fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,418 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
import numpy as np
|
|
7
|
+
from transformers import AutoProcessor
|
|
8
|
+
|
|
9
|
+
from ..base import InputEmbeddingsFeatures
|
|
10
|
+
from .config import ModelConfig, ProjectorConfig
|
|
11
|
+
from .language import LanguageModel
|
|
12
|
+
from .processing_deepsek_vl_v2 import DeepseekVLV2Processor
|
|
13
|
+
from .vision import VisionModel
|
|
14
|
+
|
|
15
|
+
AutoProcessor.register("deepseek_vl_v2", DeepseekVLV2Processor)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class MlpProjector(nn.Module):
|
|
19
|
+
def __init__(self, config: ProjectorConfig):
|
|
20
|
+
super().__init__()
|
|
21
|
+
self.config = config
|
|
22
|
+
if config.projector_config.projector_type == "identity":
|
|
23
|
+
modules = nn.Identity()
|
|
24
|
+
elif config.projector_config.projector_type == "linear":
|
|
25
|
+
modules = nn.Linear(
|
|
26
|
+
config.projector_config.input_dim, config.projector_config.n_embed
|
|
27
|
+
)
|
|
28
|
+
elif config.projector_config.projector_type == "mlp_gelu":
|
|
29
|
+
mlp_depth = config.projector_config.depth
|
|
30
|
+
modules = [
|
|
31
|
+
nn.Linear(
|
|
32
|
+
config.projector_config.input_dim, config.projector_config.n_embed
|
|
33
|
+
)
|
|
34
|
+
]
|
|
35
|
+
for _ in range(1, mlp_depth):
|
|
36
|
+
modules.append(nn.GELU())
|
|
37
|
+
modules.append(
|
|
38
|
+
nn.Linear(
|
|
39
|
+
config.projector_config.n_embed, config.projector_config.n_embed
|
|
40
|
+
)
|
|
41
|
+
)
|
|
42
|
+
elif config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
43
|
+
mlp_depth = config.projector_config.depth
|
|
44
|
+
mlp_ratio = config.projector_config.mlp_ratio
|
|
45
|
+
modules = [
|
|
46
|
+
nn.Linear(
|
|
47
|
+
config.projector_config.input_dim
|
|
48
|
+
* config.projector_config.downsample_ratio
|
|
49
|
+
* config.projector_config.downsample_ratio,
|
|
50
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
51
|
+
)
|
|
52
|
+
]
|
|
53
|
+
for _ in range(1, mlp_depth - 1):
|
|
54
|
+
modules.append(nn.GELU())
|
|
55
|
+
modules.append(
|
|
56
|
+
nn.Linear(
|
|
57
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
58
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
59
|
+
)
|
|
60
|
+
)
|
|
61
|
+
modules.append(nn.GELU())
|
|
62
|
+
modules.append(
|
|
63
|
+
nn.Linear(
|
|
64
|
+
config.projector_config.n_embed * mlp_ratio,
|
|
65
|
+
config.projector_config.n_embed,
|
|
66
|
+
)
|
|
67
|
+
)
|
|
68
|
+
else:
|
|
69
|
+
raise ValueError(
|
|
70
|
+
f"Unknown projector type: {config.projector_config.projector_type}"
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
if config.projector_config.token_pooling:
|
|
74
|
+
self.token_pooling_layer = nn.Linear(
|
|
75
|
+
config.projector_config.input_dim * 4, config.projector_config.input_dim
|
|
76
|
+
)
|
|
77
|
+
self.layers = modules
|
|
78
|
+
|
|
79
|
+
def __call__(self, x):
|
|
80
|
+
if self.config.projector_config.token_pooling:
|
|
81
|
+
batch_size, wxh, channels = x.shape
|
|
82
|
+
w = h = int(math.sqrt(wxh))
|
|
83
|
+
x = mx.reshape(x, (batch_size, w, h, channels))
|
|
84
|
+
x = mx.transpose(x, (0, 3, 1, 2)) # B, C, H, W
|
|
85
|
+
|
|
86
|
+
# Implement unfold operation manually since MLX doesn't have unfold
|
|
87
|
+
patches = []
|
|
88
|
+
for i in range(0, h - 1, 2):
|
|
89
|
+
for j in range(0, w - 1, 2):
|
|
90
|
+
patch = x[:, :, i : i + 2, j : j + 2]
|
|
91
|
+
patches.append(patch)
|
|
92
|
+
|
|
93
|
+
patches = mx.stack(patches, axis=2) # B, C, N_patches, 2, 2
|
|
94
|
+
batch_size, channels, n_patches, _, _ = patches.shape
|
|
95
|
+
|
|
96
|
+
# Reshape and concatenate
|
|
97
|
+
patches = mx.reshape(patches, (batch_size, channels, n_patches, -1))
|
|
98
|
+
patches = mx.transpose(patches, (0, 2, 1, 3))
|
|
99
|
+
patches = mx.reshape(patches, (batch_size, n_patches, channels * 4))
|
|
100
|
+
x = self.token_pooling_layer(patches)
|
|
101
|
+
|
|
102
|
+
elif self.config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
103
|
+
bs, hw, input_dim = x.shape
|
|
104
|
+
h = w = int(math.sqrt(hw))
|
|
105
|
+
|
|
106
|
+
# Compute padding
|
|
107
|
+
pad = (
|
|
108
|
+
0
|
|
109
|
+
if h % self.config.projector_config.downsample_ratio == 0
|
|
110
|
+
else self.config.projector_config.downsample_ratio
|
|
111
|
+
- h % self.config.projector_config.downsample_ratio
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
x = mx.reshape(x, (bs, h, w, input_dim))
|
|
115
|
+
if pad > 0:
|
|
116
|
+
x = mx.pad(x, [(0, 0), (0, pad), (0, pad), (0, 0)], constant_values=0)
|
|
117
|
+
|
|
118
|
+
x = mx.transpose(x, (0, 3, 1, 2)) # B, C, H, W
|
|
119
|
+
|
|
120
|
+
# Manual implementation of unfold for downsampling
|
|
121
|
+
h_pad, w_pad = x.shape[2], x.shape[3]
|
|
122
|
+
ds = self.config.projector_config.downsample_ratio
|
|
123
|
+
patches = []
|
|
124
|
+
|
|
125
|
+
for i in range(0, h_pad - ds + 1, ds):
|
|
126
|
+
for j in range(0, w_pad - ds + 1, ds):
|
|
127
|
+
patch = x[:, :, i : i + ds, j : j + ds]
|
|
128
|
+
patches.append(mx.reshape(patch, (bs, -1)))
|
|
129
|
+
|
|
130
|
+
x = mx.stack(patches, axis=1) # B, N_patches, C*ds*ds
|
|
131
|
+
|
|
132
|
+
for layer in self.layers:
|
|
133
|
+
x = layer(x)
|
|
134
|
+
return x
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class Model(nn.Module):
|
|
138
|
+
def __init__(self, config: ModelConfig):
|
|
139
|
+
super().__init__()
|
|
140
|
+
self.config = config
|
|
141
|
+
self.vision = VisionModel(config.vision_config)
|
|
142
|
+
self.language_model = LanguageModel(config.text_config)
|
|
143
|
+
self.projector = MlpProjector(config)
|
|
144
|
+
self.vision_feature_layer = config.select_layer
|
|
145
|
+
self.vision_feature_select_strategy = config.vision_feature_select_strategy
|
|
146
|
+
|
|
147
|
+
self.tile_tag = config.tile_tag
|
|
148
|
+
self.global_view_pos = config.global_view_pos
|
|
149
|
+
|
|
150
|
+
# 用于format image token sequence的特殊token
|
|
151
|
+
embed_std = 1 / mx.sqrt(
|
|
152
|
+
mx.array(config.projector_config.n_embed, dtype=mx.float32)
|
|
153
|
+
)
|
|
154
|
+
if self.tile_tag == "2D":
|
|
155
|
+
# <|view_separator|>, <|\n|>
|
|
156
|
+
self.image_newline = mx.array(
|
|
157
|
+
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
158
|
+
)
|
|
159
|
+
# fix the typo: view_seperater
|
|
160
|
+
self.view_separator = mx.array(
|
|
161
|
+
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
162
|
+
)
|
|
163
|
+
elif self.tile_tag == "1D":
|
|
164
|
+
# <|tile_x|>, <|tile_global|>
|
|
165
|
+
candidate_resolutions = config.candidate_resolutions
|
|
166
|
+
if len(candidate_resolutions) == 0:
|
|
167
|
+
raise ValueError(
|
|
168
|
+
f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}"
|
|
169
|
+
)
|
|
170
|
+
tile_variants_num = len(candidate_resolutions)
|
|
171
|
+
self.tile_indicators = mx.array(
|
|
172
|
+
mx.random.normal(
|
|
173
|
+
(tile_variants_num + 1, config.projector_config.n_embed)
|
|
174
|
+
)
|
|
175
|
+
* embed_std
|
|
176
|
+
)
|
|
177
|
+
else:
|
|
178
|
+
raise ValueError(
|
|
179
|
+
f"tile tag should be either 1D or 2D, but got {self.tile_tag}"
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
def process_image_features(
|
|
183
|
+
self,
|
|
184
|
+
input_embeds,
|
|
185
|
+
images_embeds,
|
|
186
|
+
images_spatial_crop,
|
|
187
|
+
images_seq_mask,
|
|
188
|
+
h,
|
|
189
|
+
w,
|
|
190
|
+
n_dim,
|
|
191
|
+
):
|
|
192
|
+
tile_index = 0
|
|
193
|
+
all_batch_features = []
|
|
194
|
+
|
|
195
|
+
for idx in range(images_spatial_crop.shape[0]):
|
|
196
|
+
images_in_this_batch = []
|
|
197
|
+
for jdx in range(images_spatial_crop.shape[1]):
|
|
198
|
+
# Extract global & local features
|
|
199
|
+
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
|
|
200
|
+
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
201
|
+
break
|
|
202
|
+
|
|
203
|
+
num_tiles_in_image = (num_width_tiles * num_height_tiles).tolist()
|
|
204
|
+
|
|
205
|
+
# Get global features [hw, D]
|
|
206
|
+
global_features = images_embeds[tile_index]
|
|
207
|
+
|
|
208
|
+
# Get local features [num_height_tiles * num_width_tiles, hw, D]
|
|
209
|
+
local_features = images_embeds[
|
|
210
|
+
tile_index + 1 : tile_index + 1 + num_tiles_in_image
|
|
211
|
+
]
|
|
212
|
+
|
|
213
|
+
tile_index += num_tiles_in_image + 1
|
|
214
|
+
|
|
215
|
+
# Format global and local features
|
|
216
|
+
if self.tile_tag == "2D":
|
|
217
|
+
# ----------------- global view add newline -----------------
|
|
218
|
+
# [hw, D] -> [h, w, D]
|
|
219
|
+
global_features = mx.reshape(global_features, (h, w, n_dim))
|
|
220
|
+
|
|
221
|
+
# [D] -> [h, 1, D]
|
|
222
|
+
new_lines_in_global = mx.expand_dims(self.image_newline, axis=0)
|
|
223
|
+
new_lines_in_global = mx.repeat(
|
|
224
|
+
new_lines_in_global, repeats=h, axis=0
|
|
225
|
+
)
|
|
226
|
+
new_lines_in_global = mx.expand_dims(new_lines_in_global, axis=1)
|
|
227
|
+
|
|
228
|
+
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
|
229
|
+
global_features = mx.concatenate(
|
|
230
|
+
[global_features, new_lines_in_global], axis=1
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
# [h, w + 1, D] -> [h * (w + 1), D]
|
|
234
|
+
global_features = mx.reshape(global_features, (-1, n_dim))
|
|
235
|
+
|
|
236
|
+
# ----------------- local view add newline -----------------
|
|
237
|
+
# Rearrange local features
|
|
238
|
+
# [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
|
|
239
|
+
local_features = mx.reshape(
|
|
240
|
+
local_features, (num_height_tiles, num_width_tiles, h, w, n_dim)
|
|
241
|
+
)
|
|
242
|
+
local_features = mx.transpose(local_features, (0, 2, 1, 3, 4))
|
|
243
|
+
local_features = mx.reshape(
|
|
244
|
+
local_features,
|
|
245
|
+
(num_height_tiles * h, num_width_tiles * w, n_dim),
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
# Create newlines for local features
|
|
249
|
+
# [D] -> [num_height_tiles * h, 1, D]
|
|
250
|
+
new_lines_in_local = mx.repeat(
|
|
251
|
+
mx.expand_dims(self.image_newline, axis=0),
|
|
252
|
+
repeats=num_height_tiles * h,
|
|
253
|
+
axis=0,
|
|
254
|
+
)
|
|
255
|
+
new_lines_in_local = mx.expand_dims(new_lines_in_local, axis=1)
|
|
256
|
+
|
|
257
|
+
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
258
|
+
local_features = mx.concatenate(
|
|
259
|
+
[local_features, new_lines_in_local], axis=1
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
# [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
|
263
|
+
local_features = mx.reshape(local_features, (-1, n_dim))
|
|
264
|
+
|
|
265
|
+
# ----------------- merge global and local tiles -----------------
|
|
266
|
+
view_separator = mx.expand_dims(self.view_separator, axis=0)
|
|
267
|
+
|
|
268
|
+
if self.global_view_pos == "head":
|
|
269
|
+
global_local_features = mx.concatenate(
|
|
270
|
+
[global_features, view_separator, local_features], axis=0
|
|
271
|
+
)
|
|
272
|
+
else:
|
|
273
|
+
global_local_features = mx.concatenate(
|
|
274
|
+
[local_features, view_separator, global_features], axis=0
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
else:
|
|
278
|
+
# 1D processing (legacy path)
|
|
279
|
+
global_features = mx.concatenate(
|
|
280
|
+
[
|
|
281
|
+
mx.expand_dims(self.tile_indicators[0], axis=0),
|
|
282
|
+
global_features,
|
|
283
|
+
],
|
|
284
|
+
axis=0,
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
local_indicators = mx.expand_dims(
|
|
288
|
+
self.tile_indicators[1 : num_tiles_in_image + 1], axis=1
|
|
289
|
+
)
|
|
290
|
+
local_features = mx.concatenate(
|
|
291
|
+
[local_indicators, local_features], axis=1
|
|
292
|
+
)
|
|
293
|
+
local_features = mx.reshape(local_features, (-1, n_dim))
|
|
294
|
+
|
|
295
|
+
if self.global_view_pos == "head":
|
|
296
|
+
global_local_features = mx.concatenate(
|
|
297
|
+
[global_features, local_features], axis=0
|
|
298
|
+
)
|
|
299
|
+
else:
|
|
300
|
+
global_local_features = mx.concatenate(
|
|
301
|
+
[local_features, global_features], axis=0
|
|
302
|
+
)
|
|
303
|
+
|
|
304
|
+
images_in_this_batch.append(global_local_features)
|
|
305
|
+
|
|
306
|
+
if images_in_this_batch:
|
|
307
|
+
images_in_this_batch = mx.concatenate(images_in_this_batch, axis=0)
|
|
308
|
+
# Find positions where images should be placed
|
|
309
|
+
image_indices = np.where(images_seq_mask[idx])[0].tolist()
|
|
310
|
+
# Directly assign the image features to those positions
|
|
311
|
+
input_embeds[idx, image_indices] = images_in_this_batch
|
|
312
|
+
|
|
313
|
+
return input_embeds
|
|
314
|
+
|
|
315
|
+
def get_input_embeddings(
|
|
316
|
+
self,
|
|
317
|
+
input_ids: Optional[mx.array] = None,
|
|
318
|
+
pixel_values: Optional[mx.array] = None,
|
|
319
|
+
images_spatial_crop: Optional[mx.array] = None,
|
|
320
|
+
images_seq_mask: Optional[mx.array] = None,
|
|
321
|
+
**kwargs,
|
|
322
|
+
):
|
|
323
|
+
if pixel_values is None:
|
|
324
|
+
return InputEmbeddingsFeatures(
|
|
325
|
+
inputs_embeds=self.language_model.model.embed_tokens(input_ids)
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
bs = pixel_values.shape[0]
|
|
329
|
+
max_n_images = pixel_values.shape[1]
|
|
330
|
+
|
|
331
|
+
batch_num_tiles = [0 for _ in range(bs)]
|
|
332
|
+
total_tiles = []
|
|
333
|
+
|
|
334
|
+
# Total number of tiles in each batch
|
|
335
|
+
for idx in range(bs):
|
|
336
|
+
for jdx in range(max_n_images):
|
|
337
|
+
num_width_tiles, num_height_tiles = images_spatial_crop[idx][jdx]
|
|
338
|
+
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
339
|
+
break
|
|
340
|
+
batch_num_tiles[idx] += int(
|
|
341
|
+
(1 + num_width_tiles * num_height_tiles).item()
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
total_tiles.append(pixel_values[idx, : batch_num_tiles[idx]])
|
|
345
|
+
|
|
346
|
+
total_tiles = mx.concatenate(total_tiles, axis=0)
|
|
347
|
+
|
|
348
|
+
if total_tiles.shape[0] == 0:
|
|
349
|
+
return InputEmbeddingsFeatures(
|
|
350
|
+
inputs_embeds=self.language_model.model.embed_tokens(input_ids)
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
# Get the input embeddings from the language model
|
|
354
|
+
input_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
355
|
+
|
|
356
|
+
# Get the ouptut hidden states from the vision model
|
|
357
|
+
hidden_states, *_ = self.vision(
|
|
358
|
+
total_tiles.transpose(0, 2, 3, 1), output_hidden_states=True
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
# Pass image features through the multi-modal projector
|
|
362
|
+
image_features = self.projector(hidden_states)
|
|
363
|
+
|
|
364
|
+
_, hw, n_dim = image_features.shape
|
|
365
|
+
h = w = int(hw**0.5)
|
|
366
|
+
|
|
367
|
+
image_features = self.process_image_features(
|
|
368
|
+
input_embeds,
|
|
369
|
+
image_features,
|
|
370
|
+
images_spatial_crop,
|
|
371
|
+
images_seq_mask,
|
|
372
|
+
h,
|
|
373
|
+
w,
|
|
374
|
+
n_dim,
|
|
375
|
+
)
|
|
376
|
+
|
|
377
|
+
return InputEmbeddingsFeatures(inputs_embeds=image_features)
|
|
378
|
+
|
|
379
|
+
@property
|
|
380
|
+
def layers(self):
|
|
381
|
+
return self.language_model.model.layers
|
|
382
|
+
|
|
383
|
+
def __call__(
|
|
384
|
+
self,
|
|
385
|
+
input_ids: mx.array,
|
|
386
|
+
pixel_values: Optional[mx.array] = None,
|
|
387
|
+
mask: Optional[mx.array] = None,
|
|
388
|
+
cache=None,
|
|
389
|
+
**kwargs,
|
|
390
|
+
):
|
|
391
|
+
|
|
392
|
+
images_spatial_crop = kwargs.get("images_spatial_crop", None)
|
|
393
|
+
images_seq_mask = kwargs.get("images_seq_mask", None)
|
|
394
|
+
input_embeddings_features = self.get_input_embeddings(
|
|
395
|
+
input_ids, pixel_values, images_spatial_crop, images_seq_mask
|
|
396
|
+
)
|
|
397
|
+
logits = self.language_model(
|
|
398
|
+
input_ids,
|
|
399
|
+
cache=cache,
|
|
400
|
+
inputs_embeds=input_embeddings_features.inputs_embeds,
|
|
401
|
+
)
|
|
402
|
+
return logits
|
|
403
|
+
|
|
404
|
+
@staticmethod
|
|
405
|
+
def sanitize(weights):
|
|
406
|
+
def transform_key(key):
|
|
407
|
+
if "language" in key and "language_model" not in key:
|
|
408
|
+
if ".model" in key:
|
|
409
|
+
key = key.replace("language.model", "language_model.model")
|
|
410
|
+
if ".lm_head" in key:
|
|
411
|
+
key = key.replace("language", "language_model")
|
|
412
|
+
if "vision" in key and "vision_tower" not in key:
|
|
413
|
+
key = key.replace("vision", "vision.vision_tower")
|
|
414
|
+
if "view_seperator" in key:
|
|
415
|
+
key = key.replace("view_seperator", "view_separator")
|
|
416
|
+
return key
|
|
417
|
+
|
|
418
|
+
return {transform_key(k): v for k, v in weights.items()}
|