape(self.qkv(x), (B_, N, 3, self.num_heads, C // self.num_heads))
245
+ qkv = mx.transpose(qkv, (2, 0, 3, 1, 4))
246
+ q, k, v = qkv[0], qkv[1], qkv[2]
247
+
248
+ # Scaled dot-product attention
249
+ q = q * self.scale
250
+ attn = mx.matmul(q, mx.transpose(k, (0, 1, 3, 2)))
251
+ attn = mx.softmax(attn, axis=-1)
252
+
253
+ x = mx.reshape(mx.transpose(mx.matmul(attn, v), (0, 2, 1, 3)), (B_, N, C))
254
+ x = self.proj(x)
255
+
256
+ # Merge windows
257
+ x = mx.reshape(x, (-1, self.window_size, self.window_size, C))
258
+ x = window_reverse(x, B, self.window_size, Hp, Wp)
259
+
260
+ if pad_r > 0 or pad_b > 0:
261
+ x = x[:, :H, :W, :]
262
+
263
+ x = mx.reshape(x, (B, H * W, C))
264
+ return x, size
265
+
266
+
267
+ class PreNorm(nn.Module):
268
+ """Pre-normalization module"""
269
+
270
+ def __init__(self, norm, fn, drop_path=None):
271
+ super().__init__()
272
+ self.norm = norm
273
+ self.fn = fn
274
+ self.drop_path = drop_path
275
+
276
+ def __call__(self, x, size):
277
+ shortcut = x
278
+ if self.norm is not None:
279
+ x = self.norm(x)
280
+ x, size = self.fn(x, size)
281
+
282
+ if self.drop_path is not None:
283
+ x = self.drop_path(x)
284
+
285
+ x = shortcut + x
286
+ return x, size
287
+
288
+
289
+ class DropPath(nn.Module):
290
+ """Drop paths (Stochastic Depth) per sample."""
291
+
292
+ def __init__(self, drop_prob: float = 0.0):
293
+ super().__init__()
294
+ self.drop_prob = drop_prob
295
+
296
+ def __call__(self, x):
297
+ if self.drop_prob == 0.0 or not self.training:
298
+ return x
299
+
300
+ keep_prob = 1 - self.drop_prob
301
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1)
302
+ random_tensor = keep_prob + mx.random.uniform(shape)
303
+ random_tensor = mx.floor(random_tensor)
304
+ output = x * random_tensor / keep_prob
305
+ return output
306
+
307
+
308
+ class SpatialBlock(nn.Module):
309
+ """Spatial attention block"""
310
+
311
+ def __init__(
312
+ self,
313
+ dim: int,
314
+ num_heads: int,
315
+ window_size: int,
316
+ mlp_ratio: float = 4.0,
317
+ qkv_bias: bool = True,
318
+ drop_path_rate: float = 0.0,
319
+ conv_at_attn: bool = True,
320
+ conv_at_ffn: bool = True,
321
+ ):
322
+ super().__init__()
323
+
324
+ drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
325
+
326
+ self.conv1 = (
327
+ PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_attn else None
328
+ )
329
+
330
+ self.window_attn = PreNorm(
331
+ nn.LayerNorm(dim),
332
+ WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
333
+ drop_path,
334
+ )
335
+
336
+ self.conv2 = (
337
+ PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_ffn else None
338
+ )
339
+
340
+ self.ffn = PreNorm(
341
+ nn.LayerNorm(dim),
342
+ Mlp(
343
+ in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim
344
+ ),
345
+ drop_path,
346
+ )
347
+
348
+ def __call__(self, x, size):
349
+ if self.conv1 is not None:
350
+ x, size = self.conv1(x, size)
351
+ x, size = self.window_attn(x, size)
352
+
353
+ if self.conv2 is not None:
354
+ x, size = self.conv2(x, size)
355
+ x, size = self.ffn(x, size)
356
+ return x, size
357
+
358
+
359
+ class ChannelBlock(nn.Module):
360
+ """Channel attention block"""
361
+
362
+ def __init__(
363
+ self,
364
+ dim: int,
365
+ groups: int,
366
+ mlp_ratio: float = 4.0,
367
+ qkv_bias: bool = True,
368
+ drop_path_rate: float = 0.0,
369
+ conv_at_attn: bool = True,
370
+ conv_at_ffn: bool = True,
371
+ ):
372
+ super().__init__()
373
+
374
+ drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
375
+
376
+ self.conv1 = (
377
+ PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_attn else None
378
+ )
379
+
380
+ self.channel_attn = PreNorm(
381
+ nn.LayerNorm(dim),
382
+ ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
383
+ drop_path,
384
+ )
385
+
386
+ self.conv2 = (
387
+ PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_ffn else None
388
+ )
389
+
390
+ self.ffn = PreNorm(
391
+ nn.LayerNorm(dim),
392
+ Mlp(
393
+ in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim
394
+ ),
395
+ drop_path,
396
+ )
397
+
398
+ def __call__(self, x, size):
399
+ if self.conv1 is not None:
400
+ x, size = self.conv1(x, size)
401
+ x, size = self.channel_attn(x, size)
402
+
403
+ if self.conv2 is not None:
404
+ x, size = self.conv2(x, size)
405
+ x, size = self.ffn(x, size)
406
+
407
+ return x, size
408
+
409
+
410
+ class Block(nn.Module):
411
+ def __init__(
412
+ self,
413
+ dim: int,
414
+ num_heads: int,
415
+ num_groups: int,
416
+ window_size: int,
417
+ mlp_ratio: float = 4.0,
418
+ qkv_bias: bool = True,
419
+ drop_path_rate: Tuple[float, float] = (0.0, 0.0),
420
+ conv_at_attn: bool = True,
421
+ conv_at_ffn: bool = True,
422
+ ):
423
+ super().__init__()
424
+ self.spatial_block = SpatialBlock(
425
+ dim,
426
+ num_heads,
427
+ window_size,
428
+ drop_path_rate=drop_path_rate[0],
429
+ qkv_bias=qkv_bias,
430
+ mlp_ratio=mlp_ratio,
431
+ conv_at_attn=conv_at_attn,
432
+ conv_at_ffn=conv_at_ffn,
433
+ )
434
+ self.channel_block = ChannelBlock(
435
+ dim,
436
+ num_groups,
437
+ drop_path_rate=drop_path_rate[1],
438
+ qkv_bias=qkv_bias,
439
+ mlp_ratio=mlp_ratio,
440
+ conv_at_attn=conv_at_attn,
441
+ conv_at_ffn=conv_at_ffn,
442
+ )
443
+
444
+ def __call__(self, x, size):
445
+ x, size = self.spatial_block(x, size)
446
+ x, size = self.channel_block(x, size)
447
+ return x, size
448
+
449
+
450
+ class VisionModel(nn.Module):
451
+ """DaViT: Dual Attention Vision Transformer"""
452
+
453
+ def __init__(self, config: VisionConfig):
454
+ super().__init__()
455
+
456
+ self.num_classes = config.num_classes
457
+ self.model_type = config.model_type
458
+ self.dim_embed = config.dim_embed
459
+ self.num_heads = config.num_heads
460
+ self.num_groups = config.num_groups
461
+ self.num_stages = len(self.dim_embed)
462
+ assert self.num_stages == len(self.num_heads) == len(self.num_groups)
463
+
464
+ if self.model_type not in ["davit", ""]:
465
+ raise ValueError(
466
+ f"Model type {self.model_type} not supported. Currently only 'davit' is supported"
467
+ )
468
+
469
+ # Convert PyTorch's linspace to MLX equivalent
470
+ total_blocks = sum(config.depths) * 2
471
+ dpr = [
472
+ i * config.drop_path_rate / (total_blocks - 1) for i in range(total_blocks)
473
+ ]
474
+
475
+ depth_offset = 0
476
+ self.convs = []
477
+ self.blocks = []
478
+
479
+ for i in range(self.num_stages):
480
+
481
+ conv_embed = ConvEmbed(
482
+ patch_size=config.patch_size[i],
483
+ stride=config.patch_stride[i],
484
+ padding=config.patch_padding[i],
485
+ in_chans=config.in_chans if i == 0 else self.dim_embed[i - 1],
486
+ embed_dim=self.dim_embed[i],
487
+ norm_layer=nn.LayerNorm,
488
+ pre_norm=config.patch_prenorm[i],
489
+ )
490
+ self.convs.append(conv_embed)
491
+
492
+ block = []
493
+ for j in range(config.depths[i]):
494
+ block.append(
495
+ Block(
496
+ self.dim_embed[i],
497
+ config.num_heads[i],
498
+ config.num_groups[i],
499
+ config.window_size,
500
+ config.mlp_ratio,
501
+ config.qkv_bias,
502
+ (dpr[depth_offset + j * 2], dpr[depth_offset + j * 2 + 1]),
503
+ config.conv_at_attn,
504
+ config.conv_at_ffn,
505
+ )
506
+ )
507
+
508
+ self.blocks.append(block)
509
+
510
+ depth_offset += config.depths[i] * 2
511
+
512
+ def __call__(self, x):
513
+ input_size = x.shape[2:]
514
+
515
+ # Process through stages
516
+ for conv, blks in zip(self.convs, self.blocks):
517
+ x, input_size = conv(x, input_size)
518
+ for blk in blks:
519
+ x, input_size = blk(x, input_size)
520
+
521
+ return x
522
+
523
+ @staticmethod
524
+ def sanitize(weights):
525
+ sanitized_weights = {}
526
+ for k, v in weights.items():
527
+ if "position_ids" in k:
528
+ # Remove unused position_ids
529
+ continue
530
+ elif "convs" in k:
531
+ if "proj.weight" in k:
532
+ # PyTorch conv2d weight tensors have shape:
533
+ # [out_channels, in_channels, kH, KW]
534
+ # MLX conv2d expects the weight be of shape:
535
+ # [out_channels, kH, KW, in_channels]
536
+ if check_array_shape(v):
537
+ sanitized_weights[k] = v
538
+ else:
539
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
540
+ else:
541
+ sanitized_weights[k] = v
542
+ elif "blocks" in k:
543
+ if "dw.weight" in k:
544
+ sanitized_weights[k] = (
545
+ v.transpose(0, 2, 3, 1) if v.shape[1] < v.shape[-1] else v
546
+ )
547
+ else:
548
+ sanitized_weights[k] = v
549
+ else:
550
+ sanitized_weights[k] = v
551
+
552
+ return sanitized_weights
@@ -0,0 +1,2 @@
1
+ from .config import ModelConfig, TextConfig, VisionConfig
2
+ from .gemma3 import LanguageModel, Model, VisionModel
@@ -0,0 +1,52 @@
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Union
3
+
4
+ from ..base import BaseModelConfig
5
+
6
+
7
+ @dataclass
8
+ class TextConfig(BaseModelConfig):
9
+ model_type: str
10
+ hidden_size: int
11
+ num_hidden_layers: int
12
+ intermediate_size: int
13
+ num_attention_heads: int = 8
14
+ head_dim: int = 256
15
+ rms_norm_eps: float = 1.0e-6
16
+ vocab_size: int = 262208
17
+ num_key_value_heads: int = 4
18
+ rope_global_base_freq: float = 1_000_000.0
19
+ rope_local_base_freq: float = 10_000.0
20
+ rope_traditional: bool = False
21
+ query_pre_attn_scalar: float = 256
22
+ sliding_window: int = 1024
23
+ rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
24
+ mm_tokens_per_image: int = 256
25
+ sliding_window_pattern: int = 6
26
+ max_position_embeddings: int = 4096
27
+
28
+
29
+ @dataclass
30
+ class VisionConfig(BaseModelConfig):
31
+ model_type: str
32
+ num_hidden_layers: int
33
+ hidden_size: int
34
+ intermediate_size: int
35
+ num_attention_heads: int
36
+ patch_size: int
37
+ image_size: int = 224
38
+ num_channels: int = 3
39
+ layer_norm_eps: float = 1e-6
40
+
41
+
42
+ @dataclass
43
+ class ModelConfig(BaseModelConfig):
44
+ text_config: TextConfig
45
+ vision_config: VisionConfig
46
+ model_type: str
47
+ vocab_size: int = 257152
48
+ ignore_index: int = -100
49
+ image_token_index: int = 262144
50
+ hidden_size: int = 2048
51
+ pad_token_id: int = 0
52
+ eos_token_id: Optional[List[int]] = None