fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,206 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from ..cache import KVCache
|
|
12
|
+
from .config import ModelConfig, TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Molmo2Embedding(nn.Module):
|
|
16
|
+
def __init__(
|
|
17
|
+
self,
|
|
18
|
+
num_embeddings: int,
|
|
19
|
+
num_new_embeddings: int,
|
|
20
|
+
features: int,
|
|
21
|
+
):
|
|
22
|
+
super().__init__()
|
|
23
|
+
self.embedding = mx.zeros((num_embeddings, features))
|
|
24
|
+
self.new_embedding = mx.zeros((num_new_embeddings, features))
|
|
25
|
+
|
|
26
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
27
|
+
return mx.concatenate([self.embedding, self.new_embedding], axis=0)[x]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class LanguageModelMLP(nn.Module):
|
|
31
|
+
def __init__(self, input_dim: int, intermediate_size: int):
|
|
32
|
+
super().__init__()
|
|
33
|
+
self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False)
|
|
34
|
+
self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False)
|
|
35
|
+
|
|
36
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
37
|
+
x = self.ff_proj(x)
|
|
38
|
+
x, gate = mx.split(x, 2, axis=-1)
|
|
39
|
+
x = nn.silu(gate) * x
|
|
40
|
+
return self.ff_out(x)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class Molmo2Attention(nn.Module):
|
|
44
|
+
def __init__(self, config: TextConfig):
|
|
45
|
+
super().__init__()
|
|
46
|
+
self.config = config
|
|
47
|
+
self.num_heads = config.num_attention_heads
|
|
48
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
49
|
+
self.head_dim = config.head_dim
|
|
50
|
+
self.scale = self.head_dim**-0.5
|
|
51
|
+
|
|
52
|
+
self.fused_dims = (
|
|
53
|
+
config.num_attention_heads * config.head_dim,
|
|
54
|
+
config.head_dim * config.num_key_value_heads,
|
|
55
|
+
config.head_dim * config.num_key_value_heads,
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
self.att_proj = nn.Linear(
|
|
59
|
+
config.hidden_size,
|
|
60
|
+
sum(self.fused_dims),
|
|
61
|
+
bias=config.qkv_bias,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
self.q_norm = nn.RMSNorm(dims=config.head_dim, eps=config.layer_norm_eps)
|
|
65
|
+
self.k_norm = nn.RMSNorm(dims=config.head_dim, eps=config.layer_norm_eps)
|
|
66
|
+
|
|
67
|
+
self.attn_out = nn.Linear(
|
|
68
|
+
config.head_dim * config.num_attention_heads,
|
|
69
|
+
config.hidden_size,
|
|
70
|
+
bias=False,
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
self.rotary_emb = nn.RoPE(self.head_dim, base=config.rope_theta)
|
|
74
|
+
|
|
75
|
+
def __call__(
|
|
76
|
+
self,
|
|
77
|
+
hidden_states: mx.array,
|
|
78
|
+
mask: Optional[mx.array] = None,
|
|
79
|
+
cache: Optional[KVCache] = None,
|
|
80
|
+
) -> mx.array:
|
|
81
|
+
batch_size, seq_len, _ = hidden_states.shape
|
|
82
|
+
|
|
83
|
+
qkv = self.att_proj(hidden_states)
|
|
84
|
+
q, k, v = mx.split(
|
|
85
|
+
qkv,
|
|
86
|
+
[self.fused_dims[0], self.fused_dims[0] + self.fused_dims[1]],
|
|
87
|
+
axis=-1,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
q = self.q_norm(q.reshape(batch_size, seq_len, self.num_heads, self.head_dim))
|
|
91
|
+
k = self.k_norm(
|
|
92
|
+
k.reshape(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
|
|
93
|
+
)
|
|
94
|
+
v = v.reshape(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
|
|
95
|
+
|
|
96
|
+
q = q.transpose(0, 2, 1, 3)
|
|
97
|
+
k = k.transpose(0, 2, 1, 3)
|
|
98
|
+
v = v.transpose(0, 2, 1, 3)
|
|
99
|
+
|
|
100
|
+
if cache is not None:
|
|
101
|
+
q = self.rotary_emb(q, offset=cache.offset)
|
|
102
|
+
k = self.rotary_emb(k, offset=cache.offset)
|
|
103
|
+
k, v = cache.update_and_fetch(k, v)
|
|
104
|
+
else:
|
|
105
|
+
q = self.rotary_emb(q)
|
|
106
|
+
k = self.rotary_emb(k)
|
|
107
|
+
|
|
108
|
+
att = scaled_dot_product_attention(q, k, v, cache, scale=self.scale, mask=mask)
|
|
109
|
+
att = att.transpose(0, 2, 1, 3).reshape(batch_size, seq_len, -1)
|
|
110
|
+
return self.attn_out(att)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
class Molmo2DecoderLayer(nn.Module):
|
|
114
|
+
def __init__(self, config: TextConfig):
|
|
115
|
+
super().__init__()
|
|
116
|
+
self.self_attn = Molmo2Attention(config)
|
|
117
|
+
self.attn_norm = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
118
|
+
self.ff_norm = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
119
|
+
self.mlp = LanguageModelMLP(config.hidden_size, config.intermediate_size)
|
|
120
|
+
|
|
121
|
+
def __call__(
|
|
122
|
+
self,
|
|
123
|
+
hidden_states: mx.array,
|
|
124
|
+
mask: Optional[mx.array] = None,
|
|
125
|
+
cache: Optional[KVCache] = None,
|
|
126
|
+
) -> mx.array:
|
|
127
|
+
residual = hidden_states
|
|
128
|
+
hidden_states = self.attn_norm(hidden_states)
|
|
129
|
+
hidden_states = residual + self.self_attn(hidden_states, mask, cache)
|
|
130
|
+
|
|
131
|
+
residual = hidden_states
|
|
132
|
+
hidden_states = self.ff_norm(hidden_states)
|
|
133
|
+
hidden_states = residual + self.mlp(hidden_states)
|
|
134
|
+
return hidden_states
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class Molmo2Transformer(nn.Module):
|
|
138
|
+
def __init__(self, config: TextConfig):
|
|
139
|
+
super().__init__()
|
|
140
|
+
self.config = config
|
|
141
|
+
|
|
142
|
+
self.wte = Molmo2Embedding(
|
|
143
|
+
config.vocab_size, config.additional_vocab_size, config.hidden_size
|
|
144
|
+
)
|
|
145
|
+
self.blocks = [
|
|
146
|
+
Molmo2DecoderLayer(config) for _ in range(config.num_hidden_layers)
|
|
147
|
+
]
|
|
148
|
+
self.ln_f = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
149
|
+
|
|
150
|
+
self.emb_drop = nn.Dropout(config.embedding_dropout)
|
|
151
|
+
|
|
152
|
+
def __call__(
|
|
153
|
+
self,
|
|
154
|
+
input_ids: mx.array,
|
|
155
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
156
|
+
mask: Optional[mx.array] = None,
|
|
157
|
+
cache: Optional[list[KVCache]] = None,
|
|
158
|
+
) -> mx.array:
|
|
159
|
+
if inputs_embeds is None:
|
|
160
|
+
hidden_states = self.wte(input_ids)
|
|
161
|
+
else:
|
|
162
|
+
hidden_states = inputs_embeds
|
|
163
|
+
|
|
164
|
+
if cache is None:
|
|
165
|
+
cache = [None] * len(self.blocks)
|
|
166
|
+
|
|
167
|
+
if mask is None:
|
|
168
|
+
mask = create_attention_mask(hidden_states, cache)
|
|
169
|
+
|
|
170
|
+
hidden_states = self.emb_drop(hidden_states)
|
|
171
|
+
|
|
172
|
+
for block, c in zip(self.blocks, cache):
|
|
173
|
+
hidden_states = block(hidden_states, mask, c)
|
|
174
|
+
|
|
175
|
+
return self.ln_f(hidden_states)
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class LanguageModel(nn.Module):
|
|
179
|
+
def __init__(self, args: TextConfig, config: ModelConfig = None):
|
|
180
|
+
super().__init__()
|
|
181
|
+
self.args = args
|
|
182
|
+
self.config = config
|
|
183
|
+
self.model_type = args.model_type
|
|
184
|
+
self.model = Molmo2Transformer(args)
|
|
185
|
+
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
186
|
+
|
|
187
|
+
def __call__(
|
|
188
|
+
self,
|
|
189
|
+
inputs: mx.array,
|
|
190
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
191
|
+
mask: Optional[mx.array] = None,
|
|
192
|
+
cache: Optional[list[KVCache]] = None,
|
|
193
|
+
**kwargs,
|
|
194
|
+
) -> LanguageModelOutput:
|
|
195
|
+
hidden_states = self.model(inputs, inputs_embeds, mask, cache)
|
|
196
|
+
logits = self.lm_head(hidden_states)
|
|
197
|
+
return LanguageModelOutput(logits=logits)
|
|
198
|
+
|
|
199
|
+
@staticmethod
|
|
200
|
+
def sanitize(weights):
|
|
201
|
+
# Remove unused precomputed rotary freqs if present.
|
|
202
|
+
return {k: v for k, v in weights.items() if "rotary_emb.inv_freq" not in k}
|
|
203
|
+
|
|
204
|
+
@property
|
|
205
|
+
def layers(self):
|
|
206
|
+
return self.model.blocks
|
|
@@ -0,0 +1,330 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from ..base import InputEmbeddingsFeatures, LanguageModelOutput
|
|
8
|
+
from .config import ModelConfig
|
|
9
|
+
from .language import LanguageModel
|
|
10
|
+
from .vision import VisionModel
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Model(nn.Module):
|
|
14
|
+
def __init__(self, config: ModelConfig):
|
|
15
|
+
super().__init__()
|
|
16
|
+
self.config = config
|
|
17
|
+
self.language_model = LanguageModel(config.text_config, config)
|
|
18
|
+
self.vision_tower = VisionModel(config.vision_config)
|
|
19
|
+
|
|
20
|
+
@property
|
|
21
|
+
def layers(self):
|
|
22
|
+
return self.language_model.layers
|
|
23
|
+
|
|
24
|
+
def build_batched_images(
|
|
25
|
+
self,
|
|
26
|
+
input_ids: mx.array,
|
|
27
|
+
pixel_values: mx.array,
|
|
28
|
+
image_token_pooling: mx.array,
|
|
29
|
+
image_grids: mx.array,
|
|
30
|
+
image_num_crops: mx.array,
|
|
31
|
+
) -> tuple[mx.array, mx.array]:
|
|
32
|
+
raw_counts = (input_ids == self.config.image_end_token_id).sum(axis=1)
|
|
33
|
+
counts = raw_counts // 2
|
|
34
|
+
batch_size = counts.shape[0]
|
|
35
|
+
|
|
36
|
+
num_images = int(counts.sum().item())
|
|
37
|
+
|
|
38
|
+
if image_grids.shape[0] != num_images:
|
|
39
|
+
raise ValueError(
|
|
40
|
+
f"Expected {num_images} image grids, got {image_grids.shape[0]}"
|
|
41
|
+
)
|
|
42
|
+
if image_num_crops.shape[0] != num_images:
|
|
43
|
+
raise ValueError(
|
|
44
|
+
f"Expected {num_images} image crop counts, got {image_num_crops.shape[0]}"
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
num_pooled_patches_per_image = (
|
|
48
|
+
(image_grids[:, :2].prod(axis=1) + image_grids[:, 2:].prod(axis=1))
|
|
49
|
+
.astype(image_num_crops.dtype)
|
|
50
|
+
.reshape(-1)
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
n_crops, n_patches, pixels_per_patch = pixel_values.shape
|
|
54
|
+
|
|
55
|
+
example_ids_for_image = mx.array(
|
|
56
|
+
np.repeat(
|
|
57
|
+
np.arange(batch_size), np.array(counts).astype(np.int32).tolist()
|
|
58
|
+
),
|
|
59
|
+
dtype=mx.int32,
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
crops_per_example = mx.zeros((batch_size,), dtype=image_num_crops.dtype)
|
|
63
|
+
pooled_per_example = mx.zeros(
|
|
64
|
+
(batch_size,), dtype=num_pooled_patches_per_image.dtype
|
|
65
|
+
)
|
|
66
|
+
for image_idx in range(num_images):
|
|
67
|
+
ex = int(example_ids_for_image[image_idx].item())
|
|
68
|
+
crops_per_example[ex] = crops_per_example[ex] + image_num_crops[image_idx]
|
|
69
|
+
pooled_per_example[ex] = (
|
|
70
|
+
pooled_per_example[ex] + num_pooled_patches_per_image[image_idx]
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
total_crops = int(crops_per_example.sum().item())
|
|
74
|
+
if total_crops != n_crops:
|
|
75
|
+
raise ValueError(f"Expected {total_crops} crops, got {n_crops}")
|
|
76
|
+
|
|
77
|
+
total_pooled = int(pooled_per_example.sum().item())
|
|
78
|
+
if total_pooled != image_token_pooling.shape[0]:
|
|
79
|
+
raise ValueError(
|
|
80
|
+
f"Expected {total_pooled} pooled patches, got {image_token_pooling.shape[0]}"
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
max_crops = int(crops_per_example.max().item())
|
|
84
|
+
images = mx.full(
|
|
85
|
+
(batch_size, max_crops, n_patches, pixels_per_patch),
|
|
86
|
+
vals=-1,
|
|
87
|
+
dtype=pixel_values.dtype,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
offset_crop = 0
|
|
91
|
+
for i in range(batch_size):
|
|
92
|
+
num = int(crops_per_example[i].item())
|
|
93
|
+
images[i, :num] = pixel_values[offset_crop : offset_crop + num]
|
|
94
|
+
offset_crop += num
|
|
95
|
+
|
|
96
|
+
max_pooled = int(pooled_per_example.max().item())
|
|
97
|
+
token_dim = image_token_pooling.shape[1]
|
|
98
|
+
new_token_pooling = mx.full(
|
|
99
|
+
(batch_size, max_pooled, token_dim),
|
|
100
|
+
vals=-1,
|
|
101
|
+
dtype=image_token_pooling.dtype,
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
patches_per_image = image_num_crops * n_patches
|
|
105
|
+
counts_list = counts.tolist()
|
|
106
|
+
image_idx = 0
|
|
107
|
+
pooled_offset = 0
|
|
108
|
+
patch_offset = 0
|
|
109
|
+
for ex, c in enumerate(counts_list):
|
|
110
|
+
num_pooled = int(pooled_per_example[ex].item())
|
|
111
|
+
cur = mx.array(
|
|
112
|
+
image_token_pooling[pooled_offset : pooled_offset + num_pooled]
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
per_img_patches = patches_per_image[image_idx : image_idx + c]
|
|
116
|
+
index_offsets = [0] + np.cumsum(per_img_patches.tolist()).tolist()[:-1]
|
|
117
|
+
per_img_pooled = num_pooled_patches_per_image[
|
|
118
|
+
image_idx : image_idx + c
|
|
119
|
+
].tolist()
|
|
120
|
+
|
|
121
|
+
offset = 0
|
|
122
|
+
for j in range(c):
|
|
123
|
+
n = int(per_img_pooled[j])
|
|
124
|
+
idx_off = int(index_offsets[j])
|
|
125
|
+
cur_slice = cur[offset : offset + n]
|
|
126
|
+
cur[offset : offset + n] = mx.where(
|
|
127
|
+
cur_slice >= 0,
|
|
128
|
+
cur_slice + idx_off,
|
|
129
|
+
cur_slice,
|
|
130
|
+
)
|
|
131
|
+
offset += n
|
|
132
|
+
|
|
133
|
+
new_token_pooling[ex, :num_pooled] = cur
|
|
134
|
+
pooled_offset += num_pooled
|
|
135
|
+
image_idx += c
|
|
136
|
+
patch_offset += num_pooled
|
|
137
|
+
|
|
138
|
+
return images, new_token_pooling
|
|
139
|
+
|
|
140
|
+
def build_batched_videos(
|
|
141
|
+
self,
|
|
142
|
+
input_ids: mx.array,
|
|
143
|
+
pixel_values_videos: mx.array,
|
|
144
|
+
video_token_pooling: mx.array,
|
|
145
|
+
video_grids: mx.array,
|
|
146
|
+
) -> tuple[mx.array, mx.array]:
|
|
147
|
+
end_token_id = (
|
|
148
|
+
self.config.frame_end_token_id
|
|
149
|
+
if self.config.use_frame_special_tokens
|
|
150
|
+
else self.config.image_end_token_id
|
|
151
|
+
)
|
|
152
|
+
counts = mx.any(input_ids == end_token_id, axis=1).astype(mx.int32)
|
|
153
|
+
batch_size = counts.shape[0]
|
|
154
|
+
num_videos = int(counts.sum().item())
|
|
155
|
+
|
|
156
|
+
if video_grids.shape[0] != num_videos:
|
|
157
|
+
raise ValueError(
|
|
158
|
+
f"Expected {num_videos} videos, got {video_grids.shape[0]}"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
num_pooled_patches_per_video = (video_grids[:, 1] * video_grids[:, 2]).astype(
|
|
162
|
+
video_token_pooling.dtype
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
n_frames, n_patches, pixels_per_patch = pixel_values_videos.shape
|
|
166
|
+
|
|
167
|
+
frames_per_example = mx.zeros((batch_size,), dtype=mx.int32)
|
|
168
|
+
pooled_per_example = mx.zeros((batch_size,), dtype=video_token_pooling.dtype)
|
|
169
|
+
|
|
170
|
+
video_index = 0
|
|
171
|
+
for i in range(batch_size):
|
|
172
|
+
if counts[i].item() == 1:
|
|
173
|
+
frames_per_example[i] = int(video_grids[video_index][0].item())
|
|
174
|
+
pooled_per_example[i] = num_pooled_patches_per_video[video_index]
|
|
175
|
+
video_index += 1
|
|
176
|
+
|
|
177
|
+
max_frames = int(frames_per_example.max().item()) if num_videos else 0
|
|
178
|
+
videos = mx.full(
|
|
179
|
+
(batch_size, max_frames, n_patches, pixels_per_patch),
|
|
180
|
+
vals=-1,
|
|
181
|
+
dtype=pixel_values_videos.dtype,
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
offset = 0
|
|
185
|
+
for i in range(batch_size):
|
|
186
|
+
num = int(frames_per_example[i].item())
|
|
187
|
+
if num > 0:
|
|
188
|
+
videos[i, :num] = pixel_values_videos[offset : offset + num]
|
|
189
|
+
offset += num
|
|
190
|
+
|
|
191
|
+
max_pooled = int(pooled_per_example.max().item()) if num_videos else 0
|
|
192
|
+
token_dim = video_token_pooling.shape[1]
|
|
193
|
+
new_token_pooling = mx.full(
|
|
194
|
+
(batch_size, max_pooled, token_dim),
|
|
195
|
+
vals=-1,
|
|
196
|
+
dtype=video_token_pooling.dtype,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
pooled_offset = 0
|
|
200
|
+
for i in range(batch_size):
|
|
201
|
+
num = int(pooled_per_example[i].item())
|
|
202
|
+
if num > 0:
|
|
203
|
+
new_token_pooling[i, :num] = video_token_pooling[
|
|
204
|
+
pooled_offset : pooled_offset + num
|
|
205
|
+
]
|
|
206
|
+
pooled_offset += num
|
|
207
|
+
|
|
208
|
+
if offset != n_frames:
|
|
209
|
+
raise ValueError(f"Expected {n_frames} frames, got {offset}")
|
|
210
|
+
if pooled_offset != video_token_pooling.shape[0]:
|
|
211
|
+
raise ValueError(
|
|
212
|
+
f"Expected {video_token_pooling.shape[0]} pooled tokens, got {pooled_offset}"
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
return videos, new_token_pooling
|
|
216
|
+
|
|
217
|
+
def merge_visual_inputs(
|
|
218
|
+
self,
|
|
219
|
+
*,
|
|
220
|
+
input_ids: mx.array,
|
|
221
|
+
pixel_values: Optional[mx.array] = None,
|
|
222
|
+
image_token_pooling: Optional[mx.array] = None,
|
|
223
|
+
image_grids: Optional[mx.array] = None,
|
|
224
|
+
image_num_crops: Optional[mx.array] = None,
|
|
225
|
+
video_token_pooling: Optional[mx.array] = None,
|
|
226
|
+
video_grids: Optional[mx.array] = None,
|
|
227
|
+
) -> tuple[Optional[mx.array], Optional[mx.array]]:
|
|
228
|
+
if pixel_values is None:
|
|
229
|
+
return None, None
|
|
230
|
+
|
|
231
|
+
if video_token_pooling is not None or video_grids is not None:
|
|
232
|
+
if video_token_pooling is None or video_grids is None:
|
|
233
|
+
raise ValueError(
|
|
234
|
+
"video_token_pooling and video_grids are required for videos"
|
|
235
|
+
)
|
|
236
|
+
return self.build_batched_videos(
|
|
237
|
+
input_ids=input_ids,
|
|
238
|
+
pixel_values_videos=pixel_values,
|
|
239
|
+
video_token_pooling=video_token_pooling,
|
|
240
|
+
video_grids=video_grids,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
if (
|
|
244
|
+
image_token_pooling is None
|
|
245
|
+
or image_grids is None
|
|
246
|
+
or image_num_crops is None
|
|
247
|
+
):
|
|
248
|
+
raise ValueError(
|
|
249
|
+
"image_token_pooling, image_grids, and image_num_crops are required for images"
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
return self.build_batched_images(
|
|
253
|
+
input_ids=input_ids,
|
|
254
|
+
pixel_values=pixel_values,
|
|
255
|
+
image_token_pooling=image_token_pooling,
|
|
256
|
+
image_grids=image_grids,
|
|
257
|
+
image_num_crops=image_num_crops,
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def get_input_embeddings(
|
|
261
|
+
self,
|
|
262
|
+
input_ids: mx.array,
|
|
263
|
+
pixel_values: Optional[mx.array] = None,
|
|
264
|
+
**kwargs,
|
|
265
|
+
) -> mx.array:
|
|
266
|
+
input_ids = input_ids * (input_ids != -1).astype(input_ids.dtype)
|
|
267
|
+
x = self.language_model.model.wte(input_ids)
|
|
268
|
+
|
|
269
|
+
if pixel_values is not None:
|
|
270
|
+
|
|
271
|
+
pixel_values, token_pooling = self.merge_visual_inputs(
|
|
272
|
+
input_ids=input_ids,
|
|
273
|
+
pixel_values=pixel_values,
|
|
274
|
+
image_token_pooling=kwargs.get("image_token_pooling", None),
|
|
275
|
+
image_grids=kwargs.get("image_grids", None),
|
|
276
|
+
image_num_crops=kwargs.get("image_num_crops", None),
|
|
277
|
+
video_token_pooling=kwargs.get("video_token_pooling", None),
|
|
278
|
+
video_grids=kwargs.get("video_grids", None),
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
dtype = self.vision_tower.image_vit.patch_embedding.weight.dtype
|
|
282
|
+
pixel_values = pixel_values.astype(dtype)
|
|
283
|
+
image_features = self.vision_tower(pixel_values, token_pooling)
|
|
284
|
+
is_image_patch = mx.reshape(input_ids, (-1,)) == self.config.image_patch_id
|
|
285
|
+
if int(is_image_patch.sum().item()) != image_features.shape[0]:
|
|
286
|
+
raise ValueError(
|
|
287
|
+
f"Expected {int(is_image_patch.sum().item())} image features, got {image_features.shape[0]}"
|
|
288
|
+
)
|
|
289
|
+
flat_x = mx.reshape(x, (-1, x.shape[-1]))
|
|
290
|
+
positions = mx.array(np.where(np.array(is_image_patch))[0], dtype=mx.uint32)
|
|
291
|
+
flat_x[positions] = flat_x[positions] + image_features
|
|
292
|
+
x = flat_x.reshape(x.shape)
|
|
293
|
+
|
|
294
|
+
return InputEmbeddingsFeatures(inputs_embeds=x)
|
|
295
|
+
|
|
296
|
+
def __call__(
|
|
297
|
+
self,
|
|
298
|
+
input_ids: mx.array,
|
|
299
|
+
pixel_values: Optional[mx.array] = None,
|
|
300
|
+
mask: Optional[mx.array] = None,
|
|
301
|
+
cache=None,
|
|
302
|
+
**kwargs,
|
|
303
|
+
) -> LanguageModelOutput:
|
|
304
|
+
if input_ids.ndim == 1:
|
|
305
|
+
input_ids = input_ids[None, :]
|
|
306
|
+
|
|
307
|
+
input_embeddings_features = self.get_input_embeddings(
|
|
308
|
+
input_ids=input_ids, pixel_values=pixel_values, **kwargs
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
return self.language_model(
|
|
312
|
+
input_ids,
|
|
313
|
+
inputs_embeds=input_embeddings_features.inputs_embeds,
|
|
314
|
+
mask=mask,
|
|
315
|
+
cache=cache,
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
def sanitize(self, weights):
|
|
319
|
+
def transform_key(key: str) -> str:
|
|
320
|
+
if key.startswith("model.transformer."):
|
|
321
|
+
key = key.replace("model.transformer.", "language_model.model.", 1)
|
|
322
|
+
if key.startswith("model.vision_backbone."):
|
|
323
|
+
key = key.replace("model.vision_backbone.", "vision_tower.", 1)
|
|
324
|
+
if key.startswith("lm_head."):
|
|
325
|
+
key = key.replace("lm_head.", "language_model.lm_head.", 1)
|
|
326
|
+
# Vision transformer uses list not named submodule
|
|
327
|
+
key = key.replace(".transformer.resblocks.", ".transformer.")
|
|
328
|
+
return key
|
|
329
|
+
|
|
330
|
+
return {transform_key(k): v for k, v in weights.items()}
|