fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,61 @@
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Union
3
+
4
+ from ..base import BaseModelConfig
5
+
6
+
7
+ @dataclass
8
+ class TextConfig(BaseModelConfig):
9
+ model_type: str
10
+ hidden_size: int = 4096
11
+ num_hidden_layers: int = 32
12
+ intermediate_size: int = 11008
13
+ num_attention_heads: int = 32
14
+ rms_norm_eps: float = 1e-6
15
+ vocab_size: int = 32000
16
+ num_key_value_heads: int = None
17
+ rope_theta: float = 10000
18
+ rope_traditional: bool = False
19
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
20
+ max_position_embeddings: int = 4096
21
+ tie_word_embeddings: bool = False
22
+
23
+ def __post_init__(self):
24
+ if self.num_key_value_heads is None:
25
+ self.num_key_value_heads = self.num_attention_heads
26
+
27
+ if self.rope_scaling:
28
+ required_keys = {"factor", "type"}
29
+ if not all(key in self.rope_scaling for key in required_keys):
30
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
31
+
32
+ if self.rope_scaling["type"] != "linear":
33
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
34
+
35
+
36
+ @dataclass
37
+ class VisionConfig(BaseModelConfig):
38
+ model_type: str
39
+ num_hidden_layers: int = 24
40
+ hidden_size: int = 1024
41
+ intermediate_size: int = 4096
42
+ num_attention_heads: int = 16
43
+ image_size: int = 336
44
+ patch_size: int = 14
45
+ projection_dim: int = 768
46
+ vocab_size: int = 32000
47
+ num_channels: int = 3
48
+ layer_norm_eps: float = 1e-5
49
+
50
+
51
+ @dataclass
52
+ class ModelConfig(BaseModelConfig):
53
+ text_config: TextConfig
54
+ vision_config: VisionConfig
55
+ model_type: str
56
+ ignore_index: int = -100
57
+ image_token_index: int = 32000
58
+ vision_feature_select_strategy: str = "default"
59
+ vision_feature_layer: int = -2
60
+ vocab_size: int = 32000
61
+ eos_token_id: Optional[List[int]] = None
@@ -0,0 +1,200 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+
6
+ from ..base import (
7
+ LanguageModelOutput,
8
+ create_attention_mask,
9
+ scaled_dot_product_attention,
10
+ )
11
+ from ..cache import KVCache
12
+ from .config import TextConfig
13
+
14
+
15
+ class Attention(nn.Module):
16
+ def __init__(self, config: TextConfig):
17
+ super().__init__()
18
+
19
+ dim = config.hidden_size
20
+ self.n_heads = n_heads = config.num_attention_heads
21
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
22
+
23
+ self.repeats = n_heads // n_kv_heads
24
+
25
+ head_dim = config.hidden_size // n_heads
26
+ self.scale = head_dim**-0.5
27
+
28
+ if config.model_type == "qwen2":
29
+ attention_bias = True
30
+ else:
31
+ attention_bias = False
32
+
33
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
34
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
35
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
36
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
37
+
38
+ rope_scale = (
39
+ 1 / config.rope_scaling["factor"]
40
+ if config.rope_scaling is not None
41
+ and config.rope_scaling["type"] == "linear"
42
+ else 1
43
+ )
44
+ self.rope = nn.RoPE(
45
+ head_dim,
46
+ traditional=config.rope_traditional,
47
+ base=config.rope_theta,
48
+ scale=rope_scale,
49
+ )
50
+
51
+ def __call__(
52
+ self,
53
+ x: mx.array,
54
+ mask: Optional[mx.array] = None,
55
+ cache: Optional[KVCache] = None,
56
+ ) -> mx.array:
57
+ B, L, D = x.shape
58
+
59
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
60
+
61
+ # Prepare the queries, keys and values for the attention computation
62
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
63
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
64
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
65
+
66
+ if cache is not None:
67
+ queries = self.rope(queries, offset=cache.offset)
68
+ keys = self.rope(keys, offset=cache.offset)
69
+ keys, values = cache.update_and_fetch(keys, values)
70
+ else:
71
+ queries = self.rope(queries)
72
+ keys = self.rope(keys)
73
+
74
+ output = scaled_dot_product_attention(
75
+ queries, keys, values, cache, scale=self.scale, mask=mask
76
+ )
77
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
78
+ return self.o_proj(output)
79
+
80
+
81
+ class MLP(nn.Module):
82
+ def __init__(self, dim, hidden_dim):
83
+ super().__init__()
84
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
85
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
86
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
87
+
88
+ def __call__(self, x) -> mx.array:
89
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
90
+
91
+
92
+ class TransformerBlock(nn.Module):
93
+ def __init__(self, config: TextConfig):
94
+ super().__init__()
95
+ self.num_attention_heads = config.num_attention_heads
96
+ self.hidden_size = config.hidden_size
97
+ self.self_attn = Attention(config)
98
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
99
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
100
+ self.post_attention_layernorm = nn.RMSNorm(
101
+ config.hidden_size, eps=config.rms_norm_eps
102
+ )
103
+ self.config = config
104
+
105
+ def __call__(
106
+ self,
107
+ x: mx.array,
108
+ mask: Optional[mx.array] = None,
109
+ cache: Optional[KVCache] = None,
110
+ ) -> mx.array:
111
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
112
+ h = x + r
113
+ r = self.mlp(self.post_attention_layernorm(h))
114
+ out = h + r
115
+ return out
116
+
117
+
118
+ class Llama(nn.Module):
119
+ def __init__(self, config: TextConfig):
120
+ super().__init__()
121
+ self.config = config
122
+ self.vocab_size = config.vocab_size
123
+ self.num_hidden_layers = config.num_hidden_layers
124
+ assert self.vocab_size > 0
125
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
126
+ self.layers = [
127
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
128
+ ]
129
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
130
+
131
+ def __call__(
132
+ self,
133
+ inputs: mx.array,
134
+ inputs_embeds: Optional[mx.array] = None,
135
+ mask: Optional[mx.array] = None,
136
+ cache=None,
137
+ ):
138
+ # for passing merged input embeddings
139
+ if inputs_embeds is None:
140
+ h = self.embed_tokens(inputs)
141
+ else:
142
+ h = inputs_embeds
143
+
144
+ if cache is None:
145
+ cache = [None] * len(self.layers)
146
+
147
+ # if mask is None:
148
+ mask = create_attention_mask(h, cache)
149
+
150
+ for layer, c in zip(self.layers, cache):
151
+ h = layer(h, mask, c)
152
+
153
+ return self.norm(h)
154
+
155
+
156
+ class LanguageModel(nn.Module):
157
+ def __init__(self, config: TextConfig):
158
+ super().__init__()
159
+ self.config = config
160
+ self.model_type = config.model_type
161
+ if self.model_type not in ["llama", "qwen2"]:
162
+ raise ValueError(
163
+ f"Model type {self.model_type} not supported. Supported types: 'llama', 'qwen2'"
164
+ )
165
+ self.model = Llama(config)
166
+ if not config.tie_word_embeddings:
167
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
168
+
169
+ def __call__(
170
+ self,
171
+ inputs: mx.array,
172
+ inputs_embeds: Optional[mx.array] = None,
173
+ mask: Optional[mx.array] = None,
174
+ cache=None,
175
+ ):
176
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
177
+ if self.config.tie_word_embeddings:
178
+ out = self.model.embed_tokens.as_linear(out)
179
+ else:
180
+ out = self.lm_head(out)
181
+ return LanguageModelOutput(logits=out)
182
+
183
+ @staticmethod
184
+ def sanitize(weights):
185
+ # Remove unused precomputed rotary freqs
186
+ return {
187
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
188
+ }
189
+
190
+ @property
191
+ def layers(self):
192
+ return self.model.layers
193
+
194
+ @property
195
+ def head_dim(self):
196
+ return self.config.hidden_size // self.config.num_attention_heads
197
+
198
+ @property
199
+ def n_kv_heads(self):
200
+ return self.config.num_key_value_heads
@@ -0,0 +1,132 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ import numpy as np
6
+
7
+ from ..base import InputEmbeddingsFeatures
8
+ from .config import ModelConfig
9
+ from .language import LanguageModel
10
+ from .vision import VisionModel
11
+
12
+
13
+ class LlavaMultiModalProjector(nn.Module):
14
+ def __init__(self, config: ModelConfig):
15
+ super().__init__()
16
+ self.linear_1 = nn.Linear(
17
+ config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
18
+ )
19
+ self.gelu = nn.GELU()
20
+ self.linear_2 = nn.Linear(
21
+ config.text_config.hidden_size, config.text_config.hidden_size, bias=True
22
+ )
23
+
24
+ def __call__(self, x: mx.array) -> mx.array:
25
+ x = self.linear_1(x)
26
+ x = self.gelu(x)
27
+ x = self.linear_2(x)
28
+ return x
29
+
30
+
31
+ class Model(nn.Module):
32
+ def __init__(self, config: ModelConfig):
33
+ super().__init__()
34
+ self.config = config
35
+ self.vision_tower = VisionModel(config.vision_config)
36
+ self.language_model = LanguageModel(config.text_config)
37
+ self.multi_modal_projector = LlavaMultiModalProjector(config)
38
+ self.vision_feature_layer = config.vision_feature_layer
39
+ self.vision_feature_select_strategy = config.vision_feature_select_strategy
40
+
41
+ def get_input_embeddings(
42
+ self,
43
+ input_ids: Optional[mx.array] = None,
44
+ pixel_values: Optional[mx.array] = None,
45
+ **kwargs,
46
+ ):
47
+ if pixel_values is None:
48
+ return InputEmbeddingsFeatures(
49
+ inputs_embeds=self.language_model.model.embed_tokens(input_ids)
50
+ )
51
+
52
+ # Get the input embeddings from the language model
53
+ inputs_embeds = self.language_model.model.embed_tokens(input_ids)
54
+
55
+ # Get the ouptut hidden states from the vision model
56
+ *_, hidden_states = self.vision_tower(
57
+ pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
58
+ )
59
+
60
+ # Select the hidden states from the desired layer
61
+ selected_image_feature = hidden_states[self.vision_feature_layer]
62
+
63
+ if isinstance(self.vision_feature_layer, int):
64
+ if self.vision_feature_select_strategy == "default":
65
+ selected_image_feature = selected_image_feature[:, 1:]
66
+
67
+ else:
68
+ hs_pool = [
69
+ hidden_states[layer_idx] for layer_idx in self.vision_feature_layer
70
+ ]
71
+ # For default; crop CLS from each hidden state in the hidden state pool
72
+ if self.vision_feature_select_strategy == "default":
73
+ hs_pool = [hs[:, 1:] for hs in hs_pool]
74
+ selected_image_feature = mx.concatenate(hs_pool, axis=-1)
75
+
76
+ # Pass image features through the multi-modal projector
77
+ image_features = self.multi_modal_projector(selected_image_feature)
78
+
79
+ # Insert special image tokens in the input_ids
80
+ final_inputs_embeds = self._merge_input_ids_with_image_features(
81
+ image_features, inputs_embeds, input_ids
82
+ )
83
+ return InputEmbeddingsFeatures(inputs_embeds=final_inputs_embeds)
84
+
85
+ def _merge_input_ids_with_image_features(
86
+ self, image_features, inputs_embeds, input_ids
87
+ ):
88
+ image_token_index = self.config.image_token_index
89
+
90
+ # Positions of <image> tokens in input_ids, assuming batch size is 1
91
+ image_positions = np.where(input_ids == image_token_index)[1].tolist()
92
+ num_images, _, vision_hidden_size = image_features.shape
93
+
94
+ reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
95
+
96
+ # cast to the dtype of the input_embeds to support quantized models
97
+ reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
98
+ inputs_embeds.dtype
99
+ )
100
+
101
+ # Pad image_positions to match the length of reshaped_image_hidden_states
102
+ num_positions_needed = len(image_positions)
103
+
104
+ if reshaped_image_hidden_states.shape[0] > num_positions_needed:
105
+ # TODO: Think about how to handle this case
106
+ raise ValueError(
107
+ "Llava model supports only one image per input. Please check your input_ids and pixel_values."
108
+ )
109
+
110
+ inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
111
+ return inputs_embeds
112
+
113
+ @property
114
+ def layers(self):
115
+ return self.language_model.model.layers
116
+
117
+ def __call__(
118
+ self,
119
+ input_ids: mx.array,
120
+ pixel_values: mx.array,
121
+ mask: mx.array,
122
+ cache=None,
123
+ **kwargs,
124
+ ):
125
+ input_embeddings_features = self.get_input_embeddings(input_ids, pixel_values)
126
+ logits = self.language_model(
127
+ input_ids,
128
+ mask=mask,
129
+ cache=cache,
130
+ inputs_embeds=input_embeddings_features.inputs_embeds,
131
+ )
132
+ return logits
@@ -0,0 +1,233 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ import numpy as np
6
+
7
+ from .config import VisionConfig
8
+
9
+
10
+ def check_array_shape(arr):
11
+ shape = arr.shape
12
+
13
+ # Check if the shape has 4 dimensions
14
+ if len(shape) != 4:
15
+ return False
16
+
17
+ out_channels, kH, KW, _ = shape
18
+
19
+ # Check if out_channels is the largest, and kH and KW are the same
20
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
21
+ return True
22
+ else:
23
+ return False
24
+
25
+
26
+ class Attention(nn.Module):
27
+ def __init__(
28
+ self,
29
+ dims: int,
30
+ num_heads: int,
31
+ query_input_dims: Optional[int] = None,
32
+ key_input_dims: Optional[int] = None,
33
+ value_input_dims: Optional[int] = None,
34
+ value_dims: Optional[int] = None,
35
+ value_output_dims: Optional[int] = None,
36
+ bias: bool = False,
37
+ ):
38
+ super().__init__()
39
+
40
+ if (dims % num_heads) != 0:
41
+ raise ValueError(
42
+ "The input feature dimensions should be divisible by the "
43
+ f"number of heads ({dims} % {num_heads}) != 0"
44
+ )
45
+
46
+ query_input_dims = query_input_dims or dims
47
+ key_input_dims = key_input_dims or dims
48
+ value_input_dims = value_input_dims or key_input_dims
49
+ value_dims = value_dims or dims
50
+ value_output_dims = value_output_dims or dims
51
+
52
+ self.num_heads = num_heads = num_heads
53
+ head_dim = dims // num_heads
54
+ self.scale = head_dim**-0.5
55
+
56
+ self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
57
+ self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
58
+ self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
59
+ self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
60
+
61
+ def __call__(self, queries, keys, values, mask=None):
62
+ queries = self.q_proj(queries)
63
+ keys = self.k_proj(keys)
64
+ values = self.v_proj(values)
65
+
66
+ num_heads = self.num_heads
67
+ B, L, D = queries.shape
68
+ _, S, _ = keys.shape
69
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
70
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
71
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
72
+
73
+ output = mx.fast.scaled_dot_product_attention(
74
+ queries, keys, values, scale=self.scale, mask=mask
75
+ )
76
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
77
+
78
+ return self.out_proj(output)
79
+
80
+
81
+ class MLP(nn.Module):
82
+ def __init__(self, config: VisionConfig):
83
+ super().__init__()
84
+ self.activation_fn = nn.GELU(approx="fast")
85
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
86
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
87
+
88
+ def __call__(self, x: mx.array) -> mx.array:
89
+ x = self.activation_fn(self.fc1(x))
90
+ x = self.fc2(x)
91
+ return x
92
+
93
+
94
+ class EncoderLayer(nn.Module):
95
+ def __init__(self, config: VisionConfig):
96
+ super().__init__()
97
+ self.embed_dim = config.hidden_size
98
+ self.self_attn = Attention(
99
+ config.hidden_size, config.num_attention_heads, bias=True
100
+ )
101
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
102
+ self.mlp = MLP(config)
103
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
104
+
105
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
106
+ y = self.layer_norm1(x)
107
+ y = self.self_attn(y, y, y, mask)
108
+ x = x + y
109
+ y = self.layer_norm2(x)
110
+ y = self.mlp(y)
111
+ return x + y
112
+
113
+
114
+ class Encoder(nn.Module):
115
+ def __init__(self, config: VisionConfig):
116
+ super().__init__()
117
+ self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
118
+
119
+
120
+ class VisionEmbeddings(nn.Module):
121
+ def __init__(self, config: VisionConfig):
122
+ super().__init__()
123
+ self.config = config
124
+ self.embed_dim = config.hidden_size
125
+ self.image_size = config.image_size
126
+ self.patch_size = config.patch_size
127
+
128
+ if config.model_type == "siglip_vision_model":
129
+ bias = True
130
+ self.class_embedding = None
131
+ else:
132
+ bias = False
133
+ self.class_embedding = mx.zeros((config.hidden_size,))
134
+
135
+ self.patch_embedding = nn.Conv2d(
136
+ in_channels=config.num_channels,
137
+ out_channels=self.embed_dim,
138
+ kernel_size=self.patch_size,
139
+ stride=self.patch_size,
140
+ bias=bias,
141
+ )
142
+
143
+ self.num_patches = (self.image_size // self.patch_size) ** 2
144
+ self.num_positions = (
145
+ self.num_patches + 1
146
+ if config.model_type == "clip_vision_model"
147
+ else self.num_patches
148
+ )
149
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
150
+
151
+ def __call__(self, x: mx.array) -> mx.array:
152
+ batch_size = x.shape[0]
153
+ patch_embeddings = self.patch_embedding(x)
154
+ patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
155
+ if self.config.model_type == "siglip_vision_model":
156
+ embeddings = patch_embeddings
157
+ else:
158
+ embed_dim = patch_embeddings.shape[-1]
159
+ cls_embeddings = mx.broadcast_to(
160
+ self.class_embedding, (batch_size, 1, embed_dim)
161
+ )
162
+ embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
163
+
164
+ position_ids = mx.array(np.arange(self.num_positions)[None, :])
165
+
166
+ embeddings += self.position_embedding(position_ids)
167
+ return embeddings
168
+
169
+
170
+ class ClipVisionModel(nn.Module):
171
+ def __init__(self, config: VisionConfig):
172
+ super().__init__()
173
+ self.config = config
174
+ self.embeddings = VisionEmbeddings(config)
175
+ if self.config.model_type == "clip_vision_model":
176
+ self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
177
+ self.encoder = Encoder(config)
178
+ self.post_layernorm = nn.LayerNorm(config.hidden_size)
179
+
180
+ def __call__(
181
+ self,
182
+ x: mx.array,
183
+ output_hidden_states: Optional[bool] = None,
184
+ ) -> mx.array:
185
+ x = self.embeddings(x)
186
+ if self.config.model_type == "clip_vision_model":
187
+ x = self.pre_layrnorm(x)
188
+
189
+ encoder_states = (x,) if output_hidden_states else None
190
+
191
+ for l in self.encoder.layers:
192
+ x = l(x, mask=None)
193
+ if output_hidden_states:
194
+ encoder_states = encoder_states + (x,)
195
+
196
+ pooler_output = self.post_layernorm(x[:, 0, :])
197
+ return pooler_output, x, encoder_states
198
+
199
+
200
+ class VisionModel(nn.Module):
201
+ def __init__(self, config: VisionConfig):
202
+ super().__init__()
203
+
204
+ self.model_type = config.model_type
205
+ if self.model_type not in ["clip_vision_model", "siglip_vision_model"]:
206
+ raise ValueError(f"Unsupported model type: {self.model_type}")
207
+
208
+ self.vision_model = ClipVisionModel(config)
209
+
210
+ def __call__(
211
+ self, x: mx.array, output_hidden_states: Optional[bool] = None
212
+ ) -> mx.array:
213
+ return self.vision_model(x, output_hidden_states)
214
+
215
+ def sanitize(self, weights):
216
+ sanitized_weights = {}
217
+ for k, v in weights.items():
218
+ if "position_ids" in k:
219
+ # Remove unused position_ids
220
+ continue
221
+ elif "patch_embedding.weight" in k:
222
+ # PyTorch conv2d weight tensors have shape:
223
+ # [out_channels, in_channels, kH, KW]
224
+ # MLX conv2d expects the weight be of shape:
225
+ # [out_channels, kH, KW, in_channels]
226
+ if check_array_shape(v):
227
+ sanitized_weights[k] = v
228
+ else:
229
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
230
+ else:
231
+ sanitized_weights[k] = v
232
+
233
+ return sanitized_weights
@@ -0,0 +1,2 @@
1
+ from .config import ModelConfig, TextConfig, VisionConfig
2
+ from .llava_bunny import ImageProcessor, LanguageModel, Model, VisionModel