fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
from typing import Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
from PIL import Image
|
|
7
|
+
|
|
8
|
+
from .config import VisionConfig
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def create_patches(pixel_values: mx.array, patch_size: int) -> mx.array:
|
|
12
|
+
"""
|
|
13
|
+
Convert [B, C, H, W] images to [B, num_patches, patch_dim] patch sequences.
|
|
14
|
+
|
|
15
|
+
This matches the PyTorch reference implementation exactly.
|
|
16
|
+
"""
|
|
17
|
+
B, C, H, W = pixel_values.shape
|
|
18
|
+
P = patch_size
|
|
19
|
+
|
|
20
|
+
# Reshape to [B, C, H/P, P, W/P, P]
|
|
21
|
+
x = pixel_values.reshape(B, C, H // P, P, W // P, P)
|
|
22
|
+
|
|
23
|
+
# Permute to [B, H/P, W/P, C, P, P]
|
|
24
|
+
x = x.transpose(0, 2, 4, 1, 3, 5)
|
|
25
|
+
|
|
26
|
+
# Flatten to [B, (H/P)*(W/P), C*P*P]
|
|
27
|
+
num_patches = (H // P) * (W // P)
|
|
28
|
+
patch_dim = C * P * P
|
|
29
|
+
x = x.reshape(B, num_patches, patch_dim)
|
|
30
|
+
|
|
31
|
+
return x
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class Attention(nn.Module):
|
|
35
|
+
"""Multi-head attention with combined QKV projection."""
|
|
36
|
+
|
|
37
|
+
def __init__(self, config: VisionConfig):
|
|
38
|
+
super().__init__()
|
|
39
|
+
self.hidden_size = config.hidden_size
|
|
40
|
+
self.num_heads = config.num_attention_heads
|
|
41
|
+
self.head_dim = self.hidden_size // self.num_heads
|
|
42
|
+
self.scale = self.head_dim**-0.5
|
|
43
|
+
|
|
44
|
+
# Combined QKV projection (like original moondream)
|
|
45
|
+
self.qkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
|
46
|
+
self.proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
|
47
|
+
|
|
48
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
49
|
+
B, L, _ = x.shape
|
|
50
|
+
|
|
51
|
+
# Combined QKV projection then split
|
|
52
|
+
qkv = self.qkv(x)
|
|
53
|
+
q, k, v = mx.split(qkv, 3, axis=-1)
|
|
54
|
+
|
|
55
|
+
# Reshape for multi-head attention
|
|
56
|
+
q = q.reshape(B, L, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
57
|
+
k = k.reshape(B, L, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
58
|
+
v = v.reshape(B, L, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
59
|
+
|
|
60
|
+
# Scaled dot-product attention
|
|
61
|
+
output = mx.fast.scaled_dot_product_attention(
|
|
62
|
+
q, k, v, scale=self.scale, mask=mask
|
|
63
|
+
)
|
|
64
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
65
|
+
|
|
66
|
+
return self.proj(output)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
class MLP(nn.Module):
|
|
70
|
+
"""Feed-forward network with GELU activation."""
|
|
71
|
+
|
|
72
|
+
def __init__(self, config: VisionConfig):
|
|
73
|
+
super().__init__()
|
|
74
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
|
|
75
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
|
|
76
|
+
self.activation = nn.GELU(approx="precise")
|
|
77
|
+
|
|
78
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
79
|
+
x = self.activation(self.fc1(x))
|
|
80
|
+
x = self.fc2(x)
|
|
81
|
+
return x
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
class EncoderLayer(nn.Module):
|
|
85
|
+
"""
|
|
86
|
+
Single transformer encoder layer with POST-NORM architecture.
|
|
87
|
+
|
|
88
|
+
Key difference from standard: residual addition happens BEFORE normalization.
|
|
89
|
+
Pattern: x = x + attn(ln(x))
|
|
90
|
+
"""
|
|
91
|
+
|
|
92
|
+
def __init__(self, config: VisionConfig):
|
|
93
|
+
super().__init__()
|
|
94
|
+
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
95
|
+
self.attn = Attention(config)
|
|
96
|
+
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
97
|
+
self.mlp = MLP(config)
|
|
98
|
+
|
|
99
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
100
|
+
# Post-norm: x = x + sublayer(norm(x))
|
|
101
|
+
x = x + self.attn(self.ln1(x), mask)
|
|
102
|
+
x = x + self.mlp(self.ln2(x))
|
|
103
|
+
return x
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class VisionEncoder(nn.Module):
|
|
107
|
+
"""Vision encoder with transformer layers."""
|
|
108
|
+
|
|
109
|
+
def __init__(self, config: VisionConfig):
|
|
110
|
+
super().__init__()
|
|
111
|
+
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
112
|
+
|
|
113
|
+
def __call__(
|
|
114
|
+
self,
|
|
115
|
+
x: mx.array,
|
|
116
|
+
mask: Optional[mx.array] = None,
|
|
117
|
+
output_hidden_states: bool = False,
|
|
118
|
+
):
|
|
119
|
+
encoder_states = (x,) if output_hidden_states else None
|
|
120
|
+
|
|
121
|
+
for layer in self.layers:
|
|
122
|
+
x = layer(x, mask)
|
|
123
|
+
if output_hidden_states:
|
|
124
|
+
encoder_states = encoder_states + (x,)
|
|
125
|
+
|
|
126
|
+
return x, encoder_states
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
class VisionModel(nn.Module):
|
|
130
|
+
"""
|
|
131
|
+
Moondream2 vision encoder.
|
|
132
|
+
|
|
133
|
+
Architecture:
|
|
134
|
+
1. Linear patch embedding (not Conv2d): 588 (14×14×3) -> 1152
|
|
135
|
+
2. Add learnable positional embeddings
|
|
136
|
+
3. 27 transformer layers with post-norm
|
|
137
|
+
4. Final layer norm
|
|
138
|
+
|
|
139
|
+
Reference: moondream2/vision.py (PyTorch)
|
|
140
|
+
"""
|
|
141
|
+
|
|
142
|
+
def __init__(self, config: VisionConfig):
|
|
143
|
+
super().__init__()
|
|
144
|
+
self.config = config
|
|
145
|
+
|
|
146
|
+
# Patch embedding: linear projection of flattened patches
|
|
147
|
+
patch_dim = config.patch_size * config.patch_size * config.num_channels # 588
|
|
148
|
+
self.patch_emb = nn.Linear(patch_dim, config.hidden_size, bias=True)
|
|
149
|
+
|
|
150
|
+
# Transformer encoder
|
|
151
|
+
self.encoder = VisionEncoder(config)
|
|
152
|
+
|
|
153
|
+
# Post layer norm
|
|
154
|
+
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
155
|
+
|
|
156
|
+
# Positional embedding: [1, num_patches, hidden_size]
|
|
157
|
+
# This will be loaded from weights
|
|
158
|
+
num_patches = (config.image_size // config.patch_size) ** 2 # 729
|
|
159
|
+
self.position_embedding = mx.zeros((1, num_patches, config.hidden_size))
|
|
160
|
+
|
|
161
|
+
def __call__(
|
|
162
|
+
self,
|
|
163
|
+
pixel_values: mx.array,
|
|
164
|
+
output_hidden_states: bool = False,
|
|
165
|
+
) -> mx.array:
|
|
166
|
+
"""
|
|
167
|
+
Args:
|
|
168
|
+
pixel_values: [B, C, H, W] input images (normalized to [-1, 1])
|
|
169
|
+
Returns:
|
|
170
|
+
[B, num_patches, hidden_size] vision features
|
|
171
|
+
"""
|
|
172
|
+
# Create patches: [B, C, H, W] -> [B, num_patches, patch_dim]
|
|
173
|
+
x = create_patches(pixel_values, self.config.patch_size)
|
|
174
|
+
|
|
175
|
+
# Linear projection: [B, num_patches, patch_dim] -> [B, num_patches, hidden_size]
|
|
176
|
+
x = self.patch_emb(x)
|
|
177
|
+
|
|
178
|
+
# Add positional embedding
|
|
179
|
+
x = x + self.position_embedding
|
|
180
|
+
|
|
181
|
+
# Encode through transformer layers
|
|
182
|
+
x, encoder_states = self.encoder(x, output_hidden_states=output_hidden_states)
|
|
183
|
+
|
|
184
|
+
# Final layer norm
|
|
185
|
+
x = self.post_layernorm(x)
|
|
186
|
+
|
|
187
|
+
if output_hidden_states:
|
|
188
|
+
return x, encoder_states
|
|
189
|
+
return x
|
|
190
|
+
|
|
191
|
+
def sanitize(self, weights):
|
|
192
|
+
"""Sanitize vision encoder weights."""
|
|
193
|
+
sanitized_weights = {}
|
|
194
|
+
for k, v in weights.items():
|
|
195
|
+
if "position_ids" in k:
|
|
196
|
+
# Skip position_ids
|
|
197
|
+
continue
|
|
198
|
+
else:
|
|
199
|
+
sanitized_weights[k] = v
|
|
200
|
+
return sanitized_weights
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Dict, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
from ..base import BaseModelConfig
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@dataclass
|
|
9
|
+
class ProjectorConfig(BaseModelConfig):
|
|
10
|
+
cls: str
|
|
11
|
+
model_type: str
|
|
12
|
+
params: dict
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@dataclass
|
|
16
|
+
class TextConfig(BaseModelConfig):
|
|
17
|
+
model_type: str
|
|
18
|
+
hidden_size: int = 4096
|
|
19
|
+
num_hidden_layers: int = 32
|
|
20
|
+
intermediate_size: int = 11008
|
|
21
|
+
num_attention_heads: int = 32
|
|
22
|
+
rms_norm_eps: float = 1e-6
|
|
23
|
+
vocab_size: int = 102400
|
|
24
|
+
num_key_value_heads: int = None
|
|
25
|
+
rope_theta: float = 10000
|
|
26
|
+
rope_traditional: bool = False
|
|
27
|
+
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
28
|
+
max_position_embeddings: int = 4096
|
|
29
|
+
|
|
30
|
+
def __post_init__(self):
|
|
31
|
+
if self.num_key_value_heads is None:
|
|
32
|
+
self.num_key_value_heads = self.num_attention_heads
|
|
33
|
+
|
|
34
|
+
if self.rope_scaling:
|
|
35
|
+
required_keys = {"factor", "type"}
|
|
36
|
+
if not all(key in self.rope_scaling for key in required_keys):
|
|
37
|
+
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
38
|
+
|
|
39
|
+
if self.rope_scaling["type"] != "linear":
|
|
40
|
+
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@dataclass
|
|
44
|
+
class VisionConfig(BaseModelConfig):
|
|
45
|
+
model_type: str
|
|
46
|
+
num_hidden_layers: int = 24
|
|
47
|
+
hidden_size: int = 1024
|
|
48
|
+
intermediate_size: int = 4096
|
|
49
|
+
num_attention_heads: int = 16
|
|
50
|
+
image_size: int = 384
|
|
51
|
+
patch_size: int = 16
|
|
52
|
+
num_channels: int = 3
|
|
53
|
+
layer_norm_eps: float = 1e-5
|
|
54
|
+
cls: str = None
|
|
55
|
+
params: dict = None
|
|
56
|
+
|
|
57
|
+
def __post_init__(self):
|
|
58
|
+
if "high_res_cfg" in self.params:
|
|
59
|
+
self.image_size = self.params["high_res_cfg"]["image_size"]
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@dataclass
|
|
63
|
+
class MLPConfig(BaseModelConfig):
|
|
64
|
+
hidden_size: int
|
|
65
|
+
intermediate_size: int
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
@dataclass
|
|
69
|
+
class SAMViTCfg:
|
|
70
|
+
image_size: Union[Tuple[int, int], int] = 1024
|
|
71
|
+
width: int = 768
|
|
72
|
+
layers: int = 12
|
|
73
|
+
heads: int = 12
|
|
74
|
+
patch_size: int = 16
|
|
75
|
+
window_size: int = 14
|
|
76
|
+
prompt_embed_dim: int = 256
|
|
77
|
+
global_attn_indexes: Union[List[int], Tuple[int]] = (2, 5, 8, 11)
|
|
78
|
+
downsample_channels: Union[List[int], Tuple[int]] = (512, 1024)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@dataclass
|
|
82
|
+
class ModelConfig(BaseModelConfig):
|
|
83
|
+
text_config: TextConfig
|
|
84
|
+
vision_config: VisionConfig
|
|
85
|
+
projector_config: ProjectorConfig
|
|
86
|
+
model_type: str
|
|
87
|
+
ignore_index: int = -100
|
|
88
|
+
image_token_index: int = 100015
|
|
89
|
+
vision_feature_select_strategy: str = "default"
|
|
90
|
+
select_layer: int = -1
|
|
91
|
+
pad_id: int = 100001
|
|
92
|
+
num_image_tokens: int = 576
|
|
93
|
+
vocab_size: int = 32000
|
|
94
|
+
eos_token_id: Optional[List[int]] = None
|
|
95
|
+
|
|
96
|
+
@classmethod
|
|
97
|
+
def from_dict(cls, params):
|
|
98
|
+
if "aligner_config" in params:
|
|
99
|
+
params["projector_config"] = params["aligner_config"]
|
|
100
|
+
del params["aligner_config"]
|
|
101
|
+
|
|
102
|
+
return cls(
|
|
103
|
+
**{
|
|
104
|
+
k: v
|
|
105
|
+
for k, v in params.items()
|
|
106
|
+
if k in inspect.signature(cls).parameters
|
|
107
|
+
}
|
|
108
|
+
)
|
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from ..cache import KVCache
|
|
12
|
+
from .config import TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Attention(nn.Module):
|
|
16
|
+
def __init__(self, config: TextConfig):
|
|
17
|
+
super().__init__()
|
|
18
|
+
|
|
19
|
+
dim = config.hidden_size
|
|
20
|
+
self.n_heads = n_heads = config.num_attention_heads
|
|
21
|
+
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
22
|
+
|
|
23
|
+
self.repeats = n_heads // n_kv_heads
|
|
24
|
+
|
|
25
|
+
head_dim = config.hidden_size // n_heads
|
|
26
|
+
self.scale = head_dim**-0.5
|
|
27
|
+
|
|
28
|
+
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
29
|
+
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
30
|
+
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
31
|
+
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
32
|
+
|
|
33
|
+
rope_scale = (
|
|
34
|
+
1 / config.rope_scaling["factor"]
|
|
35
|
+
if config.rope_scaling is not None
|
|
36
|
+
and config.rope_scaling["type"] == "linear"
|
|
37
|
+
else 1
|
|
38
|
+
)
|
|
39
|
+
self.rope = nn.RoPE(
|
|
40
|
+
head_dim,
|
|
41
|
+
traditional=config.rope_traditional,
|
|
42
|
+
base=config.rope_theta,
|
|
43
|
+
scale=rope_scale,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
def __call__(
|
|
47
|
+
self,
|
|
48
|
+
x: mx.array,
|
|
49
|
+
mask: Optional[mx.array] = None,
|
|
50
|
+
cache: Optional[KVCache] = None,
|
|
51
|
+
) -> mx.array:
|
|
52
|
+
B, L, D = x.shape
|
|
53
|
+
|
|
54
|
+
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
55
|
+
|
|
56
|
+
# Prepare the queries, keys and values for the attention computation
|
|
57
|
+
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
58
|
+
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
59
|
+
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
60
|
+
|
|
61
|
+
if cache is not None:
|
|
62
|
+
queries = self.rope(queries, offset=cache.offset)
|
|
63
|
+
keys = self.rope(keys, offset=cache.offset)
|
|
64
|
+
keys, values = cache.update_and_fetch(keys, values)
|
|
65
|
+
else:
|
|
66
|
+
queries = self.rope(queries)
|
|
67
|
+
keys = self.rope(keys)
|
|
68
|
+
|
|
69
|
+
output = scaled_dot_product_attention(
|
|
70
|
+
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
71
|
+
)
|
|
72
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
73
|
+
return self.o_proj(output)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class MLP(nn.Module):
|
|
77
|
+
def __init__(self, dim, hidden_dim):
|
|
78
|
+
super().__init__()
|
|
79
|
+
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
80
|
+
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
81
|
+
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
82
|
+
|
|
83
|
+
def __call__(self, x) -> mx.array:
|
|
84
|
+
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class TransformerBlock(nn.Module):
|
|
88
|
+
def __init__(self, config: TextConfig):
|
|
89
|
+
super().__init__()
|
|
90
|
+
self.num_attention_heads = config.num_attention_heads
|
|
91
|
+
self.hidden_size = config.hidden_size
|
|
92
|
+
self.self_attn = Attention(config)
|
|
93
|
+
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
|
94
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
95
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
96
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
97
|
+
)
|
|
98
|
+
self.config = config
|
|
99
|
+
|
|
100
|
+
def __call__(
|
|
101
|
+
self,
|
|
102
|
+
x: mx.array,
|
|
103
|
+
mask: Optional[mx.array] = None,
|
|
104
|
+
cache: Optional[KVCache] = None,
|
|
105
|
+
) -> mx.array:
|
|
106
|
+
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
107
|
+
h = x + r
|
|
108
|
+
r = self.mlp(self.post_attention_layernorm(h))
|
|
109
|
+
out = h + r
|
|
110
|
+
return out
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
class Llama(nn.Module):
|
|
114
|
+
def __init__(self, config: TextConfig):
|
|
115
|
+
super().__init__()
|
|
116
|
+
self.config = config
|
|
117
|
+
self.vocab_size = config.vocab_size
|
|
118
|
+
self.num_hidden_layers = config.num_hidden_layers
|
|
119
|
+
assert self.vocab_size > 0
|
|
120
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
121
|
+
self.layers = [
|
|
122
|
+
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
|
|
123
|
+
]
|
|
124
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
125
|
+
|
|
126
|
+
def __call__(
|
|
127
|
+
self,
|
|
128
|
+
inputs: mx.array,
|
|
129
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
130
|
+
mask: Optional[mx.array] = None,
|
|
131
|
+
cache=None,
|
|
132
|
+
):
|
|
133
|
+
# for passing merged input embeddings
|
|
134
|
+
if inputs_embeds is None:
|
|
135
|
+
h = self.embed_tokens(inputs)
|
|
136
|
+
else:
|
|
137
|
+
h = inputs_embeds
|
|
138
|
+
|
|
139
|
+
if cache is None:
|
|
140
|
+
cache = [None] * len(self.layers)
|
|
141
|
+
|
|
142
|
+
if mask is None:
|
|
143
|
+
mask = create_attention_mask(h, cache)
|
|
144
|
+
|
|
145
|
+
for layer, c in zip(self.layers, cache):
|
|
146
|
+
h = layer(h, mask, c)
|
|
147
|
+
|
|
148
|
+
return self.norm(h)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class LanguageModel(nn.Module):
|
|
152
|
+
def __init__(self, config: TextConfig):
|
|
153
|
+
super().__init__()
|
|
154
|
+
self.config = config
|
|
155
|
+
self.model_type = config.model_type
|
|
156
|
+
if self.model_type != "llama":
|
|
157
|
+
raise ValueError(
|
|
158
|
+
f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
|
|
159
|
+
)
|
|
160
|
+
self.model = Llama(config)
|
|
161
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
162
|
+
|
|
163
|
+
def __call__(
|
|
164
|
+
self,
|
|
165
|
+
inputs: mx.array,
|
|
166
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
167
|
+
mask: Optional[mx.array] = None,
|
|
168
|
+
cache=None,
|
|
169
|
+
):
|
|
170
|
+
out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
|
|
171
|
+
logits = self.lm_head(out)
|
|
172
|
+
return LanguageModelOutput(logits=logits)
|
|
173
|
+
|
|
174
|
+
@staticmethod
|
|
175
|
+
def sanitize(weights):
|
|
176
|
+
# Remove unused precomputed rotary freqs
|
|
177
|
+
return {
|
|
178
|
+
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
179
|
+
}
|
|
180
|
+
|
|
181
|
+
@property
|
|
182
|
+
def layers(self):
|
|
183
|
+
return self.model.layers
|
|
184
|
+
|
|
185
|
+
@property
|
|
186
|
+
def head_dim(self):
|
|
187
|
+
return self.config.hidden_size // self.config.num_attention_heads
|
|
188
|
+
|
|
189
|
+
@property
|
|
190
|
+
def n_kv_heads(self):
|
|
191
|
+
return self.config.num_key_value_heads
|