fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,264 @@
|
|
|
1
|
+
"""
|
|
2
|
+
From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import dataclasses
|
|
6
|
+
from enum import IntEnum, auto
|
|
7
|
+
from typing import Dict, List
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class SeparatorStyle(IntEnum):
|
|
11
|
+
"""Separator styles."""
|
|
12
|
+
|
|
13
|
+
DeepSeek = auto()
|
|
14
|
+
DeepSeekV2 = auto()
|
|
15
|
+
PLAIN = auto()
|
|
16
|
+
ALIGNMENT = auto()
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@dataclasses.dataclass
|
|
20
|
+
class Conversation:
|
|
21
|
+
"""A class that manages prompt templates and keeps all conversation history."""
|
|
22
|
+
|
|
23
|
+
# The name of this template
|
|
24
|
+
name: str
|
|
25
|
+
# The template of the system prompt
|
|
26
|
+
system_template: str = "{system_message}"
|
|
27
|
+
# The system message
|
|
28
|
+
system_message: str = ""
|
|
29
|
+
# The names of two roles
|
|
30
|
+
roles: List[str] = (("USER", "ASSISTANT"),)
|
|
31
|
+
# All messages. Each item is (role, message).
|
|
32
|
+
messages: List[List[str]] = ()
|
|
33
|
+
# The number of few shot examples
|
|
34
|
+
offset: int = 0
|
|
35
|
+
# The separator style and configurations
|
|
36
|
+
sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
|
|
37
|
+
sep: str = "\n"
|
|
38
|
+
sep2: str = None
|
|
39
|
+
# Stop criteria (the default one is EOS token)
|
|
40
|
+
stop_str: str = None
|
|
41
|
+
# Stops generation if meeting any token in this list
|
|
42
|
+
stop_token_ids: List[int] = None
|
|
43
|
+
|
|
44
|
+
def get_prompt(self) -> str:
|
|
45
|
+
"""Get the prompt for generation."""
|
|
46
|
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
|
47
|
+
if self.sep_style == SeparatorStyle.DeepSeek:
|
|
48
|
+
seps = [self.sep, self.sep2]
|
|
49
|
+
if system_prompt == "" or system_prompt is None:
|
|
50
|
+
ret = ""
|
|
51
|
+
else:
|
|
52
|
+
ret = system_prompt + seps[0]
|
|
53
|
+
for i, (role, message) in enumerate(self.messages):
|
|
54
|
+
if message:
|
|
55
|
+
ret += role + ": " + message + seps[i % 2]
|
|
56
|
+
else:
|
|
57
|
+
ret += role + ":"
|
|
58
|
+
return ret
|
|
59
|
+
elif self.sep_style == SeparatorStyle.DeepSeekV2:
|
|
60
|
+
seps = [self.sep, self.sep2]
|
|
61
|
+
if system_prompt == "" or system_prompt is None:
|
|
62
|
+
ret = ""
|
|
63
|
+
else:
|
|
64
|
+
ret = system_prompt + seps[0]
|
|
65
|
+
for i, (role, message) in enumerate(self.messages):
|
|
66
|
+
if message:
|
|
67
|
+
if role == "User":
|
|
68
|
+
ret += "<|sft▁begin|>\n" + message + self.sep
|
|
69
|
+
else:
|
|
70
|
+
ret += message + self.sep2
|
|
71
|
+
else:
|
|
72
|
+
ret = ret
|
|
73
|
+
return ret
|
|
74
|
+
|
|
75
|
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
|
76
|
+
seps = [self.sep, self.sep2]
|
|
77
|
+
ret = ""
|
|
78
|
+
for i, (role, message) in enumerate(self.messages):
|
|
79
|
+
if message:
|
|
80
|
+
if type(message) is tuple:
|
|
81
|
+
message, _, _ = message
|
|
82
|
+
if i % 2 == 0:
|
|
83
|
+
ret += message + seps[i % 2]
|
|
84
|
+
else:
|
|
85
|
+
ret += message + seps[i % 2]
|
|
86
|
+
else:
|
|
87
|
+
ret += ""
|
|
88
|
+
return ret
|
|
89
|
+
elif self.sep_style == SeparatorStyle.ALIGNMENT:
|
|
90
|
+
seps = [self.sep, self.sep2]
|
|
91
|
+
ret = ""
|
|
92
|
+
for i, (role, message) in enumerate(self.messages):
|
|
93
|
+
if message:
|
|
94
|
+
if type(message) is tuple:
|
|
95
|
+
message, _, _ = message
|
|
96
|
+
if i % 2 == 0:
|
|
97
|
+
ret += "<image>\n" + seps[i % 2]
|
|
98
|
+
else:
|
|
99
|
+
ret += message + seps[i % 2]
|
|
100
|
+
else:
|
|
101
|
+
ret += ""
|
|
102
|
+
return ret
|
|
103
|
+
else:
|
|
104
|
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
105
|
+
|
|
106
|
+
def set_system_message(self, system_message: str):
|
|
107
|
+
"""Set the system message."""
|
|
108
|
+
self.system_message = system_message
|
|
109
|
+
|
|
110
|
+
def append_message(self, role: str, message: str):
|
|
111
|
+
"""Append a new message."""
|
|
112
|
+
self.messages.append([role, message])
|
|
113
|
+
|
|
114
|
+
def update_last_message(self, message: str):
|
|
115
|
+
"""Update the last output.
|
|
116
|
+
|
|
117
|
+
The last message is typically set to be None when constructing the prompt,
|
|
118
|
+
so we need to update it in-place after getting the response from a model.
|
|
119
|
+
"""
|
|
120
|
+
self.messages[-1][1] = message
|
|
121
|
+
|
|
122
|
+
def reset_message(self):
|
|
123
|
+
"""Reset a new message."""
|
|
124
|
+
self.messages = []
|
|
125
|
+
|
|
126
|
+
def to_gradio_chatbot(self):
|
|
127
|
+
"""Convert the conversation to gradio chatbot format."""
|
|
128
|
+
ret = []
|
|
129
|
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
|
130
|
+
if i % 2 == 0:
|
|
131
|
+
ret.append([msg, None])
|
|
132
|
+
else:
|
|
133
|
+
ret[-1][-1] = msg
|
|
134
|
+
return ret
|
|
135
|
+
|
|
136
|
+
def to_openai_api_messages(self):
|
|
137
|
+
"""Convert the conversation to OpenAI chat completion format."""
|
|
138
|
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
|
139
|
+
ret = [{"role": "system", "content": system_prompt}]
|
|
140
|
+
|
|
141
|
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
|
142
|
+
if i % 2 == 0:
|
|
143
|
+
ret.append({"role": "user", "content": msg})
|
|
144
|
+
else:
|
|
145
|
+
if msg is not None:
|
|
146
|
+
ret.append({"role": "assistant", "content": msg})
|
|
147
|
+
return ret
|
|
148
|
+
|
|
149
|
+
def copy(self):
|
|
150
|
+
return Conversation(
|
|
151
|
+
name=self.name,
|
|
152
|
+
system_template=self.system_template,
|
|
153
|
+
system_message=self.system_message,
|
|
154
|
+
roles=self.roles,
|
|
155
|
+
messages=[[x, y] for x, y in self.messages],
|
|
156
|
+
offset=self.offset,
|
|
157
|
+
sep_style=self.sep_style,
|
|
158
|
+
sep=self.sep,
|
|
159
|
+
sep2=self.sep2,
|
|
160
|
+
stop_str=self.stop_str,
|
|
161
|
+
stop_token_ids=self.stop_token_ids,
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
def dict(self):
|
|
165
|
+
return {
|
|
166
|
+
"template_name": self.name,
|
|
167
|
+
"system_message": self.system_message,
|
|
168
|
+
"roles": self.roles,
|
|
169
|
+
"messages": self.messages,
|
|
170
|
+
"offset": self.offset,
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
# A global registry for all conversation templates
|
|
175
|
+
conv_templates: Dict[str, Conversation] = {}
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def register_conv_template(template: Conversation, override: bool = False):
|
|
179
|
+
"""Register a new conversation template."""
|
|
180
|
+
if not override:
|
|
181
|
+
assert (
|
|
182
|
+
template.name not in conv_templates
|
|
183
|
+
), f"{template.name} has been registered."
|
|
184
|
+
|
|
185
|
+
conv_templates[template.name] = template
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def get_conv_template(name: str) -> Conversation:
|
|
189
|
+
"""Get a conversation template."""
|
|
190
|
+
return conv_templates[name].copy()
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
register_conv_template(
|
|
194
|
+
Conversation(
|
|
195
|
+
name="deepseek",
|
|
196
|
+
system_template="{system_message}",
|
|
197
|
+
# system_message="You are a helpful assistant. Please answer truthfully and write out your "
|
|
198
|
+
# "thinking step by step to be sure you get the right answer.",
|
|
199
|
+
system_message="",
|
|
200
|
+
roles=("<|User|>", "<|Assistant|>"),
|
|
201
|
+
messages=(),
|
|
202
|
+
offset=0,
|
|
203
|
+
sep_style=SeparatorStyle.DeepSeek,
|
|
204
|
+
sep="\n\n",
|
|
205
|
+
sep2="<|end▁of▁sentence|>",
|
|
206
|
+
stop_token_ids=[100001],
|
|
207
|
+
stop_str=["User:", "<|end▁of▁sentence|>"],
|
|
208
|
+
)
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
register_conv_template(
|
|
212
|
+
Conversation(
|
|
213
|
+
name="deepseekv2",
|
|
214
|
+
system_template="{system_message}",
|
|
215
|
+
system_message="",
|
|
216
|
+
roles=("|<User>|", "|<Assistant>|"),
|
|
217
|
+
messages=(),
|
|
218
|
+
offset=0,
|
|
219
|
+
sep_style=SeparatorStyle.DeepSeekV2,
|
|
220
|
+
sep="\n<|sft▁end|>",
|
|
221
|
+
sep2="<|end▁of▁sentence|>",
|
|
222
|
+
stop_token_ids=[100001],
|
|
223
|
+
stop_str=["User:", "<|end▁of▁sentence|>"],
|
|
224
|
+
)
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
register_conv_template(
|
|
229
|
+
Conversation(
|
|
230
|
+
name="plain",
|
|
231
|
+
system_template="",
|
|
232
|
+
system_message="",
|
|
233
|
+
roles=("", ""),
|
|
234
|
+
messages=(),
|
|
235
|
+
offset=0,
|
|
236
|
+
sep_style=SeparatorStyle.PLAIN,
|
|
237
|
+
sep="",
|
|
238
|
+
sep2="",
|
|
239
|
+
stop_token_ids=[100001],
|
|
240
|
+
stop_str=["</s>"],
|
|
241
|
+
)
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
register_conv_template(
|
|
246
|
+
Conversation(
|
|
247
|
+
name="alignment",
|
|
248
|
+
system_template="",
|
|
249
|
+
system_message="",
|
|
250
|
+
roles=("", ""),
|
|
251
|
+
messages=(),
|
|
252
|
+
offset=0,
|
|
253
|
+
sep_style=SeparatorStyle.ALIGNMENT,
|
|
254
|
+
sep="",
|
|
255
|
+
sep2="",
|
|
256
|
+
stop_token_ids=[100001],
|
|
257
|
+
stop_str=["</s>"],
|
|
258
|
+
)
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
if __name__ == "__main__":
|
|
263
|
+
print("deepseek template:")
|
|
264
|
+
conv = get_conv_template("deepseek")
|
|
@@ -0,0 +1,371 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
import numpy as np
|
|
7
|
+
from transformers import AutoProcessor
|
|
8
|
+
|
|
9
|
+
from mlx_vlm.models.base import InputEmbeddingsFeatures
|
|
10
|
+
|
|
11
|
+
from .config import ModelConfig, ProjectorConfig, SAMViTConfig
|
|
12
|
+
from .language import LanguageModel
|
|
13
|
+
from .processing_deepseekocr import DeepseekOCRProcessor
|
|
14
|
+
from .sam import SAMEncoder
|
|
15
|
+
from .vision import VisionModel
|
|
16
|
+
|
|
17
|
+
AutoProcessor.register("deepseekocr", DeepseekOCRProcessor)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class MlpProjector(nn.Module):
|
|
21
|
+
def __init__(self, config: ProjectorConfig):
|
|
22
|
+
super().__init__()
|
|
23
|
+
self.config = config
|
|
24
|
+
|
|
25
|
+
if config.projector_config.projector_type == "linear":
|
|
26
|
+
modules = nn.Linear(
|
|
27
|
+
config.projector_config.input_dim, config.projector_config.n_embed
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
elif config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
31
|
+
mlp_depth = config.projector_config.depth
|
|
32
|
+
mlp_ratio = config.projector_config.mlp_ratio
|
|
33
|
+
modules = [
|
|
34
|
+
nn.Linear(
|
|
35
|
+
config.projector_config.input_dim
|
|
36
|
+
* config.projector_config.downsample_ratio
|
|
37
|
+
* config.projector_config.downsample_ratio,
|
|
38
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
39
|
+
)
|
|
40
|
+
]
|
|
41
|
+
for _ in range(1, mlp_depth - 1):
|
|
42
|
+
modules.append(nn.GELU())
|
|
43
|
+
modules.append(
|
|
44
|
+
nn.Linear(
|
|
45
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
46
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
47
|
+
)
|
|
48
|
+
)
|
|
49
|
+
modules.append(nn.GELU())
|
|
50
|
+
modules.append(
|
|
51
|
+
nn.Linear(
|
|
52
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
53
|
+
config.projector_config.n_embed,
|
|
54
|
+
)
|
|
55
|
+
)
|
|
56
|
+
else:
|
|
57
|
+
raise ValueError(
|
|
58
|
+
f"Unknown projector type: {config.projector_config.projector_type}"
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
self.layers = modules
|
|
62
|
+
|
|
63
|
+
def __call__(self, x):
|
|
64
|
+
if self.config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
65
|
+
bs, hw, input_dim = x.shape
|
|
66
|
+
h = w = int(math.sqrt(hw))
|
|
67
|
+
|
|
68
|
+
# Compute padding
|
|
69
|
+
pad = (
|
|
70
|
+
0
|
|
71
|
+
if h % self.config.projector_config.downsample_ratio == 0
|
|
72
|
+
else self.config.projector_config.downsample_ratio
|
|
73
|
+
- h % self.config.projector_config.downsample_ratio
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
x = mx.reshape(x, (bs, h, w, input_dim))
|
|
77
|
+
if pad > 0:
|
|
78
|
+
x = mx.pad(x, [(0, 0), (0, pad), (0, pad), (0, 0)], constant_values=0)
|
|
79
|
+
|
|
80
|
+
x = mx.transpose(x, (0, 3, 1, 2)) # B, C, H, W
|
|
81
|
+
|
|
82
|
+
# Manual implementation of unfold for downsampling
|
|
83
|
+
h_pad, w_pad = x.shape[2], x.shape[3]
|
|
84
|
+
ds = self.config.projector_config.downsample_ratio
|
|
85
|
+
patches = []
|
|
86
|
+
|
|
87
|
+
for i in range(0, h_pad - ds + 1, ds):
|
|
88
|
+
for j in range(0, w_pad - ds + 1, ds):
|
|
89
|
+
patch = x[:, :, i : i + ds, j : j + ds]
|
|
90
|
+
patches.append(mx.reshape(patch, (bs, -1)))
|
|
91
|
+
|
|
92
|
+
x = mx.stack(patches, axis=1) # B, N_patches, C*ds*ds
|
|
93
|
+
|
|
94
|
+
if self.config.projector_config.projector_type == "linear":
|
|
95
|
+
x = self.layers(x)
|
|
96
|
+
else:
|
|
97
|
+
for layer in self.layers:
|
|
98
|
+
x = layer(x)
|
|
99
|
+
return x
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class Model(nn.Module):
|
|
103
|
+
def __init__(self, config: ModelConfig):
|
|
104
|
+
super().__init__()
|
|
105
|
+
self.config = config
|
|
106
|
+
self.vision_model = VisionModel(config.vision_config)
|
|
107
|
+
sam_config = SAMViTConfig()
|
|
108
|
+
self.sam_model = SAMEncoder(
|
|
109
|
+
img_size=sam_config.image_size,
|
|
110
|
+
patch_size=sam_config.patch_size,
|
|
111
|
+
embed_dim=sam_config.width,
|
|
112
|
+
depth=sam_config.layers,
|
|
113
|
+
num_heads=sam_config.heads,
|
|
114
|
+
window_size=sam_config.window_size,
|
|
115
|
+
global_attn_indexes=sam_config.global_attn_indexes,
|
|
116
|
+
)
|
|
117
|
+
self.language_model = LanguageModel(config.text_config)
|
|
118
|
+
self.projector = MlpProjector(config)
|
|
119
|
+
|
|
120
|
+
self.tile_tag = config.tile_tag
|
|
121
|
+
self.global_view_pos = config.global_view_pos
|
|
122
|
+
# 用于format image token sequence的特殊token
|
|
123
|
+
embed_std = 1 / mx.sqrt(
|
|
124
|
+
mx.array(config.projector_config.n_embed, dtype=mx.float32)
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
if self.tile_tag == "2D":
|
|
128
|
+
|
|
129
|
+
# <|view_separator|>, <|\n|>
|
|
130
|
+
self.image_newline = mx.array(
|
|
131
|
+
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
132
|
+
)
|
|
133
|
+
# fix the typo: view_seperater
|
|
134
|
+
self.view_separator = mx.array(
|
|
135
|
+
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
136
|
+
)
|
|
137
|
+
else:
|
|
138
|
+
raise ValueError(
|
|
139
|
+
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
def get_input_embeddings(
|
|
143
|
+
self,
|
|
144
|
+
input_ids: Optional[mx.array] = None,
|
|
145
|
+
pixel_values: Optional[mx.array] = None,
|
|
146
|
+
images_spatial_crop: Optional[mx.array] = None,
|
|
147
|
+
images_seq_mask: Optional[mx.array] = None,
|
|
148
|
+
**kwargs,
|
|
149
|
+
):
|
|
150
|
+
input_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
151
|
+
|
|
152
|
+
if pixel_values is None:
|
|
153
|
+
return InputEmbeddingsFeatures(inputs_embeds=input_embeds)
|
|
154
|
+
|
|
155
|
+
# Only process images on prefill (input_ids.shape[1] != 1), not during autoregressive decoding
|
|
156
|
+
if (
|
|
157
|
+
self.sam_model is not None
|
|
158
|
+
and input_ids.shape[1] != 1
|
|
159
|
+
and mx.sum(pixel_values[1]).item() != 0
|
|
160
|
+
):
|
|
161
|
+
|
|
162
|
+
idx = 0
|
|
163
|
+
patch_idx = 0 # Track patch offset for batch processing
|
|
164
|
+
all_patches = pixel_values[0]
|
|
165
|
+
all_image_ori = pixel_values[1]
|
|
166
|
+
|
|
167
|
+
for crop_shape in images_spatial_crop.tolist():
|
|
168
|
+
images_in_this_batch = []
|
|
169
|
+
width_crop_num, height_crop_num = int(crop_shape[0]), int(crop_shape[1])
|
|
170
|
+
|
|
171
|
+
# Calculate number of patches for this image
|
|
172
|
+
has_crops = width_crop_num > 1 or height_crop_num > 1
|
|
173
|
+
num_patches = width_crop_num * height_crop_num if has_crops else 0
|
|
174
|
+
|
|
175
|
+
# Extract patches for current image
|
|
176
|
+
if has_crops and num_patches > 0:
|
|
177
|
+
patches = all_patches[patch_idx : patch_idx + num_patches]
|
|
178
|
+
patch_idx += num_patches
|
|
179
|
+
else:
|
|
180
|
+
patches = None
|
|
181
|
+
|
|
182
|
+
# Extract global image for current image (one per batch item)
|
|
183
|
+
image_ori = all_image_ori[idx : idx + 1]
|
|
184
|
+
|
|
185
|
+
if patches is not None and mx.sum(patches).item() != 0:
|
|
186
|
+
local_features_1 = self.sam_model(patches.transpose(0, 2, 3, 1))
|
|
187
|
+
|
|
188
|
+
local_features_2 = self.vision_model(
|
|
189
|
+
patches.transpose(0, 2, 3, 1), patch_embeds=local_features_1
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
local_features = mx.concatenate(
|
|
193
|
+
(
|
|
194
|
+
local_features_2[:, 1:],
|
|
195
|
+
local_features_1.flatten(start_axis=1, end_axis=2),
|
|
196
|
+
),
|
|
197
|
+
axis=-1,
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
local_features = self.projector(local_features)
|
|
201
|
+
|
|
202
|
+
global_features_1 = self.sam_model(image_ori.transpose(0, 2, 3, 1))
|
|
203
|
+
global_features_2 = self.vision_model(
|
|
204
|
+
image_ori.transpose(0, 2, 3, 1), global_features_1
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
global_features = mx.concatenate(
|
|
208
|
+
(
|
|
209
|
+
global_features_2[:, 1:],
|
|
210
|
+
global_features_1.flatten(start_axis=1, end_axis=2),
|
|
211
|
+
),
|
|
212
|
+
axis=-1,
|
|
213
|
+
)
|
|
214
|
+
global_features = self.projector(global_features)
|
|
215
|
+
|
|
216
|
+
# Remove batch dimension for single image processing
|
|
217
|
+
global_features = global_features[0] # (hw, n_dim)
|
|
218
|
+
hw, n_dim = global_features.shape
|
|
219
|
+
h = w = int(hw**0.5)
|
|
220
|
+
|
|
221
|
+
_, hw2, n_dim2 = local_features.shape
|
|
222
|
+
h2 = w2 = int(hw2**0.5)
|
|
223
|
+
|
|
224
|
+
global_features = global_features.reshape(h, w, n_dim)
|
|
225
|
+
|
|
226
|
+
global_features = mx.concatenate(
|
|
227
|
+
[
|
|
228
|
+
global_features,
|
|
229
|
+
mx.broadcast_to(
|
|
230
|
+
self.image_newline[None, None, :], (h, 1, n_dim)
|
|
231
|
+
),
|
|
232
|
+
],
|
|
233
|
+
axis=1,
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
global_features = global_features.reshape(-1, n_dim)
|
|
237
|
+
|
|
238
|
+
local_features = (
|
|
239
|
+
local_features.reshape(
|
|
240
|
+
height_crop_num, width_crop_num, h2, w2, n_dim2
|
|
241
|
+
)
|
|
242
|
+
.transpose(0, 2, 1, 3, 4)
|
|
243
|
+
.reshape(height_crop_num * h2, width_crop_num * w2, n_dim2)
|
|
244
|
+
)
|
|
245
|
+
local_features = mx.concatenate(
|
|
246
|
+
[
|
|
247
|
+
local_features,
|
|
248
|
+
mx.broadcast_to(
|
|
249
|
+
self.image_newline[None, None, :],
|
|
250
|
+
(height_crop_num * h2, 1, n_dim2),
|
|
251
|
+
),
|
|
252
|
+
],
|
|
253
|
+
axis=1,
|
|
254
|
+
)
|
|
255
|
+
local_features = local_features.reshape(-1, n_dim2)
|
|
256
|
+
|
|
257
|
+
global_local_features = mx.concatenate(
|
|
258
|
+
[local_features, global_features, self.view_separator[None, :]],
|
|
259
|
+
axis=0,
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
else:
|
|
263
|
+
global_features_1 = self.sam_model(image_ori.transpose(0, 2, 3, 1))
|
|
264
|
+
global_features_2 = self.vision_model(
|
|
265
|
+
image_ori.transpose(0, 2, 3, 1), global_features_1
|
|
266
|
+
)
|
|
267
|
+
global_features = mx.concatenate(
|
|
268
|
+
(
|
|
269
|
+
global_features_2[:, 1:],
|
|
270
|
+
global_features_1.flatten(start_axis=1, end_axis=2),
|
|
271
|
+
),
|
|
272
|
+
axis=-1,
|
|
273
|
+
)
|
|
274
|
+
global_features = self.projector(global_features)
|
|
275
|
+
|
|
276
|
+
# Remove batch dimension for single image processing
|
|
277
|
+
global_features = global_features[0] # (hw, n_dim)
|
|
278
|
+
hw, n_dim = global_features.shape
|
|
279
|
+
h = w = int(hw**0.5)
|
|
280
|
+
|
|
281
|
+
global_features = global_features.reshape(h, w, n_dim)
|
|
282
|
+
|
|
283
|
+
global_features = mx.concatenate(
|
|
284
|
+
[
|
|
285
|
+
global_features,
|
|
286
|
+
mx.broadcast_to(
|
|
287
|
+
self.image_newline[None, None, :], (h, 1, n_dim)
|
|
288
|
+
),
|
|
289
|
+
],
|
|
290
|
+
axis=1,
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
global_features = global_features.reshape(-1, n_dim)
|
|
294
|
+
|
|
295
|
+
global_local_features = mx.concatenate(
|
|
296
|
+
[global_features, self.view_separator[None, :]], axis=0
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
images_in_this_batch.append(global_local_features)
|
|
300
|
+
|
|
301
|
+
if images_in_this_batch:
|
|
302
|
+
images_in_this_batch = mx.concatenate(images_in_this_batch, axis=0)
|
|
303
|
+
# Find positions where images should be placed
|
|
304
|
+
image_indices = np.where(images_seq_mask[idx])[0].tolist()
|
|
305
|
+
# Directly assign the image features to those positions
|
|
306
|
+
input_embeds[idx, image_indices] = images_in_this_batch
|
|
307
|
+
|
|
308
|
+
idx += 1
|
|
309
|
+
|
|
310
|
+
return InputEmbeddingsFeatures(inputs_embeds=input_embeds)
|
|
311
|
+
|
|
312
|
+
@property
|
|
313
|
+
def layers(self):
|
|
314
|
+
return self.language_model.model.layers
|
|
315
|
+
|
|
316
|
+
def __call__(
|
|
317
|
+
self,
|
|
318
|
+
input_ids: mx.array,
|
|
319
|
+
pixel_values: Optional[mx.array] = None,
|
|
320
|
+
mask: Optional[mx.array] = None,
|
|
321
|
+
cache=None,
|
|
322
|
+
**kwargs,
|
|
323
|
+
):
|
|
324
|
+
|
|
325
|
+
images_spatial_crop = kwargs.get("images_spatial_crop", None)
|
|
326
|
+
images_seq_mask = kwargs.get("images_seq_mask", None)
|
|
327
|
+
|
|
328
|
+
input_embeddings = self.get_input_embeddings(
|
|
329
|
+
input_ids, pixel_values, images_spatial_crop, images_seq_mask
|
|
330
|
+
)
|
|
331
|
+
|
|
332
|
+
logits = self.language_model(
|
|
333
|
+
input_ids, cache=cache, inputs_embeds=input_embeddings.inputs_embeds
|
|
334
|
+
)
|
|
335
|
+
return logits
|
|
336
|
+
|
|
337
|
+
@staticmethod
|
|
338
|
+
def sanitize(weights):
|
|
339
|
+
def transform_key(key):
|
|
340
|
+
if "model.layers" in key and "language_model" not in key:
|
|
341
|
+
key = key.replace("model.layers", "language_model.model.layers")
|
|
342
|
+
|
|
343
|
+
if "model.embed_tokens" in key and "language_model" not in key:
|
|
344
|
+
key = key.replace(
|
|
345
|
+
"model.embed_tokens", "language_model.model.embed_tokens"
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
if "model.norm" in key and "language_model" not in key:
|
|
349
|
+
key = key.replace("model.norm", "language_model.model.norm")
|
|
350
|
+
|
|
351
|
+
if "model.vision_model" in key:
|
|
352
|
+
key = key.replace("model.vision_model", "vision_model")
|
|
353
|
+
|
|
354
|
+
if "model.sam_model" in key:
|
|
355
|
+
key = key.replace("model.sam_model", "sam_model")
|
|
356
|
+
|
|
357
|
+
if "model.projector" in key:
|
|
358
|
+
key = key.replace("model.projector", "projector")
|
|
359
|
+
|
|
360
|
+
if "model.view_seperator" in key:
|
|
361
|
+
key = key.replace("model.view_seperator", "view_separator")
|
|
362
|
+
|
|
363
|
+
if "model.image_newline" in key:
|
|
364
|
+
key = key.replace("model.image_newline", "image_newline")
|
|
365
|
+
|
|
366
|
+
if "lm_head.weight" in key and "language_model" not in key:
|
|
367
|
+
key = key.replace("lm_head.weight", "language_model.lm_head.weight")
|
|
368
|
+
|
|
369
|
+
return key
|
|
370
|
+
|
|
371
|
+
return {transform_key(k): v for k, v in weights.items()}
|