fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,452 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Optional, Tuple
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
|
|
7
|
+
from ..base import (
|
|
8
|
+
LanguageModelOutput,
|
|
9
|
+
create_attention_mask,
|
|
10
|
+
scaled_dot_product_attention,
|
|
11
|
+
)
|
|
12
|
+
from ..cache import SimpleKVCache
|
|
13
|
+
from .config import TextConfig
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class Florence2Attention(nn.Module):
|
|
17
|
+
def __init__(
|
|
18
|
+
self, config: TextConfig, is_decoder: bool = False, is_causal: bool = False
|
|
19
|
+
):
|
|
20
|
+
super().__init__()
|
|
21
|
+
self.embed_dim = config.d_model
|
|
22
|
+
self.num_heads = (
|
|
23
|
+
config.decoder_attention_heads
|
|
24
|
+
if is_decoder
|
|
25
|
+
else config.encoder_attention_heads
|
|
26
|
+
)
|
|
27
|
+
self.is_decoder = is_decoder
|
|
28
|
+
self.is_causal = is_causal
|
|
29
|
+
self.head_dim = self.embed_dim // self.num_heads
|
|
30
|
+
self.scaling = self.head_dim**-0.5
|
|
31
|
+
|
|
32
|
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
33
|
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
34
|
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
35
|
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
36
|
+
|
|
37
|
+
def __call__(
|
|
38
|
+
self,
|
|
39
|
+
hidden_states,
|
|
40
|
+
key_value_states=None,
|
|
41
|
+
cache: Optional[SimpleKVCache] = None,
|
|
42
|
+
attention_mask=None,
|
|
43
|
+
layer_head_mask=None,
|
|
44
|
+
):
|
|
45
|
+
batch_size, tgt_len, _ = hidden_states.shape
|
|
46
|
+
|
|
47
|
+
q = (
|
|
48
|
+
self.q_proj(hidden_states)
|
|
49
|
+
.reshape(batch_size, tgt_len, self.num_heads, self.head_dim)
|
|
50
|
+
.transpose(0, 2, 1, 3)
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
is_cross_attention = key_value_states is not None
|
|
54
|
+
|
|
55
|
+
batch_size, tgt_len, _ = hidden_states.shape
|
|
56
|
+
src_len = (
|
|
57
|
+
key_value_states.shape[1]
|
|
58
|
+
if key_value_states is not None
|
|
59
|
+
else hidden_states.shape[1]
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
if (
|
|
63
|
+
is_cross_attention
|
|
64
|
+
and cache is not None
|
|
65
|
+
and cache.cache_length > 0
|
|
66
|
+
and cache.keys.shape[2] == key_value_states.shape[1]
|
|
67
|
+
):
|
|
68
|
+
# Cross-attention with cached keys/values - reuse them
|
|
69
|
+
k = cache.keys
|
|
70
|
+
v = cache.values
|
|
71
|
+
|
|
72
|
+
elif is_cross_attention:
|
|
73
|
+
# Cross attention - compute and cache keys/values from encoder
|
|
74
|
+
k = (
|
|
75
|
+
self.k_proj(key_value_states)
|
|
76
|
+
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
77
|
+
.transpose(0, 2, 1, 3)
|
|
78
|
+
)
|
|
79
|
+
v = (
|
|
80
|
+
self.v_proj(key_value_states)
|
|
81
|
+
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
82
|
+
.transpose(0, 2, 1, 3)
|
|
83
|
+
)
|
|
84
|
+
# Cache the cross-attention keys/values
|
|
85
|
+
if cache is not None:
|
|
86
|
+
cache.update(k, v)
|
|
87
|
+
|
|
88
|
+
elif cache is not None:
|
|
89
|
+
# Self-attention with cache - compute new k,v and concatenate with cache
|
|
90
|
+
k = (
|
|
91
|
+
self.k_proj(hidden_states)
|
|
92
|
+
.reshape(batch_size, src_len, self.num_heads, -1)
|
|
93
|
+
.transpose(0, 2, 1, 3)
|
|
94
|
+
)
|
|
95
|
+
v = (
|
|
96
|
+
self.v_proj(hidden_states)
|
|
97
|
+
.reshape(batch_size, src_len, self.num_heads, -1)
|
|
98
|
+
.transpose(0, 2, 1, 3)
|
|
99
|
+
)
|
|
100
|
+
# update_and_fetch handles cache concatenation
|
|
101
|
+
k, v = cache.update_and_fetch(k, v)
|
|
102
|
+
|
|
103
|
+
else:
|
|
104
|
+
# Self attention without cache (encoder)
|
|
105
|
+
k = (
|
|
106
|
+
self.k_proj(hidden_states)
|
|
107
|
+
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
108
|
+
.transpose(0, 2, 1, 3)
|
|
109
|
+
)
|
|
110
|
+
v = (
|
|
111
|
+
self.v_proj(hidden_states)
|
|
112
|
+
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
113
|
+
.transpose(0, 2, 1, 3)
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
if self.is_causal and self.is_decoder:
|
|
117
|
+
causal_mask = create_attention_mask(hidden_states)
|
|
118
|
+
attention_mask = causal_mask
|
|
119
|
+
|
|
120
|
+
attn_output = (
|
|
121
|
+
scaled_dot_product_attention(
|
|
122
|
+
q, k, v, cache=cache, scale=self.scaling, mask=attention_mask
|
|
123
|
+
)
|
|
124
|
+
.transpose(0, 2, 1, 3)
|
|
125
|
+
.reshape(batch_size, tgt_len, -1)
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
attn_output = self.out_proj(attn_output)
|
|
129
|
+
|
|
130
|
+
return attn_output
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
class Florence2EncoderLayer(nn.Module):
|
|
134
|
+
def __init__(self, config: TextConfig):
|
|
135
|
+
super().__init__()
|
|
136
|
+
self.embed_dim = config.d_model
|
|
137
|
+
self.self_attn = Florence2Attention(config, is_decoder=False, is_causal=False)
|
|
138
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
139
|
+
self.activation_fn = nn.GELU()
|
|
140
|
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
|
141
|
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
|
142
|
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
143
|
+
|
|
144
|
+
def __call__(self, hidden_states, attention_mask=None):
|
|
145
|
+
residual = hidden_states
|
|
146
|
+
hidden_states = self.self_attn(hidden_states, attention_mask=attention_mask)
|
|
147
|
+
hidden_states = residual + hidden_states
|
|
148
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
149
|
+
|
|
150
|
+
residual = hidden_states
|
|
151
|
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
152
|
+
hidden_states = self.fc2(hidden_states)
|
|
153
|
+
hidden_states = residual + hidden_states
|
|
154
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
155
|
+
|
|
156
|
+
return hidden_states
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
class Florence2DecoderLayer(nn.Module):
|
|
160
|
+
def __init__(self, config: TextConfig):
|
|
161
|
+
super().__init__()
|
|
162
|
+
self.embed_dim = config.d_model
|
|
163
|
+
self.self_attn = Florence2Attention(config, is_decoder=True, is_causal=True)
|
|
164
|
+
self.dropout = config.dropout
|
|
165
|
+
self.activation_fn = nn.GELU()
|
|
166
|
+
self.activation_dropout = config.activation_dropout
|
|
167
|
+
|
|
168
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
169
|
+
self.encoder_attn = Florence2Attention(config, is_decoder=True)
|
|
170
|
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
171
|
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
|
172
|
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
|
173
|
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
174
|
+
|
|
175
|
+
def __call__(
|
|
176
|
+
self,
|
|
177
|
+
hidden_states,
|
|
178
|
+
encoder_hidden_states,
|
|
179
|
+
attention_mask=None,
|
|
180
|
+
encoder_attention_mask=None,
|
|
181
|
+
cache: Optional[Tuple[SimpleKVCache, SimpleKVCache]] = None,
|
|
182
|
+
):
|
|
183
|
+
residual = hidden_states
|
|
184
|
+
|
|
185
|
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
|
186
|
+
self_attn_cache = cache[0] if cache[0] is not None else None
|
|
187
|
+
|
|
188
|
+
hidden_states = self.self_attn(
|
|
189
|
+
hidden_states, attention_mask=attention_mask, cache=self_attn_cache
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
hidden_states = residual + hidden_states
|
|
193
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
194
|
+
|
|
195
|
+
if encoder_hidden_states is not None:
|
|
196
|
+
residual = hidden_states
|
|
197
|
+
|
|
198
|
+
# cross_attn cached key/values tuple is at positions 3,4 of cache tuple
|
|
199
|
+
cross_attn_cache = cache[-1] if cache[-1] is not None else None
|
|
200
|
+
|
|
201
|
+
hidden_states = self.encoder_attn(
|
|
202
|
+
hidden_states,
|
|
203
|
+
key_value_states=encoder_hidden_states,
|
|
204
|
+
attention_mask=encoder_attention_mask,
|
|
205
|
+
cache=cross_attn_cache,
|
|
206
|
+
)
|
|
207
|
+
hidden_states = residual + hidden_states
|
|
208
|
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
209
|
+
|
|
210
|
+
# Fully Connected
|
|
211
|
+
residual = hidden_states
|
|
212
|
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
213
|
+
hidden_states = self.fc2(hidden_states)
|
|
214
|
+
hidden_states = residual + hidden_states
|
|
215
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
216
|
+
|
|
217
|
+
return hidden_states
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
class Florence2Encoder(nn.Module):
|
|
221
|
+
def __init__(self, config: TextConfig):
|
|
222
|
+
super().__init__()
|
|
223
|
+
self.config = config
|
|
224
|
+
self.dropout = config.dropout
|
|
225
|
+
self.layerdrop = config.encoder_layerdrop
|
|
226
|
+
|
|
227
|
+
embed_dim = config.d_model
|
|
228
|
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
|
229
|
+
self.offset = 2
|
|
230
|
+
self.embed_positions = nn.Embedding(
|
|
231
|
+
config.max_position_embeddings + self.offset, embed_dim
|
|
232
|
+
)
|
|
233
|
+
self.layers = [
|
|
234
|
+
Florence2EncoderLayer(config) for _ in range(config.encoder_layers)
|
|
235
|
+
]
|
|
236
|
+
self.layernorm_embedding = nn.LayerNorm(embed_dim)
|
|
237
|
+
|
|
238
|
+
def __call__(self, input_ids=None, inputs_embeds=None, attention_mask=None):
|
|
239
|
+
|
|
240
|
+
if inputs_embeds is None:
|
|
241
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
242
|
+
input_shape = inputs_embeds.shape
|
|
243
|
+
else:
|
|
244
|
+
input_shape = inputs_embeds.shape
|
|
245
|
+
|
|
246
|
+
positions = mx.arange(input_shape[1])
|
|
247
|
+
|
|
248
|
+
if positions.ndim == 1:
|
|
249
|
+
positions = mx.expand_dims(positions, axis=0)
|
|
250
|
+
|
|
251
|
+
embed_pos = self.embed_positions(positions + self.offset)
|
|
252
|
+
|
|
253
|
+
hidden_states = inputs_embeds + embed_pos
|
|
254
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
|
255
|
+
|
|
256
|
+
for encoder_layer in self.layers:
|
|
257
|
+
# Add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
258
|
+
dropout_probability = mx.random.uniform()
|
|
259
|
+
if self.training and (dropout_probability < self.layerdrop):
|
|
260
|
+
continue
|
|
261
|
+
hidden_states = encoder_layer(hidden_states, attention_mask)
|
|
262
|
+
|
|
263
|
+
return hidden_states
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
class Florence2Decoder(nn.Module):
|
|
267
|
+
def __init__(self, config: TextConfig):
|
|
268
|
+
super().__init__()
|
|
269
|
+
self.config = config
|
|
270
|
+
self.dropout = config.dropout
|
|
271
|
+
self.layerdrop = config.decoder_layerdrop
|
|
272
|
+
self.padding_idx = config.pad_token_id
|
|
273
|
+
self.max_target_positions = config.max_position_embeddings
|
|
274
|
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
|
275
|
+
self.offset = 2
|
|
276
|
+
self.embed_positions = nn.Embedding(
|
|
277
|
+
config.max_position_embeddings + self.offset, config.d_model
|
|
278
|
+
)
|
|
279
|
+
self.layers = [
|
|
280
|
+
Florence2DecoderLayer(config) for _ in range(config.decoder_layers)
|
|
281
|
+
]
|
|
282
|
+
self.layernorm_embedding = nn.LayerNorm(config.d_model)
|
|
283
|
+
|
|
284
|
+
def __call__(
|
|
285
|
+
self,
|
|
286
|
+
input_ids=None,
|
|
287
|
+
attention_mask=None,
|
|
288
|
+
encoder_hidden_states=None,
|
|
289
|
+
encoder_attention_mask=None,
|
|
290
|
+
head_mask=None,
|
|
291
|
+
cross_attn_head_mask=None,
|
|
292
|
+
inputs_embeds=None,
|
|
293
|
+
cache=None,
|
|
294
|
+
):
|
|
295
|
+
if input_ids is not None and inputs_embeds is not None:
|
|
296
|
+
raise ValueError(
|
|
297
|
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
|
298
|
+
)
|
|
299
|
+
elif input_ids is not None:
|
|
300
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
301
|
+
input_shape = inputs_embeds.shape # for 2d masks
|
|
302
|
+
positions = input_ids
|
|
303
|
+
elif inputs_embeds is not None:
|
|
304
|
+
input_shape = inputs_embeds.shape[:-1] # for 4d masks
|
|
305
|
+
positions = inputs_embeds[:, :, -1]
|
|
306
|
+
else:
|
|
307
|
+
raise ValueError(
|
|
308
|
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
if positions.ndim == 1:
|
|
312
|
+
positions = mx.expand_dims(positions, axis=0)
|
|
313
|
+
|
|
314
|
+
cache_length = cache[0][0].keys.shape[2] if cache[0][0].cache_length > 0 else 0
|
|
315
|
+
|
|
316
|
+
bsz, seq_len = inputs_embeds.shape[:2]
|
|
317
|
+
positions = mx.arange(
|
|
318
|
+
cache_length,
|
|
319
|
+
cache_length + seq_len,
|
|
320
|
+
dtype=mx.int64,
|
|
321
|
+
)
|
|
322
|
+
positions = mx.expand_dims(positions, axis=0)
|
|
323
|
+
|
|
324
|
+
embed_pos = self.embed_positions(positions + self.offset)
|
|
325
|
+
|
|
326
|
+
hidden_states = inputs_embeds + embed_pos
|
|
327
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
|
328
|
+
|
|
329
|
+
for decoder_layer, c in zip(self.layers, cache):
|
|
330
|
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
331
|
+
dropout_probability = mx.random.uniform()
|
|
332
|
+
if self.training and (dropout_probability < self.layerdrop):
|
|
333
|
+
continue
|
|
334
|
+
hidden_states = decoder_layer(
|
|
335
|
+
hidden_states=hidden_states,
|
|
336
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
337
|
+
attention_mask=attention_mask,
|
|
338
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
339
|
+
cache=c,
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
return hidden_states
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
class Florence2LanguageModel(nn.Module):
|
|
346
|
+
def __init__(self, config: TextConfig):
|
|
347
|
+
super().__init__()
|
|
348
|
+
self.config = config
|
|
349
|
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
350
|
+
self.encoder = Florence2Encoder(config)
|
|
351
|
+
self.decoder = Florence2Decoder(config)
|
|
352
|
+
if config.scale_embedding:
|
|
353
|
+
self.embed_scale = math.sqrt(config.d_model)
|
|
354
|
+
else:
|
|
355
|
+
self.embed_scale = 1.0
|
|
356
|
+
|
|
357
|
+
def __call__(
|
|
358
|
+
self,
|
|
359
|
+
input_ids=None,
|
|
360
|
+
inputs_embeds=None,
|
|
361
|
+
decoder_input_ids=None,
|
|
362
|
+
decoder_inputs_embeds=None,
|
|
363
|
+
attention_mask=None,
|
|
364
|
+
decoder_attention_mask=None,
|
|
365
|
+
encoder_outputs=None,
|
|
366
|
+
cache=None,
|
|
367
|
+
):
|
|
368
|
+
self.encoder.embed_tokens = self.shared
|
|
369
|
+
self.decoder.embed_tokens = self.shared
|
|
370
|
+
|
|
371
|
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
|
372
|
+
if input_ids is None:
|
|
373
|
+
raise ValueError(
|
|
374
|
+
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
|
375
|
+
"passed, `input_ids` cannot be `None`. Please pass either "
|
|
376
|
+
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
|
377
|
+
)
|
|
378
|
+
|
|
379
|
+
decoder_input_ids = mx.zeros_like(input_ids)
|
|
380
|
+
decoder_input_ids[:, 1:] = input_ids[:, :-1]
|
|
381
|
+
decoder_input_ids[:, 0] = self.config.bos_token_id
|
|
382
|
+
|
|
383
|
+
if inputs_embeds is not None:
|
|
384
|
+
inputs_embeds = inputs_embeds * self.embed_scale
|
|
385
|
+
|
|
386
|
+
if cache is None:
|
|
387
|
+
cache = [(SimpleKVCache(), SimpleKVCache())] * len(self.decoder.layers)
|
|
388
|
+
|
|
389
|
+
if encoder_outputs is None:
|
|
390
|
+
encoder_outputs = self.encoder(
|
|
391
|
+
input_ids=input_ids,
|
|
392
|
+
inputs_embeds=inputs_embeds,
|
|
393
|
+
attention_mask=attention_mask,
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
decoder_outputs = self.decoder(
|
|
397
|
+
input_ids=decoder_input_ids,
|
|
398
|
+
attention_mask=decoder_attention_mask,
|
|
399
|
+
encoder_hidden_states=encoder_outputs,
|
|
400
|
+
encoder_attention_mask=attention_mask,
|
|
401
|
+
inputs_embeds=decoder_inputs_embeds,
|
|
402
|
+
cache=cache,
|
|
403
|
+
)
|
|
404
|
+
return decoder_outputs, encoder_outputs
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
class LanguageModel(nn.Module):
|
|
408
|
+
def __init__(self, config: TextConfig):
|
|
409
|
+
super().__init__()
|
|
410
|
+
self.config = config
|
|
411
|
+
self.model = Florence2LanguageModel(config)
|
|
412
|
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
|
413
|
+
|
|
414
|
+
def __call__(
|
|
415
|
+
self,
|
|
416
|
+
inputs=None,
|
|
417
|
+
inputs_embeds=None,
|
|
418
|
+
decoder_input_ids=None,
|
|
419
|
+
decoder_inputs_embeds=None,
|
|
420
|
+
attention_mask=None,
|
|
421
|
+
decoder_attention_mask=None,
|
|
422
|
+
encoder_outputs=None,
|
|
423
|
+
cache=None,
|
|
424
|
+
**kwargs,
|
|
425
|
+
):
|
|
426
|
+
decoder_outputs, encoder_outputs = self.model(
|
|
427
|
+
inputs,
|
|
428
|
+
inputs_embeds,
|
|
429
|
+
decoder_input_ids,
|
|
430
|
+
decoder_inputs_embeds,
|
|
431
|
+
attention_mask,
|
|
432
|
+
decoder_attention_mask,
|
|
433
|
+
encoder_outputs,
|
|
434
|
+
cache,
|
|
435
|
+
)
|
|
436
|
+
out = self.lm_head(decoder_outputs)
|
|
437
|
+
return LanguageModelOutput(logits=out, encoder_outputs=encoder_outputs)
|
|
438
|
+
|
|
439
|
+
@property
|
|
440
|
+
def layers(self):
|
|
441
|
+
return range(self.model.config.decoder_layers)
|
|
442
|
+
|
|
443
|
+
@property
|
|
444
|
+
def head_dim(self):
|
|
445
|
+
return self.config.d_model // self.config.decoder_attention_heads
|
|
446
|
+
|
|
447
|
+
@property
|
|
448
|
+
def n_kv_heads(self):
|
|
449
|
+
return self.config.decoder_attention_heads
|
|
450
|
+
|
|
451
|
+
def make_cache(self):
|
|
452
|
+
return [(SimpleKVCache(), SimpleKVCache()) for n in self.layers]
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from transformers.models.florence2.processing_florence2 import Florence2Processor
|
|
2
|
+
|
|
3
|
+
# Store the original __init__
|
|
4
|
+
_original_init = Florence2Processor.__init__
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def _patched_init(self, image_processor=None, tokenizer=None, **kwargs):
|
|
8
|
+
"""Patched __init__ that adds image_token attributes to tokenizer if missing."""
|
|
9
|
+
if tokenizer is not None:
|
|
10
|
+
# Ensure tokenizer has image_token attribute
|
|
11
|
+
if not hasattr(tokenizer, "image_token"):
|
|
12
|
+
tokenizer.image_token = "<image>"
|
|
13
|
+
|
|
14
|
+
# Ensure tokenizer has image_token_id attribute
|
|
15
|
+
if not hasattr(tokenizer, "image_token_id"):
|
|
16
|
+
vocab = tokenizer.get_vocab()
|
|
17
|
+
if tokenizer.image_token in vocab:
|
|
18
|
+
tokenizer.image_token_id = vocab[tokenizer.image_token]
|
|
19
|
+
else:
|
|
20
|
+
tokenizer.add_tokens([tokenizer.image_token], special_tokens=True)
|
|
21
|
+
tokenizer.image_token_id = tokenizer.convert_tokens_to_ids(
|
|
22
|
+
tokenizer.image_token
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
# Call original __init__
|
|
26
|
+
_original_init(self, image_processor=image_processor, tokenizer=tokenizer, **kwargs)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
# Apply the patch
|
|
30
|
+
Florence2Processor.__init__ = _patched_init
|