fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,263 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Dict, Optional, Union
|
|
3
|
+
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
import mlx.nn as nn
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from ..base import interpolate
|
|
9
|
+
from .config import VisionConfig
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def check_array_shape(arr):
|
|
13
|
+
shape = arr.shape
|
|
14
|
+
|
|
15
|
+
# Check if the shape has 4 dimensions
|
|
16
|
+
if len(shape) != 4:
|
|
17
|
+
return False
|
|
18
|
+
|
|
19
|
+
out_channels, kH, KW, _ = shape
|
|
20
|
+
|
|
21
|
+
# Check if out_channels is the largest, and kH and KW are the same
|
|
22
|
+
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
23
|
+
return True
|
|
24
|
+
else:
|
|
25
|
+
return False
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class Attention(nn.Module):
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
dims: int,
|
|
32
|
+
num_heads: int,
|
|
33
|
+
qkv_bias: bool = True,
|
|
34
|
+
):
|
|
35
|
+
super().__init__()
|
|
36
|
+
|
|
37
|
+
if (dims % num_heads) != 0:
|
|
38
|
+
raise ValueError(
|
|
39
|
+
"The input feature dimensions should be divisible by the "
|
|
40
|
+
f"number of heads ({dims} % {num_heads}) != 0"
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
self.num_heads = num_heads = num_heads
|
|
44
|
+
head_dim = dims // num_heads
|
|
45
|
+
self.scale = head_dim**-0.5
|
|
46
|
+
|
|
47
|
+
self.qkv_proj = nn.Linear(dims, dims * 3, bias=qkv_bias)
|
|
48
|
+
self.out_proj = nn.Linear(dims, dims, bias=True)
|
|
49
|
+
|
|
50
|
+
def __call__(self, x, mask=None):
|
|
51
|
+
qkv = self.qkv_proj(x)
|
|
52
|
+
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
53
|
+
|
|
54
|
+
num_heads = self.num_heads
|
|
55
|
+
B, L, D = queries.shape
|
|
56
|
+
_, S, _ = keys.shape
|
|
57
|
+
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
58
|
+
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
59
|
+
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
60
|
+
|
|
61
|
+
output = mx.fast.scaled_dot_product_attention(
|
|
62
|
+
queries, keys, values, scale=self.scale, mask=mask
|
|
63
|
+
)
|
|
64
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
65
|
+
|
|
66
|
+
return self.out_proj(output)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
class MLP(nn.Module):
|
|
70
|
+
def __init__(self, config: Union[VisionConfig, Dict], bias: bool = True):
|
|
71
|
+
super().__init__()
|
|
72
|
+
self.activation_fn = nn.GELU()
|
|
73
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=bias)
|
|
74
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=bias)
|
|
75
|
+
|
|
76
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
77
|
+
x = self.activation_fn(self.fc1(x))
|
|
78
|
+
x = self.fc2(x)
|
|
79
|
+
return x
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class EncoderLayer(nn.Module):
|
|
83
|
+
def __init__(self, config: VisionConfig):
|
|
84
|
+
super().__init__()
|
|
85
|
+
self.embed_dim = config.hidden_size
|
|
86
|
+
self.self_attn = Attention(
|
|
87
|
+
config.hidden_size, config.num_attention_heads, qkv_bias=True
|
|
88
|
+
)
|
|
89
|
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
90
|
+
self.mlp = MLP(config)
|
|
91
|
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
92
|
+
|
|
93
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
94
|
+
y = self.layer_norm1(x)
|
|
95
|
+
y = self.self_attn(y, mask)
|
|
96
|
+
x = x + y
|
|
97
|
+
y = self.layer_norm2(x)
|
|
98
|
+
y = self.mlp(y)
|
|
99
|
+
return x + y
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class VisionEmbeddings(nn.Module):
|
|
103
|
+
def __init__(self, config: VisionConfig):
|
|
104
|
+
super().__init__()
|
|
105
|
+
self.config = config
|
|
106
|
+
self.embed_dim = config.hidden_size
|
|
107
|
+
self.image_size = 224
|
|
108
|
+
self.patch_size = config.patch_size
|
|
109
|
+
|
|
110
|
+
self.class_embedding = mx.random.normal((self.embed_dim,))
|
|
111
|
+
|
|
112
|
+
self.patch_embedding = nn.Conv2d(
|
|
113
|
+
in_channels=config.num_channels,
|
|
114
|
+
out_channels=self.embed_dim,
|
|
115
|
+
kernel_size=self.patch_size,
|
|
116
|
+
stride=self.patch_size,
|
|
117
|
+
bias=False,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
121
|
+
self.num_positions = self.num_patches + 1
|
|
122
|
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
123
|
+
|
|
124
|
+
def _get_abs_pos(self, abs_pos, tgt_size):
|
|
125
|
+
"""
|
|
126
|
+
Resize absolute positional embeddings
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
abs_pos: Tensor of shape (L, C) - absolute position embeddings
|
|
130
|
+
tgt_size: int - target size M
|
|
131
|
+
|
|
132
|
+
Returns:
|
|
133
|
+
Tensor of shape (M, C) - resized position embeddings
|
|
134
|
+
"""
|
|
135
|
+
dim = abs_pos.shape[-1]
|
|
136
|
+
abs_pos_new = mx.squeeze(abs_pos, axis=0)
|
|
137
|
+
cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
|
|
138
|
+
src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
|
|
139
|
+
tgt_size_2d = int(math.sqrt(tgt_size))
|
|
140
|
+
dtype = abs_pos.dtype
|
|
141
|
+
|
|
142
|
+
if src_size != tgt_size_2d:
|
|
143
|
+
# Reshape to (1, src_size, src_size, dim) then transpose to (1, dim, src_size, src_size)
|
|
144
|
+
old_pos_embed = mx.reshape(old_pos_embed, (1, src_size, src_size, dim))
|
|
145
|
+
old_pos_embed = mx.transpose(old_pos_embed, (0, 3, 1, 2))
|
|
146
|
+
old_pos_embed = old_pos_embed.astype(mx.float32)
|
|
147
|
+
|
|
148
|
+
new_pos_embed = interpolate(old_pos_embed, (tgt_size_2d, tgt_size_2d))
|
|
149
|
+
|
|
150
|
+
new_pos_embed = new_pos_embed.astype(dtype)
|
|
151
|
+
new_pos_embed = mx.transpose(new_pos_embed, (0, 2, 3, 1))
|
|
152
|
+
new_pos_embed = mx.reshape(new_pos_embed, (tgt_size_2d * tgt_size_2d, dim))
|
|
153
|
+
vision_pos_embed = mx.concatenate([cls_token, new_pos_embed], axis=0)
|
|
154
|
+
vision_pos_embed = mx.reshape(
|
|
155
|
+
vision_pos_embed, (1, tgt_size_2d * tgt_size_2d + 1, dim)
|
|
156
|
+
)
|
|
157
|
+
return vision_pos_embed
|
|
158
|
+
else:
|
|
159
|
+
return abs_pos
|
|
160
|
+
|
|
161
|
+
def __call__(
|
|
162
|
+
self, x: mx.array, patch_embeds: Optional[mx.array] = None
|
|
163
|
+
) -> mx.array:
|
|
164
|
+
batch_size, height, width, _ = x.shape
|
|
165
|
+
target_dtype = self.position_embedding.weight.dtype
|
|
166
|
+
|
|
167
|
+
if patch_embeds is not None:
|
|
168
|
+
patch_embeddings = patch_embeds
|
|
169
|
+
else:
|
|
170
|
+
patch_embeddings = self.patch_embedding(x)
|
|
171
|
+
|
|
172
|
+
# Flatten patch embeddings properly
|
|
173
|
+
patch_embeds = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
174
|
+
|
|
175
|
+
# Broadcast class embedding
|
|
176
|
+
class_embeds = mx.broadcast_to(
|
|
177
|
+
self.class_embedding, (batch_size, 1, self.embed_dim)
|
|
178
|
+
).astype(target_dtype)
|
|
179
|
+
|
|
180
|
+
# Concatenate class and patch embeddings
|
|
181
|
+
embeddings = mx.concatenate([class_embeds, patch_embeds], axis=1)
|
|
182
|
+
|
|
183
|
+
# Create position IDs
|
|
184
|
+
position_ids = mx.array(np.arange(self.num_positions)[None, :])
|
|
185
|
+
|
|
186
|
+
# Add positional embeddings
|
|
187
|
+
embeddings = embeddings + self._get_abs_pos(
|
|
188
|
+
self.position_embedding(position_ids), embeddings.shape[1]
|
|
189
|
+
).astype(target_dtype)
|
|
190
|
+
|
|
191
|
+
return embeddings
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
class NoTPTransformer(nn.Module):
|
|
195
|
+
def __init__(self, config: VisionConfig):
|
|
196
|
+
super().__init__()
|
|
197
|
+
self.num_layers = config.layers
|
|
198
|
+
self.layers = [EncoderLayer(config) for _ in range(config.layers)]
|
|
199
|
+
|
|
200
|
+
def __call__(
|
|
201
|
+
self,
|
|
202
|
+
x: mx.array,
|
|
203
|
+
) -> mx.array:
|
|
204
|
+
for l in self.layers:
|
|
205
|
+
x = l(x, mask=None)
|
|
206
|
+
return x
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
class VisionModel(nn.Module):
|
|
210
|
+
def __init__(self, config: VisionConfig):
|
|
211
|
+
super().__init__()
|
|
212
|
+
|
|
213
|
+
self.model_type = config.model_type
|
|
214
|
+
self.config = config
|
|
215
|
+
if self.model_type != "vision":
|
|
216
|
+
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
217
|
+
|
|
218
|
+
self.embeddings = VisionEmbeddings(config)
|
|
219
|
+
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
|
|
220
|
+
self.transformer = NoTPTransformer(config)
|
|
221
|
+
|
|
222
|
+
def __call__(
|
|
223
|
+
self,
|
|
224
|
+
x: mx.array,
|
|
225
|
+
patch_embeds: mx.array = None,
|
|
226
|
+
) -> mx.array:
|
|
227
|
+
x = self.embeddings(x, patch_embeds)
|
|
228
|
+
x = self.pre_layrnorm(x)
|
|
229
|
+
return self.transformer(x)
|
|
230
|
+
|
|
231
|
+
def sanitize(self, weights):
|
|
232
|
+
sanitized_weights = {}
|
|
233
|
+
weight_keys = {
|
|
234
|
+
"neck.0.weight",
|
|
235
|
+
"neck.2.weight",
|
|
236
|
+
"neck_hd.0.weight",
|
|
237
|
+
"neck_hd.2.weight",
|
|
238
|
+
"sam_model.net_2.weight",
|
|
239
|
+
"sam_model.net_3.weight",
|
|
240
|
+
"downsamples.0.weight",
|
|
241
|
+
"downsamples.1.weight",
|
|
242
|
+
"patch_embed.proj.weight",
|
|
243
|
+
"embeddings.patch_embedding.weight",
|
|
244
|
+
}
|
|
245
|
+
for k, v in weights.items():
|
|
246
|
+
if "position_ids" in k:
|
|
247
|
+
# Remove unused position_ids
|
|
248
|
+
continue
|
|
249
|
+
|
|
250
|
+
elif ".".join(k.split(".")[-3:]) in weight_keys:
|
|
251
|
+
# PyTorch conv2d weight tensors have shape:
|
|
252
|
+
# [out_channels, in_channels, kH, KW]
|
|
253
|
+
# MLX conv2d expects the weight be of shape:
|
|
254
|
+
# [out_channels, kH, KW, in_channels]
|
|
255
|
+
if check_array_shape(v):
|
|
256
|
+
sanitized_weights[k] = v
|
|
257
|
+
else:
|
|
258
|
+
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
259
|
+
|
|
260
|
+
else:
|
|
261
|
+
sanitized_weights[k] = v
|
|
262
|
+
|
|
263
|
+
return sanitized_weights
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
# Import shared LanguageModel from deepseekocr
|
|
2
|
+
from ..deepseekocr.language import LanguageModel
|
|
3
|
+
from .config import (
|
|
4
|
+
MLPConfig,
|
|
5
|
+
ModelConfig,
|
|
6
|
+
ProjectorConfig,
|
|
7
|
+
Qwen2EncoderConfig,
|
|
8
|
+
TextConfig,
|
|
9
|
+
VisionConfig,
|
|
10
|
+
)
|
|
11
|
+
from .deepseekocr_2 import DeepseekOCR2Processor, Model
|
|
12
|
+
from .vision import Qwen2Decoder2Encoder, VisionModel
|
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Dict, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
from ..base import BaseModelConfig
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@dataclass
|
|
9
|
+
class TextConfig(BaseModelConfig):
|
|
10
|
+
model_type: str = "deepseek_v2"
|
|
11
|
+
vocab_size: int = 102400
|
|
12
|
+
hidden_size: int = 1280
|
|
13
|
+
intermediate_size: int = 6848
|
|
14
|
+
moe_intermediate_size: int = 896
|
|
15
|
+
num_hidden_layers: int = 30
|
|
16
|
+
num_attention_heads: int = 32
|
|
17
|
+
num_key_value_heads: int = 32
|
|
18
|
+
n_shared_experts: Optional[int] = 2
|
|
19
|
+
n_routed_experts: Optional[int] = 64
|
|
20
|
+
routed_scaling_factor: float = 1.0
|
|
21
|
+
kv_lora_rank: int = 512
|
|
22
|
+
q_lora_rank: int = 1536
|
|
23
|
+
qk_rope_head_dim: int = 0
|
|
24
|
+
v_head_dim: int = 128
|
|
25
|
+
qk_nope_head_dim: int = 0
|
|
26
|
+
topk_method: str = "greedy"
|
|
27
|
+
n_group: Optional[int] = 1
|
|
28
|
+
topk_group: Optional[int] = 1
|
|
29
|
+
num_experts_per_tok: Optional[int] = 6
|
|
30
|
+
moe_layer_freq: int = 1
|
|
31
|
+
first_k_dense_replace: int = 0
|
|
32
|
+
max_position_embeddings: int = 2048
|
|
33
|
+
rms_norm_eps: float = 1e-6
|
|
34
|
+
rope_theta: float = 10000.0
|
|
35
|
+
rope_traditional: bool = False
|
|
36
|
+
rope_scaling: Dict = None
|
|
37
|
+
attention_bias: bool = False
|
|
38
|
+
scoring_func: str = "softmax"
|
|
39
|
+
attn_type: str = "DeepseekV2Attention"
|
|
40
|
+
|
|
41
|
+
def __post_init__(self):
|
|
42
|
+
if self.qk_nope_head_dim == 0:
|
|
43
|
+
self.attn_type = "LlamaAttention"
|
|
44
|
+
|
|
45
|
+
if self.num_key_value_heads is None:
|
|
46
|
+
self.num_key_value_heads = self.num_attention_heads
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@dataclass
|
|
50
|
+
class Qwen2EncoderConfig(BaseModelConfig):
|
|
51
|
+
"""Configuration for the Qwen2 decoder-as-encoder in the vision model."""
|
|
52
|
+
|
|
53
|
+
dim: int = 896
|
|
54
|
+
layers: int = 24
|
|
55
|
+
heads: int = 14
|
|
56
|
+
kv_heads: int = 2
|
|
57
|
+
intermediate_size: int = 4864
|
|
58
|
+
rms_norm_eps: float = 1e-6
|
|
59
|
+
rope_theta: float = 1000000.0
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@dataclass
|
|
63
|
+
class VisionConfig(BaseModelConfig):
|
|
64
|
+
model_type: str
|
|
65
|
+
layers: int = 24
|
|
66
|
+
width: int = 1152
|
|
67
|
+
hidden_size: int = 896
|
|
68
|
+
intermediate_size: int = 4096
|
|
69
|
+
num_attention_heads: int = 16
|
|
70
|
+
image_size: int = 1024
|
|
71
|
+
patch_size: int = 14
|
|
72
|
+
num_channels: int = 3
|
|
73
|
+
layer_norm_eps: float = 1e-6
|
|
74
|
+
mlp_ratio: float = 3.7362
|
|
75
|
+
cls: str = None
|
|
76
|
+
params: dict = None
|
|
77
|
+
|
|
78
|
+
@classmethod
|
|
79
|
+
def from_dict(cls, params):
|
|
80
|
+
# Parse width configuration for SAM and Qwen2
|
|
81
|
+
width = params.get("width", {})
|
|
82
|
+
qwen2_config = width.get("qwen2-0-5b", {})
|
|
83
|
+
sam_config = width.get("sam_vit_b", {})
|
|
84
|
+
|
|
85
|
+
# Build qwen2 params for VisionModel
|
|
86
|
+
qwen2_params = {
|
|
87
|
+
"dim": qwen2_config.get("dim", 896),
|
|
88
|
+
"layers": 24, # Default for Qwen2 encoder
|
|
89
|
+
"heads": 14,
|
|
90
|
+
"kv_heads": 2,
|
|
91
|
+
"intermediate_size": 4864,
|
|
92
|
+
"rms_norm_eps": 1e-6,
|
|
93
|
+
"rope_theta": 1000000.0,
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
# Update params to include qwen2 config
|
|
97
|
+
if params.get("params") is None:
|
|
98
|
+
params["params"] = {}
|
|
99
|
+
params["params"]["qwen2"] = qwen2_params
|
|
100
|
+
params["params"]["sam"] = sam_config
|
|
101
|
+
|
|
102
|
+
# Set hidden_size from qwen2 dim
|
|
103
|
+
if "hidden_size" not in params:
|
|
104
|
+
params["hidden_size"] = qwen2_config.get("dim", 896)
|
|
105
|
+
|
|
106
|
+
return super().from_dict(params)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@dataclass
|
|
110
|
+
class MLPConfig(BaseModelConfig):
|
|
111
|
+
hidden_size: int
|
|
112
|
+
intermediate_size: int
|
|
113
|
+
hidden_act: str = "gelu"
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@dataclass
|
|
117
|
+
class ProjectorConfig(BaseModelConfig):
|
|
118
|
+
projector_type: str = "linear"
|
|
119
|
+
input_dim: int = 2048
|
|
120
|
+
n_embed: int = 1280
|
|
121
|
+
depth: int = 2
|
|
122
|
+
mlp_ratio: int = 1
|
|
123
|
+
downsample_ratio: int = 2
|
|
124
|
+
token_pooling: bool = False
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@dataclass
|
|
128
|
+
class SAMViTConfig(BaseModelConfig):
|
|
129
|
+
image_size: Union[Tuple[int, int], int] = 1024
|
|
130
|
+
width: int = 768
|
|
131
|
+
layers: int = 12
|
|
132
|
+
heads: int = 12
|
|
133
|
+
patch_size: int = 16
|
|
134
|
+
window_size: int = 14
|
|
135
|
+
prompt_embed_dim: int = 256
|
|
136
|
+
global_attn_indexes: Union[List[int], Tuple[int]] = (2, 5, 8, 11)
|
|
137
|
+
downsample_channels: Union[List[int], Tuple[int]] = (512, 1024)
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
@dataclass
|
|
141
|
+
class ModelConfig(BaseModelConfig):
|
|
142
|
+
text_config: TextConfig
|
|
143
|
+
vision_config: VisionConfig
|
|
144
|
+
projector_config: ProjectorConfig
|
|
145
|
+
model_type: str
|
|
146
|
+
ignore_index: int = -100
|
|
147
|
+
image_token_index: int = 128815
|
|
148
|
+
vision_feature_select_strategy: str = "default"
|
|
149
|
+
select_layer: int = -1
|
|
150
|
+
pad_id: int = 100001
|
|
151
|
+
num_image_tokens: int = 576
|
|
152
|
+
vocab_size: int = 32000
|
|
153
|
+
tile_tag: str = "2D"
|
|
154
|
+
global_view_pos: str = "head"
|
|
155
|
+
eos_token_id: Optional[List[int]] = None
|
|
156
|
+
quantization: Optional[Dict] = None
|
|
157
|
+
|
|
158
|
+
@classmethod
|
|
159
|
+
def from_dict(cls, params):
|
|
160
|
+
if "language_config" in params:
|
|
161
|
+
params["text_config"] = params["language_config"]
|
|
162
|
+
del params["language_config"]
|
|
163
|
+
|
|
164
|
+
return cls(
|
|
165
|
+
text_config=TextConfig.from_dict(params["text_config"]),
|
|
166
|
+
vision_config=VisionConfig.from_dict(params["vision_config"]),
|
|
167
|
+
projector_config=ProjectorConfig.from_dict(params["projector_config"]),
|
|
168
|
+
**{
|
|
169
|
+
k: v
|
|
170
|
+
for k, v in params.items()
|
|
171
|
+
if k in inspect.signature(cls).parameters
|
|
172
|
+
and k not in ["text_config", "vision_config", "projector_config"]
|
|
173
|
+
},
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
@dataclass
|
|
178
|
+
class Conversation:
|
|
179
|
+
"""A class that represents a conversation."""
|
|
180
|
+
|
|
181
|
+
system: str
|
|
182
|
+
roles: List[str]
|
|
183
|
+
messages: List[List[str]]
|
|
184
|
+
offset: int
|
|
185
|
+
sep_style: int
|
|
186
|
+
sep: str
|
|
187
|
+
sep2: str
|
|
188
|
+
version: str = "Unknown"
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
@dataclass
|
|
192
|
+
class VLChatProcessorOutput:
|
|
193
|
+
"""
|
|
194
|
+
Output of the VL chat processor.
|
|
195
|
+
"""
|
|
196
|
+
|
|
197
|
+
sft_format: str
|
|
198
|
+
input_ids: List[int]
|
|
199
|
+
pixel_values: List
|
|
200
|
+
num_image_tokens: List[int]
|
|
201
|
+
image_grid_thw: List[List[int]]
|
|
202
|
+
image_sizes: Optional[List[List[int]]] = None
|
|
203
|
+
videos: Optional[List] = None
|
|
204
|
+
aspect_ratio_ids: Optional[List[int]] = None
|
|
205
|
+
aspect_ratio_mask: Optional[List[List[int]]] = None
|
|
206
|
+
cross_attention_mask: Optional[List[List[List[int]]]] = None
|
|
207
|
+
attention_mask: Optional[List[int]] = None
|
|
208
|
+
labels: Optional[List[int]] = None
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
@dataclass
|
|
212
|
+
class BatchCollateOutput:
|
|
213
|
+
input_ids: List
|
|
214
|
+
labels: List
|
|
215
|
+
attention_mask: List
|
|
216
|
+
pixel_values: List
|