fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Dict, List, Optional, Union
|
|
3
|
+
|
|
4
|
+
from ..base import BaseModelConfig
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@dataclass
|
|
8
|
+
class TextConfig(BaseModelConfig):
|
|
9
|
+
model_type: str
|
|
10
|
+
hidden_size: int = 4096
|
|
11
|
+
num_hidden_layers: int = 32
|
|
12
|
+
intermediate_size: int = 11008
|
|
13
|
+
num_attention_heads: int = 32
|
|
14
|
+
rms_norm_eps: float = 1e-6
|
|
15
|
+
vocab_size: int = 32000
|
|
16
|
+
num_key_value_heads: int = None
|
|
17
|
+
rope_theta: float = 10000
|
|
18
|
+
rope_traditional: bool = False
|
|
19
|
+
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
20
|
+
max_position_embeddings: int = 4096
|
|
21
|
+
tie_word_embeddings: bool = False
|
|
22
|
+
|
|
23
|
+
def __post_init__(self):
|
|
24
|
+
if self.num_key_value_heads is None:
|
|
25
|
+
self.num_key_value_heads = self.num_attention_heads
|
|
26
|
+
|
|
27
|
+
if self.rope_scaling:
|
|
28
|
+
required_keys = {"factor", "type"}
|
|
29
|
+
if not all(key in self.rope_scaling for key in required_keys):
|
|
30
|
+
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
31
|
+
|
|
32
|
+
if self.rope_scaling["type"] != "linear":
|
|
33
|
+
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@dataclass
|
|
37
|
+
class VisionConfig(BaseModelConfig):
|
|
38
|
+
model_type: str
|
|
39
|
+
num_hidden_layers: int = 24
|
|
40
|
+
hidden_size: int = 1024
|
|
41
|
+
intermediate_size: int = 4096
|
|
42
|
+
num_attention_heads: int = 16
|
|
43
|
+
image_size: int = 336
|
|
44
|
+
patch_size: int = 14
|
|
45
|
+
projection_dim: int = 768
|
|
46
|
+
vocab_size: int = 32000
|
|
47
|
+
num_channels: int = 3
|
|
48
|
+
layer_norm_eps: float = 1e-5
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@dataclass
|
|
52
|
+
class ModelConfig(BaseModelConfig):
|
|
53
|
+
text_config: TextConfig
|
|
54
|
+
vision_config: VisionConfig
|
|
55
|
+
model_type: str
|
|
56
|
+
ignore_index: int = -100
|
|
57
|
+
image_token_index: int = 32000
|
|
58
|
+
vision_feature_select_strategy: str = "default"
|
|
59
|
+
vision_feature_layer: int = -2
|
|
60
|
+
vocab_size: int = 32000
|
|
61
|
+
eos_token_id: Optional[List[int]] = None
|
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from ..base import (
|
|
7
|
+
LanguageModelOutput,
|
|
8
|
+
create_attention_mask,
|
|
9
|
+
scaled_dot_product_attention,
|
|
10
|
+
)
|
|
11
|
+
from ..cache import KVCache
|
|
12
|
+
from .config import TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Attention(nn.Module):
|
|
16
|
+
def __init__(self, config: TextConfig):
|
|
17
|
+
super().__init__()
|
|
18
|
+
|
|
19
|
+
dim = config.hidden_size
|
|
20
|
+
self.n_heads = n_heads = config.num_attention_heads
|
|
21
|
+
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
22
|
+
|
|
23
|
+
self.repeats = n_heads // n_kv_heads
|
|
24
|
+
|
|
25
|
+
head_dim = config.hidden_size // n_heads
|
|
26
|
+
self.scale = head_dim**-0.5
|
|
27
|
+
|
|
28
|
+
if config.model_type == "qwen2":
|
|
29
|
+
attention_bias = True
|
|
30
|
+
else:
|
|
31
|
+
attention_bias = False
|
|
32
|
+
|
|
33
|
+
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
|
34
|
+
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
35
|
+
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
36
|
+
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
37
|
+
|
|
38
|
+
rope_scale = (
|
|
39
|
+
1 / config.rope_scaling["factor"]
|
|
40
|
+
if config.rope_scaling is not None
|
|
41
|
+
and config.rope_scaling["type"] == "linear"
|
|
42
|
+
else 1
|
|
43
|
+
)
|
|
44
|
+
self.rope = nn.RoPE(
|
|
45
|
+
head_dim,
|
|
46
|
+
traditional=config.rope_traditional,
|
|
47
|
+
base=config.rope_theta,
|
|
48
|
+
scale=rope_scale,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
def __call__(
|
|
52
|
+
self,
|
|
53
|
+
x: mx.array,
|
|
54
|
+
mask: Optional[mx.array] = None,
|
|
55
|
+
cache: Optional[KVCache] = None,
|
|
56
|
+
) -> mx.array:
|
|
57
|
+
B, L, D = x.shape
|
|
58
|
+
|
|
59
|
+
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
60
|
+
|
|
61
|
+
# Prepare the queries, keys and values for the attention computation
|
|
62
|
+
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
63
|
+
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
64
|
+
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
65
|
+
|
|
66
|
+
if cache is not None:
|
|
67
|
+
queries = self.rope(queries, offset=cache.offset)
|
|
68
|
+
keys = self.rope(keys, offset=cache.offset)
|
|
69
|
+
keys, values = cache.update_and_fetch(keys, values)
|
|
70
|
+
else:
|
|
71
|
+
queries = self.rope(queries)
|
|
72
|
+
keys = self.rope(keys)
|
|
73
|
+
|
|
74
|
+
output = scaled_dot_product_attention(
|
|
75
|
+
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
76
|
+
)
|
|
77
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
78
|
+
return self.o_proj(output)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class MLP(nn.Module):
|
|
82
|
+
def __init__(self, dim, hidden_dim):
|
|
83
|
+
super().__init__()
|
|
84
|
+
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
85
|
+
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
86
|
+
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
87
|
+
|
|
88
|
+
def __call__(self, x) -> mx.array:
|
|
89
|
+
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class TransformerBlock(nn.Module):
|
|
93
|
+
def __init__(self, config: TextConfig):
|
|
94
|
+
super().__init__()
|
|
95
|
+
self.num_attention_heads = config.num_attention_heads
|
|
96
|
+
self.hidden_size = config.hidden_size
|
|
97
|
+
self.self_attn = Attention(config)
|
|
98
|
+
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
|
99
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
100
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
101
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
102
|
+
)
|
|
103
|
+
self.config = config
|
|
104
|
+
|
|
105
|
+
def __call__(
|
|
106
|
+
self,
|
|
107
|
+
x: mx.array,
|
|
108
|
+
mask: Optional[mx.array] = None,
|
|
109
|
+
cache: Optional[KVCache] = None,
|
|
110
|
+
) -> mx.array:
|
|
111
|
+
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
112
|
+
h = x + r
|
|
113
|
+
r = self.mlp(self.post_attention_layernorm(h))
|
|
114
|
+
out = h + r
|
|
115
|
+
return out
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class Llama(nn.Module):
|
|
119
|
+
def __init__(self, config: TextConfig):
|
|
120
|
+
super().__init__()
|
|
121
|
+
self.config = config
|
|
122
|
+
self.vocab_size = config.vocab_size
|
|
123
|
+
self.num_hidden_layers = config.num_hidden_layers
|
|
124
|
+
assert self.vocab_size > 0
|
|
125
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
126
|
+
self.layers = [
|
|
127
|
+
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
|
|
128
|
+
]
|
|
129
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
130
|
+
|
|
131
|
+
def __call__(
|
|
132
|
+
self,
|
|
133
|
+
inputs: mx.array,
|
|
134
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
135
|
+
mask: Optional[mx.array] = None,
|
|
136
|
+
cache=None,
|
|
137
|
+
):
|
|
138
|
+
# for passing merged input embeddings
|
|
139
|
+
if inputs_embeds is None:
|
|
140
|
+
h = self.embed_tokens(inputs)
|
|
141
|
+
else:
|
|
142
|
+
h = inputs_embeds
|
|
143
|
+
|
|
144
|
+
if cache is None:
|
|
145
|
+
cache = [None] * len(self.layers)
|
|
146
|
+
|
|
147
|
+
# if mask is None:
|
|
148
|
+
mask = create_attention_mask(h, cache)
|
|
149
|
+
|
|
150
|
+
for layer, c in zip(self.layers, cache):
|
|
151
|
+
h = layer(h, mask, c)
|
|
152
|
+
|
|
153
|
+
return self.norm(h)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
class LanguageModel(nn.Module):
|
|
157
|
+
def __init__(self, config: TextConfig):
|
|
158
|
+
super().__init__()
|
|
159
|
+
self.config = config
|
|
160
|
+
self.model_type = config.model_type
|
|
161
|
+
if self.model_type not in ["llama", "qwen2"]:
|
|
162
|
+
raise ValueError(
|
|
163
|
+
f"Model type {self.model_type} not supported. Supported types: 'llama', 'qwen2'"
|
|
164
|
+
)
|
|
165
|
+
self.model = Llama(config)
|
|
166
|
+
if not config.tie_word_embeddings:
|
|
167
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
168
|
+
|
|
169
|
+
def __call__(
|
|
170
|
+
self,
|
|
171
|
+
inputs: mx.array,
|
|
172
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
173
|
+
mask: Optional[mx.array] = None,
|
|
174
|
+
cache=None,
|
|
175
|
+
):
|
|
176
|
+
out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
|
|
177
|
+
if self.config.tie_word_embeddings:
|
|
178
|
+
out = self.model.embed_tokens.as_linear(out)
|
|
179
|
+
else:
|
|
180
|
+
out = self.lm_head(out)
|
|
181
|
+
return LanguageModelOutput(logits=out)
|
|
182
|
+
|
|
183
|
+
@staticmethod
|
|
184
|
+
def sanitize(weights):
|
|
185
|
+
# Remove unused precomputed rotary freqs
|
|
186
|
+
return {
|
|
187
|
+
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
@property
|
|
191
|
+
def layers(self):
|
|
192
|
+
return self.model.layers
|
|
193
|
+
|
|
194
|
+
@property
|
|
195
|
+
def head_dim(self):
|
|
196
|
+
return self.config.hidden_size // self.config.num_attention_heads
|
|
197
|
+
|
|
198
|
+
@property
|
|
199
|
+
def n_kv_heads(self):
|
|
200
|
+
return self.config.num_key_value_heads
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from ..base import InputEmbeddingsFeatures
|
|
8
|
+
from .config import ModelConfig
|
|
9
|
+
from .language import LanguageModel
|
|
10
|
+
from .vision import VisionModel
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class LlavaMultiModalProjector(nn.Module):
|
|
14
|
+
def __init__(self, config: ModelConfig):
|
|
15
|
+
super().__init__()
|
|
16
|
+
self.linear_1 = nn.Linear(
|
|
17
|
+
config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
|
|
18
|
+
)
|
|
19
|
+
self.gelu = nn.GELU()
|
|
20
|
+
self.linear_2 = nn.Linear(
|
|
21
|
+
config.text_config.hidden_size, config.text_config.hidden_size, bias=True
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
25
|
+
x = self.linear_1(x)
|
|
26
|
+
x = self.gelu(x)
|
|
27
|
+
x = self.linear_2(x)
|
|
28
|
+
return x
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Model(nn.Module):
|
|
32
|
+
def __init__(self, config: ModelConfig):
|
|
33
|
+
super().__init__()
|
|
34
|
+
self.config = config
|
|
35
|
+
self.vision_tower = VisionModel(config.vision_config)
|
|
36
|
+
self.language_model = LanguageModel(config.text_config)
|
|
37
|
+
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
|
38
|
+
self.vision_feature_layer = config.vision_feature_layer
|
|
39
|
+
self.vision_feature_select_strategy = config.vision_feature_select_strategy
|
|
40
|
+
|
|
41
|
+
def get_input_embeddings(
|
|
42
|
+
self,
|
|
43
|
+
input_ids: Optional[mx.array] = None,
|
|
44
|
+
pixel_values: Optional[mx.array] = None,
|
|
45
|
+
**kwargs,
|
|
46
|
+
):
|
|
47
|
+
if pixel_values is None:
|
|
48
|
+
return InputEmbeddingsFeatures(
|
|
49
|
+
inputs_embeds=self.language_model.model.embed_tokens(input_ids)
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
# Get the input embeddings from the language model
|
|
53
|
+
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
54
|
+
|
|
55
|
+
# Get the ouptut hidden states from the vision model
|
|
56
|
+
*_, hidden_states = self.vision_tower(
|
|
57
|
+
pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
# Select the hidden states from the desired layer
|
|
61
|
+
selected_image_feature = hidden_states[self.vision_feature_layer]
|
|
62
|
+
|
|
63
|
+
if isinstance(self.vision_feature_layer, int):
|
|
64
|
+
if self.vision_feature_select_strategy == "default":
|
|
65
|
+
selected_image_feature = selected_image_feature[:, 1:]
|
|
66
|
+
|
|
67
|
+
else:
|
|
68
|
+
hs_pool = [
|
|
69
|
+
hidden_states[layer_idx] for layer_idx in self.vision_feature_layer
|
|
70
|
+
]
|
|
71
|
+
# For default; crop CLS from each hidden state in the hidden state pool
|
|
72
|
+
if self.vision_feature_select_strategy == "default":
|
|
73
|
+
hs_pool = [hs[:, 1:] for hs in hs_pool]
|
|
74
|
+
selected_image_feature = mx.concatenate(hs_pool, axis=-1)
|
|
75
|
+
|
|
76
|
+
# Pass image features through the multi-modal projector
|
|
77
|
+
image_features = self.multi_modal_projector(selected_image_feature)
|
|
78
|
+
|
|
79
|
+
# Insert special image tokens in the input_ids
|
|
80
|
+
final_inputs_embeds = self._merge_input_ids_with_image_features(
|
|
81
|
+
image_features, inputs_embeds, input_ids
|
|
82
|
+
)
|
|
83
|
+
return InputEmbeddingsFeatures(inputs_embeds=final_inputs_embeds)
|
|
84
|
+
|
|
85
|
+
def _merge_input_ids_with_image_features(
|
|
86
|
+
self, image_features, inputs_embeds, input_ids
|
|
87
|
+
):
|
|
88
|
+
image_token_index = self.config.image_token_index
|
|
89
|
+
|
|
90
|
+
# Positions of <image> tokens in input_ids, assuming batch size is 1
|
|
91
|
+
image_positions = np.where(input_ids == image_token_index)[1].tolist()
|
|
92
|
+
num_images, _, vision_hidden_size = image_features.shape
|
|
93
|
+
|
|
94
|
+
reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
|
|
95
|
+
|
|
96
|
+
# cast to the dtype of the input_embeds to support quantized models
|
|
97
|
+
reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
|
|
98
|
+
inputs_embeds.dtype
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Pad image_positions to match the length of reshaped_image_hidden_states
|
|
102
|
+
num_positions_needed = len(image_positions)
|
|
103
|
+
|
|
104
|
+
if reshaped_image_hidden_states.shape[0] > num_positions_needed:
|
|
105
|
+
# TODO: Think about how to handle this case
|
|
106
|
+
raise ValueError(
|
|
107
|
+
"Llava model supports only one image per input. Please check your input_ids and pixel_values."
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
|
|
111
|
+
return inputs_embeds
|
|
112
|
+
|
|
113
|
+
@property
|
|
114
|
+
def layers(self):
|
|
115
|
+
return self.language_model.model.layers
|
|
116
|
+
|
|
117
|
+
def __call__(
|
|
118
|
+
self,
|
|
119
|
+
input_ids: mx.array,
|
|
120
|
+
pixel_values: mx.array,
|
|
121
|
+
mask: mx.array,
|
|
122
|
+
cache=None,
|
|
123
|
+
**kwargs,
|
|
124
|
+
):
|
|
125
|
+
input_embeddings_features = self.get_input_embeddings(input_ids, pixel_values)
|
|
126
|
+
logits = self.language_model(
|
|
127
|
+
input_ids,
|
|
128
|
+
mask=mask,
|
|
129
|
+
cache=cache,
|
|
130
|
+
inputs_embeds=input_embeddings_features.inputs_embeds,
|
|
131
|
+
)
|
|
132
|
+
return logits
|
|
@@ -0,0 +1,233 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from .config import VisionConfig
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def check_array_shape(arr):
|
|
11
|
+
shape = arr.shape
|
|
12
|
+
|
|
13
|
+
# Check if the shape has 4 dimensions
|
|
14
|
+
if len(shape) != 4:
|
|
15
|
+
return False
|
|
16
|
+
|
|
17
|
+
out_channels, kH, KW, _ = shape
|
|
18
|
+
|
|
19
|
+
# Check if out_channels is the largest, and kH and KW are the same
|
|
20
|
+
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
21
|
+
return True
|
|
22
|
+
else:
|
|
23
|
+
return False
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Attention(nn.Module):
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
dims: int,
|
|
30
|
+
num_heads: int,
|
|
31
|
+
query_input_dims: Optional[int] = None,
|
|
32
|
+
key_input_dims: Optional[int] = None,
|
|
33
|
+
value_input_dims: Optional[int] = None,
|
|
34
|
+
value_dims: Optional[int] = None,
|
|
35
|
+
value_output_dims: Optional[int] = None,
|
|
36
|
+
bias: bool = False,
|
|
37
|
+
):
|
|
38
|
+
super().__init__()
|
|
39
|
+
|
|
40
|
+
if (dims % num_heads) != 0:
|
|
41
|
+
raise ValueError(
|
|
42
|
+
"The input feature dimensions should be divisible by the "
|
|
43
|
+
f"number of heads ({dims} % {num_heads}) != 0"
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
query_input_dims = query_input_dims or dims
|
|
47
|
+
key_input_dims = key_input_dims or dims
|
|
48
|
+
value_input_dims = value_input_dims or key_input_dims
|
|
49
|
+
value_dims = value_dims or dims
|
|
50
|
+
value_output_dims = value_output_dims or dims
|
|
51
|
+
|
|
52
|
+
self.num_heads = num_heads = num_heads
|
|
53
|
+
head_dim = dims // num_heads
|
|
54
|
+
self.scale = head_dim**-0.5
|
|
55
|
+
|
|
56
|
+
self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
|
|
57
|
+
self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
|
|
58
|
+
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
|
|
59
|
+
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
|
|
60
|
+
|
|
61
|
+
def __call__(self, queries, keys, values, mask=None):
|
|
62
|
+
queries = self.q_proj(queries)
|
|
63
|
+
keys = self.k_proj(keys)
|
|
64
|
+
values = self.v_proj(values)
|
|
65
|
+
|
|
66
|
+
num_heads = self.num_heads
|
|
67
|
+
B, L, D = queries.shape
|
|
68
|
+
_, S, _ = keys.shape
|
|
69
|
+
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
70
|
+
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
71
|
+
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
72
|
+
|
|
73
|
+
output = mx.fast.scaled_dot_product_attention(
|
|
74
|
+
queries, keys, values, scale=self.scale, mask=mask
|
|
75
|
+
)
|
|
76
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
77
|
+
|
|
78
|
+
return self.out_proj(output)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class MLP(nn.Module):
|
|
82
|
+
def __init__(self, config: VisionConfig):
|
|
83
|
+
super().__init__()
|
|
84
|
+
self.activation_fn = nn.GELU(approx="fast")
|
|
85
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
86
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
87
|
+
|
|
88
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
89
|
+
x = self.activation_fn(self.fc1(x))
|
|
90
|
+
x = self.fc2(x)
|
|
91
|
+
return x
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class EncoderLayer(nn.Module):
|
|
95
|
+
def __init__(self, config: VisionConfig):
|
|
96
|
+
super().__init__()
|
|
97
|
+
self.embed_dim = config.hidden_size
|
|
98
|
+
self.self_attn = Attention(
|
|
99
|
+
config.hidden_size, config.num_attention_heads, bias=True
|
|
100
|
+
)
|
|
101
|
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
102
|
+
self.mlp = MLP(config)
|
|
103
|
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
104
|
+
|
|
105
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
106
|
+
y = self.layer_norm1(x)
|
|
107
|
+
y = self.self_attn(y, y, y, mask)
|
|
108
|
+
x = x + y
|
|
109
|
+
y = self.layer_norm2(x)
|
|
110
|
+
y = self.mlp(y)
|
|
111
|
+
return x + y
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
class Encoder(nn.Module):
|
|
115
|
+
def __init__(self, config: VisionConfig):
|
|
116
|
+
super().__init__()
|
|
117
|
+
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
class VisionEmbeddings(nn.Module):
|
|
121
|
+
def __init__(self, config: VisionConfig):
|
|
122
|
+
super().__init__()
|
|
123
|
+
self.config = config
|
|
124
|
+
self.embed_dim = config.hidden_size
|
|
125
|
+
self.image_size = config.image_size
|
|
126
|
+
self.patch_size = config.patch_size
|
|
127
|
+
|
|
128
|
+
if config.model_type == "siglip_vision_model":
|
|
129
|
+
bias = True
|
|
130
|
+
self.class_embedding = None
|
|
131
|
+
else:
|
|
132
|
+
bias = False
|
|
133
|
+
self.class_embedding = mx.zeros((config.hidden_size,))
|
|
134
|
+
|
|
135
|
+
self.patch_embedding = nn.Conv2d(
|
|
136
|
+
in_channels=config.num_channels,
|
|
137
|
+
out_channels=self.embed_dim,
|
|
138
|
+
kernel_size=self.patch_size,
|
|
139
|
+
stride=self.patch_size,
|
|
140
|
+
bias=bias,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
144
|
+
self.num_positions = (
|
|
145
|
+
self.num_patches + 1
|
|
146
|
+
if config.model_type == "clip_vision_model"
|
|
147
|
+
else self.num_patches
|
|
148
|
+
)
|
|
149
|
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
150
|
+
|
|
151
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
152
|
+
batch_size = x.shape[0]
|
|
153
|
+
patch_embeddings = self.patch_embedding(x)
|
|
154
|
+
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
155
|
+
if self.config.model_type == "siglip_vision_model":
|
|
156
|
+
embeddings = patch_embeddings
|
|
157
|
+
else:
|
|
158
|
+
embed_dim = patch_embeddings.shape[-1]
|
|
159
|
+
cls_embeddings = mx.broadcast_to(
|
|
160
|
+
self.class_embedding, (batch_size, 1, embed_dim)
|
|
161
|
+
)
|
|
162
|
+
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
|
|
163
|
+
|
|
164
|
+
position_ids = mx.array(np.arange(self.num_positions)[None, :])
|
|
165
|
+
|
|
166
|
+
embeddings += self.position_embedding(position_ids)
|
|
167
|
+
return embeddings
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
class ClipVisionModel(nn.Module):
|
|
171
|
+
def __init__(self, config: VisionConfig):
|
|
172
|
+
super().__init__()
|
|
173
|
+
self.config = config
|
|
174
|
+
self.embeddings = VisionEmbeddings(config)
|
|
175
|
+
if self.config.model_type == "clip_vision_model":
|
|
176
|
+
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
|
|
177
|
+
self.encoder = Encoder(config)
|
|
178
|
+
self.post_layernorm = nn.LayerNorm(config.hidden_size)
|
|
179
|
+
|
|
180
|
+
def __call__(
|
|
181
|
+
self,
|
|
182
|
+
x: mx.array,
|
|
183
|
+
output_hidden_states: Optional[bool] = None,
|
|
184
|
+
) -> mx.array:
|
|
185
|
+
x = self.embeddings(x)
|
|
186
|
+
if self.config.model_type == "clip_vision_model":
|
|
187
|
+
x = self.pre_layrnorm(x)
|
|
188
|
+
|
|
189
|
+
encoder_states = (x,) if output_hidden_states else None
|
|
190
|
+
|
|
191
|
+
for l in self.encoder.layers:
|
|
192
|
+
x = l(x, mask=None)
|
|
193
|
+
if output_hidden_states:
|
|
194
|
+
encoder_states = encoder_states + (x,)
|
|
195
|
+
|
|
196
|
+
pooler_output = self.post_layernorm(x[:, 0, :])
|
|
197
|
+
return pooler_output, x, encoder_states
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
class VisionModel(nn.Module):
|
|
201
|
+
def __init__(self, config: VisionConfig):
|
|
202
|
+
super().__init__()
|
|
203
|
+
|
|
204
|
+
self.model_type = config.model_type
|
|
205
|
+
if self.model_type not in ["clip_vision_model", "siglip_vision_model"]:
|
|
206
|
+
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
207
|
+
|
|
208
|
+
self.vision_model = ClipVisionModel(config)
|
|
209
|
+
|
|
210
|
+
def __call__(
|
|
211
|
+
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
212
|
+
) -> mx.array:
|
|
213
|
+
return self.vision_model(x, output_hidden_states)
|
|
214
|
+
|
|
215
|
+
def sanitize(self, weights):
|
|
216
|
+
sanitized_weights = {}
|
|
217
|
+
for k, v in weights.items():
|
|
218
|
+
if "position_ids" in k:
|
|
219
|
+
# Remove unused position_ids
|
|
220
|
+
continue
|
|
221
|
+
elif "patch_embedding.weight" in k:
|
|
222
|
+
# PyTorch conv2d weight tensors have shape:
|
|
223
|
+
# [out_channels, in_channels, kH, KW]
|
|
224
|
+
# MLX conv2d expects the weight be of shape:
|
|
225
|
+
# [out_channels, kH, KW, in_channels]
|
|
226
|
+
if check_array_shape(v):
|
|
227
|
+
sanitized_weights[k] = v
|
|
228
|
+
else:
|
|
229
|
+
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
230
|
+
else:
|
|
231
|
+
sanitized_weights[k] = v
|
|
232
|
+
|
|
233
|
+
return sanitized_weights
|