fount-vlm-nell-02 0.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
- fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
- fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
- fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
- fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
- mlx_vlm/__init__.py +16 -0
- mlx_vlm/__main__.py +24 -0
- mlx_vlm/chat.py +234 -0
- mlx_vlm/chat_ui.py +508 -0
- mlx_vlm/convert.py +284 -0
- mlx_vlm/deprecation.py +52 -0
- mlx_vlm/evals/__init__.py +0 -0
- mlx_vlm/evals/math_vista.py +565 -0
- mlx_vlm/evals/mmmu.py +528 -0
- mlx_vlm/evals/mmstar.py +343 -0
- mlx_vlm/evals/ocrbench.py +453 -0
- mlx_vlm/evals/utils.py +37 -0
- mlx_vlm/generate.py +1457 -0
- mlx_vlm/lora.py +207 -0
- mlx_vlm/models/__init__.py +0 -0
- mlx_vlm/models/aya_vision/__init__.py +2 -0
- mlx_vlm/models/aya_vision/aya_vision.py +188 -0
- mlx_vlm/models/aya_vision/config.py +52 -0
- mlx_vlm/models/aya_vision/language.py +202 -0
- mlx_vlm/models/aya_vision/vision.py +340 -0
- mlx_vlm/models/base.py +356 -0
- mlx_vlm/models/cache.py +238 -0
- mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
- mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
- mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
- mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
- mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
- mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
- mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
- mlx_vlm/models/deepseekocr/__init__.py +2 -0
- mlx_vlm/models/deepseekocr/config.py +173 -0
- mlx_vlm/models/deepseekocr/conversation.py +264 -0
- mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
- mlx_vlm/models/deepseekocr/language.py +547 -0
- mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
- mlx_vlm/models/deepseekocr/sam.py +489 -0
- mlx_vlm/models/deepseekocr/vision.py +263 -0
- mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
- mlx_vlm/models/deepseekocr_2/config.py +216 -0
- mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
- mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
- mlx_vlm/models/deepseekocr_2/vision.py +439 -0
- mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
- mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
- mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
- mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
- mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
- mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
- mlx_vlm/models/fastvlm/__init__.py +2 -0
- mlx_vlm/models/fastvlm/config.py +79 -0
- mlx_vlm/models/fastvlm/fastvlm.py +198 -0
- mlx_vlm/models/fastvlm/language.py +49 -0
- mlx_vlm/models/fastvlm/vision.py +692 -0
- mlx_vlm/models/florence2/__init__.py +2 -0
- mlx_vlm/models/florence2/config.py +84 -0
- mlx_vlm/models/florence2/florence2.py +383 -0
- mlx_vlm/models/florence2/language.py +452 -0
- mlx_vlm/models/florence2/processing_florence2.py +30 -0
- mlx_vlm/models/florence2/vision.py +552 -0
- mlx_vlm/models/gemma3/__init__.py +2 -0
- mlx_vlm/models/gemma3/config.py +52 -0
- mlx_vlm/models/gemma3/gemma3.py +194 -0
- mlx_vlm/models/gemma3/language.py +293 -0
- mlx_vlm/models/gemma3/vision.py +215 -0
- mlx_vlm/models/gemma3n/__init__.py +2 -0
- mlx_vlm/models/gemma3n/audio.py +1038 -0
- mlx_vlm/models/gemma3n/config.py +130 -0
- mlx_vlm/models/gemma3n/gemma3n.py +322 -0
- mlx_vlm/models/gemma3n/language.py +631 -0
- mlx_vlm/models/gemma3n/vision.py +994 -0
- mlx_vlm/models/glm4v/__init__.py +3 -0
- mlx_vlm/models/glm4v/config.py +79 -0
- mlx_vlm/models/glm4v/glm4v.py +188 -0
- mlx_vlm/models/glm4v/language.py +574 -0
- mlx_vlm/models/glm4v/processing.py +220 -0
- mlx_vlm/models/glm4v/vision.py +406 -0
- mlx_vlm/models/glm4v_moe/__init__.py +3 -0
- mlx_vlm/models/glm4v_moe/config.py +81 -0
- mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
- mlx_vlm/models/glm4v_moe/language.py +674 -0
- mlx_vlm/models/glm4v_moe/processing.py +229 -0
- mlx_vlm/models/glm4v_moe/vision.py +405 -0
- mlx_vlm/models/glm_ocr/__init__.py +3 -0
- mlx_vlm/models/glm_ocr/config.py +93 -0
- mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
- mlx_vlm/models/glm_ocr/language.py +585 -0
- mlx_vlm/models/glm_ocr/processing.py +208 -0
- mlx_vlm/models/glm_ocr/vision.py +342 -0
- mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
- mlx_vlm/models/hunyuan_vl/config.py +136 -0
- mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
- mlx_vlm/models/hunyuan_vl/language.py +509 -0
- mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
- mlx_vlm/models/hunyuan_vl/vision.py +322 -0
- mlx_vlm/models/idefics2/__init__.py +2 -0
- mlx_vlm/models/idefics2/config.py +65 -0
- mlx_vlm/models/idefics2/idefics2.py +321 -0
- mlx_vlm/models/idefics2/language.py +161 -0
- mlx_vlm/models/idefics2/vision.py +244 -0
- mlx_vlm/models/idefics3/__init__.py +4 -0
- mlx_vlm/models/idefics3/config.py +54 -0
- mlx_vlm/models/idefics3/idefics3.py +221 -0
- mlx_vlm/models/idefics3/language.py +157 -0
- mlx_vlm/models/idefics3/vision.py +265 -0
- mlx_vlm/models/internvl_chat/__init__.py +3 -0
- mlx_vlm/models/internvl_chat/config.py +89 -0
- mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
- mlx_vlm/models/internvl_chat/language.py +187 -0
- mlx_vlm/models/internvl_chat/processor.py +395 -0
- mlx_vlm/models/internvl_chat/vision.py +265 -0
- mlx_vlm/models/interpolate.py +183 -0
- mlx_vlm/models/jina_vlm/__init__.py +3 -0
- mlx_vlm/models/jina_vlm/config.py +142 -0
- mlx_vlm/models/jina_vlm/image_processor.py +430 -0
- mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
- mlx_vlm/models/jina_vlm/language.py +272 -0
- mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
- mlx_vlm/models/jina_vlm/vision.py +202 -0
- mlx_vlm/models/kernels.py +447 -0
- mlx_vlm/models/kimi_vl/__init__.py +4 -0
- mlx_vlm/models/kimi_vl/config.py +84 -0
- mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
- mlx_vlm/models/kimi_vl/language.py +460 -0
- mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
- mlx_vlm/models/kimi_vl/vision.py +485 -0
- mlx_vlm/models/lfm2_vl/__init__.py +2 -0
- mlx_vlm/models/lfm2_vl/config.py +94 -0
- mlx_vlm/models/lfm2_vl/language.py +49 -0
- mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
- mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
- mlx_vlm/models/lfm2_vl/vision.py +223 -0
- mlx_vlm/models/llama4/__init__.py +2 -0
- mlx_vlm/models/llama4/config.py +83 -0
- mlx_vlm/models/llama4/language.py +334 -0
- mlx_vlm/models/llama4/llama4.py +146 -0
- mlx_vlm/models/llama4/vision.py +526 -0
- mlx_vlm/models/llava/__init__.py +2 -0
- mlx_vlm/models/llava/config.py +61 -0
- mlx_vlm/models/llava/language.py +200 -0
- mlx_vlm/models/llava/llava.py +132 -0
- mlx_vlm/models/llava/vision.py +233 -0
- mlx_vlm/models/llava_bunny/__init__.py +2 -0
- mlx_vlm/models/llava_bunny/config.py +85 -0
- mlx_vlm/models/llava_bunny/language.py +194 -0
- mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
- mlx_vlm/models/llava_bunny/vision.py +278 -0
- mlx_vlm/models/llava_next/__init__.py +2 -0
- mlx_vlm/models/llava_next/config.py +60 -0
- mlx_vlm/models/llava_next/language.py +192 -0
- mlx_vlm/models/llava_next/llava_next.py +138 -0
- mlx_vlm/models/llava_next/vision.py +217 -0
- mlx_vlm/models/mistral3/__init__.py +2 -0
- mlx_vlm/models/mistral3/config.py +59 -0
- mlx_vlm/models/mistral3/language.py +269 -0
- mlx_vlm/models/mistral3/mistral3.py +383 -0
- mlx_vlm/models/mllama/__init__.py +4 -0
- mlx_vlm/models/mllama/config.py +74 -0
- mlx_vlm/models/mllama/language.py +377 -0
- mlx_vlm/models/mllama/mllama.py +210 -0
- mlx_vlm/models/mllama/vision.py +458 -0
- mlx_vlm/models/molmo/__init__.py +5 -0
- mlx_vlm/models/molmo/config.py +93 -0
- mlx_vlm/models/molmo/language.py +208 -0
- mlx_vlm/models/molmo/molmo.py +108 -0
- mlx_vlm/models/molmo/processing_molmo.py +763 -0
- mlx_vlm/models/molmo/vision.py +408 -0
- mlx_vlm/models/molmo2/__init__.py +6 -0
- mlx_vlm/models/molmo2/config.py +137 -0
- mlx_vlm/models/molmo2/language.py +206 -0
- mlx_vlm/models/molmo2/molmo2.py +330 -0
- mlx_vlm/models/molmo2/processing.py +773 -0
- mlx_vlm/models/molmo2/vision.py +286 -0
- mlx_vlm/models/moondream2/__init__.py +11 -0
- mlx_vlm/models/moondream2/config.py +92 -0
- mlx_vlm/models/moondream2/image_crops.py +269 -0
- mlx_vlm/models/moondream2/language.py +267 -0
- mlx_vlm/models/moondream2/moondream2.py +522 -0
- mlx_vlm/models/moondream2/processing_moondream.py +144 -0
- mlx_vlm/models/moondream2/vision.py +200 -0
- mlx_vlm/models/multi_modality/__init__.py +4 -0
- mlx_vlm/models/multi_modality/config.py +108 -0
- mlx_vlm/models/multi_modality/language.py +191 -0
- mlx_vlm/models/multi_modality/multi_modality.py +338 -0
- mlx_vlm/models/multi_modality/sam.py +543 -0
- mlx_vlm/models/multi_modality/vision.py +450 -0
- mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
- mlx_vlm/models/paddleocr_vl/config.py +93 -0
- mlx_vlm/models/paddleocr_vl/language.py +522 -0
- mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
- mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
- mlx_vlm/models/paddleocr_vl/vision.py +358 -0
- mlx_vlm/models/paligemma/__init__.py +4 -0
- mlx_vlm/models/paligemma/config.py +50 -0
- mlx_vlm/models/paligemma/language.py +253 -0
- mlx_vlm/models/paligemma/paligemma.py +140 -0
- mlx_vlm/models/paligemma/vision.py +218 -0
- mlx_vlm/models/phi3_v/__init__.py +5 -0
- mlx_vlm/models/phi3_v/config.py +55 -0
- mlx_vlm/models/phi3_v/language.py +2 -0
- mlx_vlm/models/phi3_v/phi3_v.py +239 -0
- mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
- mlx_vlm/models/phi3_v/vision.py +294 -0
- mlx_vlm/models/pixtral/__init__.py +4 -0
- mlx_vlm/models/pixtral/config.py +69 -0
- mlx_vlm/models/pixtral/language.py +195 -0
- mlx_vlm/models/pixtral/pixtral.py +208 -0
- mlx_vlm/models/pixtral/vision.py +293 -0
- mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_5_vl/config.py +90 -0
- mlx_vlm/models/qwen2_5_vl/language.py +541 -0
- mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
- mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
- mlx_vlm/models/qwen2_vl/__init__.py +2 -0
- mlx_vlm/models/qwen2_vl/config.py +86 -0
- mlx_vlm/models/qwen2_vl/language.py +539 -0
- mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
- mlx_vlm/models/qwen2_vl/vision.py +308 -0
- mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
- mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
- mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
- mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
- mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
- mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
- mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
- mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
- mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
- mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
- mlx_vlm/models/qwen3_vl/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl/config.py +103 -0
- mlx_vlm/models/qwen3_vl/language.py +596 -0
- mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
- mlx_vlm/models/qwen3_vl/vision.py +441 -0
- mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
- mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
- mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
- mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
- mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
- mlx_vlm/models/smolvlm/__init__.py +4 -0
- mlx_vlm/models/smolvlm/config.py +59 -0
- mlx_vlm/models/smolvlm/smolvlm.py +60 -0
- mlx_vlm/prompt_utils.py +565 -0
- mlx_vlm/sample_utils.py +39 -0
- mlx_vlm/server.py +1107 -0
- mlx_vlm/smolvlm_video_generate.py +109 -0
- mlx_vlm/tokenizer_utils.py +371 -0
- mlx_vlm/trainer/__init__.py +9 -0
- mlx_vlm/trainer/lora.py +70 -0
- mlx_vlm/trainer/trainer.py +299 -0
- mlx_vlm/trainer/utils.py +160 -0
- mlx_vlm/utils.py +1339 -0
- mlx_vlm/version.py +1 -0
- mlx_vlm/video_generate.py +611 -0
|
@@ -0,0 +1,585 @@
|
|
|
1
|
+
from typing import Any, Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from ..base import (
|
|
8
|
+
LanguageModelOutput,
|
|
9
|
+
create_attention_mask,
|
|
10
|
+
scaled_dot_product_attention,
|
|
11
|
+
)
|
|
12
|
+
from .config import ModelConfig, TextConfig
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def _compute_default_rope_parameters(
|
|
16
|
+
config: Optional[TextConfig] = None,
|
|
17
|
+
**rope_kwargs,
|
|
18
|
+
) -> tuple[mx.array, float]:
|
|
19
|
+
|
|
20
|
+
if config is not None and len(rope_kwargs) > 0:
|
|
21
|
+
raise ValueError(
|
|
22
|
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
|
23
|
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
|
24
|
+
)
|
|
25
|
+
if len(rope_kwargs) > 0:
|
|
26
|
+
base = rope_kwargs["base"]
|
|
27
|
+
dim = rope_kwargs["dim"]
|
|
28
|
+
elif config is not None:
|
|
29
|
+
base = config.rope_theta
|
|
30
|
+
partial_rotary_factor = config.partial_rotary_factor
|
|
31
|
+
head_dim = config.head_dim
|
|
32
|
+
dim = int(head_dim * partial_rotary_factor)
|
|
33
|
+
|
|
34
|
+
attention_factor = 1.0
|
|
35
|
+
|
|
36
|
+
inv_freq = 1.0 / (
|
|
37
|
+
base ** (mx.arange(0, dim, 2, dtype=mx.int64).astype(mx.float32) / dim)
|
|
38
|
+
)
|
|
39
|
+
return inv_freq, attention_factor
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class GlmOcrRotaryEmbedding(nn.Module):
|
|
43
|
+
def __init__(self, config: TextConfig):
|
|
44
|
+
super().__init__()
|
|
45
|
+
|
|
46
|
+
self.rope_type = config.rope_parameters.get("rope_type", "default")
|
|
47
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
|
48
|
+
self.original_max_seq_len = config.max_position_embeddings
|
|
49
|
+
|
|
50
|
+
self.config = config
|
|
51
|
+
self.mrope_section = config.rope_parameters.get("mrope_section", [16, 24, 24])
|
|
52
|
+
|
|
53
|
+
self.rope_init_fn = _compute_default_rope_parameters
|
|
54
|
+
|
|
55
|
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config)
|
|
56
|
+
self._inv_freq = mx.array(inv_freq, dtype=mx.float32)
|
|
57
|
+
self._original_inv_freq = mx.array(inv_freq, dtype=mx.float32)
|
|
58
|
+
|
|
59
|
+
def apply_mrope(self, freqs, mrope_section):
|
|
60
|
+
"""Apply M-RoPE by selecting different dimensions for T, H, W."""
|
|
61
|
+
split_indices = np.cumsum(mrope_section)[:-1].tolist()
|
|
62
|
+
chunks = mx.split(freqs, split_indices, axis=-1)
|
|
63
|
+
result = mx.concatenate(
|
|
64
|
+
[chunk[i % 3] for i, chunk in enumerate(chunks)], axis=-1
|
|
65
|
+
)
|
|
66
|
+
return result
|
|
67
|
+
|
|
68
|
+
def __call__(self, x, position_ids):
|
|
69
|
+
inv_freq_expanded = self._inv_freq[None, None, :, None].astype(mx.float32)
|
|
70
|
+
inv_freq_expanded = mx.broadcast_to(
|
|
71
|
+
inv_freq_expanded, (3, position_ids.shape[1], self._inv_freq.shape[0], 1)
|
|
72
|
+
)
|
|
73
|
+
position_ids_expanded = position_ids[:, :, None, :].astype(mx.float32)
|
|
74
|
+
|
|
75
|
+
freqs = (
|
|
76
|
+
inv_freq_expanded.astype(mx.float32)
|
|
77
|
+
@ position_ids_expanded.astype(mx.float32)
|
|
78
|
+
).transpose(0, 1, 3, 2)
|
|
79
|
+
|
|
80
|
+
freqs = self.apply_mrope(freqs, self.mrope_section)
|
|
81
|
+
|
|
82
|
+
emb = mx.concatenate((freqs, freqs), axis=-1)
|
|
83
|
+
cos = mx.cos(emb) * self.attention_scaling
|
|
84
|
+
sin = mx.sin(emb) * self.attention_scaling
|
|
85
|
+
|
|
86
|
+
return cos.astype(x.dtype), sin.astype(x.dtype)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def rotate_half_llm(x):
|
|
90
|
+
"""Rotates half the hidden dims of the input."""
|
|
91
|
+
x1 = x[..., 0::2]
|
|
92
|
+
x2 = x[..., 1::2]
|
|
93
|
+
return mx.flatten(mx.stack([-x2, x1], axis=-1), start_axis=-2, end_axis=-1)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def repeat_interleave(x, repeats, axis=-1):
|
|
97
|
+
"""
|
|
98
|
+
Repeat elements of an array along an axis, interleaving the repeated values.
|
|
99
|
+
Like torch.repeat_interleave: [a,b,c] with repeats=2 -> [a,a,b,b,c,c]
|
|
100
|
+
"""
|
|
101
|
+
shape = list(x.shape)
|
|
102
|
+
x = mx.expand_dims(x, axis=axis + 1 if axis >= 0 else axis)
|
|
103
|
+
tile_shape = [1] * len(x.shape)
|
|
104
|
+
tile_shape[axis + 1 if axis >= 0 else axis] = repeats
|
|
105
|
+
x = mx.tile(x, tile_shape)
|
|
106
|
+
new_shape = shape.copy()
|
|
107
|
+
new_shape[axis] = shape[axis] * repeats
|
|
108
|
+
return x.reshape(new_shape)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
|
112
|
+
"""
|
|
113
|
+
Applies Rotary Position Embedding to the query and key tensors.
|
|
114
|
+
Matches PyTorch's GLM-OCR implementation exactly.
|
|
115
|
+
|
|
116
|
+
Args:
|
|
117
|
+
q: Query tensor of shape (batch, n_heads, seq_len, head_dim)
|
|
118
|
+
k: Key tensor of shape (batch, n_kv_heads, seq_len, head_dim)
|
|
119
|
+
cos: Cosine tensor of shape (batch, seq_len, head_dim)
|
|
120
|
+
sin: Sine tensor of shape (batch, seq_len, head_dim)
|
|
121
|
+
"""
|
|
122
|
+
cos = cos[:, None, :, :]
|
|
123
|
+
sin = sin[:, None, :, :]
|
|
124
|
+
|
|
125
|
+
cos = repeat_interleave(cos[..., : cos.shape[-1] // 2], repeats=2, axis=-1)
|
|
126
|
+
sin = repeat_interleave(sin[..., : sin.shape[-1] // 2], repeats=2, axis=-1)
|
|
127
|
+
|
|
128
|
+
rotary_dim = cos.shape[-1]
|
|
129
|
+
q_rot = q[..., :rotary_dim]
|
|
130
|
+
q_pass = q[..., rotary_dim:]
|
|
131
|
+
|
|
132
|
+
k_rot = k[..., :rotary_dim]
|
|
133
|
+
k_pass = k[..., rotary_dim:]
|
|
134
|
+
|
|
135
|
+
q_embed = (q_rot * cos) + (rotate_half_llm(q_rot) * sin)
|
|
136
|
+
k_embed = (k_rot * cos) + (rotate_half_llm(k_rot) * sin)
|
|
137
|
+
|
|
138
|
+
q_embed = mx.concatenate([q_embed, q_pass], axis=-1)
|
|
139
|
+
k_embed = mx.concatenate([k_embed, k_pass], axis=-1)
|
|
140
|
+
|
|
141
|
+
return q_embed, k_embed
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
class GlmOcrAttention(nn.Module):
|
|
145
|
+
def __init__(self, args: TextConfig):
|
|
146
|
+
super().__init__()
|
|
147
|
+
|
|
148
|
+
dim = args.hidden_size
|
|
149
|
+
self.n_heads = n_heads = args.num_attention_heads
|
|
150
|
+
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
151
|
+
self.head_dim = args.head_dim
|
|
152
|
+
self.scale = self.head_dim**-0.5
|
|
153
|
+
|
|
154
|
+
self.q_proj = nn.Linear(dim, n_heads * self.head_dim, bias=args.attention_bias)
|
|
155
|
+
self.k_proj = nn.Linear(
|
|
156
|
+
dim, n_kv_heads * self.head_dim, bias=args.attention_bias
|
|
157
|
+
)
|
|
158
|
+
self.v_proj = nn.Linear(
|
|
159
|
+
dim, n_kv_heads * self.head_dim, bias=args.attention_bias
|
|
160
|
+
)
|
|
161
|
+
self.o_proj = nn.Linear(n_heads * self.head_dim, dim, bias=False)
|
|
162
|
+
|
|
163
|
+
self.rope_parameters = args.rope_parameters
|
|
164
|
+
|
|
165
|
+
def __call__(
|
|
166
|
+
self,
|
|
167
|
+
x: mx.array,
|
|
168
|
+
mask: Optional[mx.array] = None,
|
|
169
|
+
cache: Optional[Any] = None,
|
|
170
|
+
position_embeddings: Optional[mx.array] = None,
|
|
171
|
+
) -> mx.array:
|
|
172
|
+
B, L, _ = x.shape
|
|
173
|
+
|
|
174
|
+
queries = self.q_proj(x)
|
|
175
|
+
keys = self.k_proj(x)
|
|
176
|
+
values = self.v_proj(x)
|
|
177
|
+
|
|
178
|
+
queries = queries.reshape(B, L, self.n_heads, -1)
|
|
179
|
+
keys = keys.reshape(B, L, self.n_kv_heads, -1)
|
|
180
|
+
|
|
181
|
+
queries = queries.transpose(0, 2, 1, 3)
|
|
182
|
+
keys = keys.transpose(0, 2, 1, 3)
|
|
183
|
+
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
184
|
+
|
|
185
|
+
cos, sin = position_embeddings
|
|
186
|
+
|
|
187
|
+
queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
|
|
188
|
+
|
|
189
|
+
if cache is not None:
|
|
190
|
+
keys, values = cache.update_and_fetch(keys, values)
|
|
191
|
+
|
|
192
|
+
if mask is not None and isinstance(mask, mx.array):
|
|
193
|
+
mask = mask[..., : keys.shape[-2]]
|
|
194
|
+
|
|
195
|
+
output = scaled_dot_product_attention(
|
|
196
|
+
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
|
197
|
+
)
|
|
198
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
199
|
+
return self.o_proj(output)
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class GlmOcrMLP(nn.Module):
|
|
203
|
+
def __init__(
|
|
204
|
+
self, config: TextConfig, hidden_size: int = None, intermediate_size: int = None
|
|
205
|
+
):
|
|
206
|
+
super().__init__()
|
|
207
|
+
self.config = config
|
|
208
|
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
|
209
|
+
self.intermediate_size = (
|
|
210
|
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
self.gate_up_proj = nn.Linear(
|
|
214
|
+
self.hidden_size, self.intermediate_size * 2, bias=False
|
|
215
|
+
)
|
|
216
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
217
|
+
|
|
218
|
+
def __call__(self, x):
|
|
219
|
+
x = self.gate_up_proj(x)
|
|
220
|
+
gate, x = mx.split(x, 2, axis=-1)
|
|
221
|
+
return self.down_proj(nn.silu(gate) * x)
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class GlmOcrDecoderLayer(nn.Module):
|
|
225
|
+
def __init__(self, config: TextConfig):
|
|
226
|
+
super().__init__()
|
|
227
|
+
self.self_attn = GlmOcrAttention(config)
|
|
228
|
+
self.mlp = GlmOcrMLP(config)
|
|
229
|
+
|
|
230
|
+
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
231
|
+
self.post_attention_layernorm = nn.RMSNorm(
|
|
232
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
233
|
+
)
|
|
234
|
+
self.post_self_attn_layernorm = nn.RMSNorm(
|
|
235
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
236
|
+
)
|
|
237
|
+
self.post_mlp_layernorm = nn.RMSNorm(
|
|
238
|
+
config.hidden_size, eps=config.rms_norm_eps
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
def __call__(
|
|
242
|
+
self,
|
|
243
|
+
x: mx.array,
|
|
244
|
+
mask: Optional[mx.array] = None,
|
|
245
|
+
cache: Optional[Any] = None,
|
|
246
|
+
position_embeddings: Optional[mx.array] = None,
|
|
247
|
+
) -> mx.array:
|
|
248
|
+
r = x
|
|
249
|
+
|
|
250
|
+
x = self.self_attn(self.input_layernorm(x), mask, cache, position_embeddings)
|
|
251
|
+
|
|
252
|
+
x = self.post_self_attn_layernorm(x)
|
|
253
|
+
x = r + x
|
|
254
|
+
|
|
255
|
+
r = x
|
|
256
|
+
x = self.post_attention_layernorm(x)
|
|
257
|
+
x = self.mlp(x)
|
|
258
|
+
x = self.post_mlp_layernorm(x)
|
|
259
|
+
x = r + x
|
|
260
|
+
return x
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
class GlmOcrTextModel(nn.Module):
|
|
264
|
+
def __init__(self, config: TextConfig):
|
|
265
|
+
super().__init__()
|
|
266
|
+
self.vocab_size = config.vocab_size
|
|
267
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
268
|
+
self.layers = [
|
|
269
|
+
GlmOcrDecoderLayer(config) for _ in range(config.num_hidden_layers)
|
|
270
|
+
]
|
|
271
|
+
self.start_idx = 0
|
|
272
|
+
self.end_idx = len(self.layers)
|
|
273
|
+
self.num_layers = self.end_idx
|
|
274
|
+
|
|
275
|
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
276
|
+
|
|
277
|
+
self.rotary_emb = GlmOcrRotaryEmbedding(config)
|
|
278
|
+
|
|
279
|
+
def __call__(
|
|
280
|
+
self,
|
|
281
|
+
inputs: mx.array,
|
|
282
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
283
|
+
cache: Optional[Any] = None,
|
|
284
|
+
mask: Optional[mx.array] = None,
|
|
285
|
+
position_ids: Optional[mx.array] = None,
|
|
286
|
+
) -> mx.array:
|
|
287
|
+
|
|
288
|
+
if inputs_embeds is None:
|
|
289
|
+
h = self.embed_tokens(inputs)
|
|
290
|
+
else:
|
|
291
|
+
h = inputs_embeds.astype(self.norm.weight.dtype)
|
|
292
|
+
|
|
293
|
+
if position_ids is None:
|
|
294
|
+
position_ids = mx.arange(cache[0].offset, cache[0].offset + h.shape[-2])
|
|
295
|
+
position_ids = mx.expand_dims(position_ids, axis=0)
|
|
296
|
+
position_ids = mx.tile(position_ids, (3, 1, 1))
|
|
297
|
+
|
|
298
|
+
position_embeddings = self.rotary_emb(h, position_ids)
|
|
299
|
+
|
|
300
|
+
if mask is None:
|
|
301
|
+
mask = create_attention_mask(h, cache)
|
|
302
|
+
|
|
303
|
+
if cache is None:
|
|
304
|
+
cache = [None] * self.num_layers
|
|
305
|
+
|
|
306
|
+
for i in range(self.num_layers):
|
|
307
|
+
h = self.layers[self.start_idx + i](h, mask, cache[i], position_embeddings)
|
|
308
|
+
|
|
309
|
+
return self.norm(h)
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
class LanguageModel(nn.Module):
|
|
313
|
+
def __init__(self, args: TextConfig, config: ModelConfig = None):
|
|
314
|
+
super().__init__()
|
|
315
|
+
self.args = args
|
|
316
|
+
self.config = config
|
|
317
|
+
self.model_type = args.model_type
|
|
318
|
+
self.model = GlmOcrTextModel(args)
|
|
319
|
+
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
320
|
+
self._rope_deltas = None
|
|
321
|
+
self._position_ids = None
|
|
322
|
+
|
|
323
|
+
def get_rope_index(
|
|
324
|
+
self,
|
|
325
|
+
input_ids: mx.array,
|
|
326
|
+
image_grid_thw: Optional[mx.array] = None,
|
|
327
|
+
video_grid_thw: Optional[mx.array] = None,
|
|
328
|
+
attention_mask: Optional[mx.array] = None,
|
|
329
|
+
):
|
|
330
|
+
batch_size, seq_length = input_ids.shape
|
|
331
|
+
position_ids = mx.arange(seq_length, dtype=mx.int32)
|
|
332
|
+
position_ids = mx.broadcast_to(position_ids[None, :], (batch_size, seq_length))
|
|
333
|
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
|
334
|
+
image_token_id = self.config.image_token_id
|
|
335
|
+
video_token_id = self.config.video_token_id
|
|
336
|
+
image_start_token_id = self.config.image_start_token_id
|
|
337
|
+
mrope_position_deltas = []
|
|
338
|
+
if input_ids is not None and (
|
|
339
|
+
image_grid_thw is not None or video_grid_thw is not None
|
|
340
|
+
):
|
|
341
|
+
total_input_ids = input_ids
|
|
342
|
+
if (
|
|
343
|
+
attention_mask is None
|
|
344
|
+
or attention_mask.shape[-1] != input_ids.shape[-1]
|
|
345
|
+
):
|
|
346
|
+
attention_mask = mx.ones_like(input_ids)
|
|
347
|
+
position_ids = mx.ones(
|
|
348
|
+
(3, input_ids.shape[0], input_ids.shape[1]), dtype=input_ids.dtype
|
|
349
|
+
)
|
|
350
|
+
image_index, video_index = 0, 0
|
|
351
|
+
for i, input_ids in enumerate(total_input_ids):
|
|
352
|
+
input_ids = mx.where(
|
|
353
|
+
attention_mask[i] == 1, input_ids, mx.zeros_like(input_ids)
|
|
354
|
+
)
|
|
355
|
+
image_nums, video_nums = 0, 0
|
|
356
|
+
vision_start_indices = mx.sum(
|
|
357
|
+
mx.where(
|
|
358
|
+
input_ids == image_start_token_id,
|
|
359
|
+
mx.arange(input_ids.shape[0]),
|
|
360
|
+
mx.zeros_like(input_ids),
|
|
361
|
+
)
|
|
362
|
+
)
|
|
363
|
+
vision_tokens = input_ids[vision_start_indices + 1]
|
|
364
|
+
image_nums = (vision_tokens == image_token_id).sum().item()
|
|
365
|
+
video_nums = (vision_tokens == video_token_id).sum().item()
|
|
366
|
+
input_tokens = input_ids.tolist()
|
|
367
|
+
llm_pos_ids_list: list = []
|
|
368
|
+
st = 0
|
|
369
|
+
remain_images, remain_videos = image_nums, video_nums
|
|
370
|
+
for _ in range(image_nums + video_nums):
|
|
371
|
+
if image_token_id in input_tokens and remain_images > 0:
|
|
372
|
+
ed_image = input_tokens.index(image_token_id, st)
|
|
373
|
+
else:
|
|
374
|
+
ed_image = len(input_tokens) + 1
|
|
375
|
+
if video_token_id in input_tokens and remain_videos > 0:
|
|
376
|
+
ed_video = input_tokens.index(video_token_id, st)
|
|
377
|
+
else:
|
|
378
|
+
ed_video = len(input_tokens) + 1
|
|
379
|
+
if ed_image < ed_video:
|
|
380
|
+
t, h, w = (
|
|
381
|
+
image_grid_thw[image_index][0],
|
|
382
|
+
image_grid_thw[image_index][1],
|
|
383
|
+
image_grid_thw[image_index][2],
|
|
384
|
+
)
|
|
385
|
+
image_index += 1
|
|
386
|
+
remain_images -= 1
|
|
387
|
+
ed = ed_image
|
|
388
|
+
else:
|
|
389
|
+
t, h, w = (
|
|
390
|
+
video_grid_thw[video_index][0],
|
|
391
|
+
video_grid_thw[video_index][1],
|
|
392
|
+
video_grid_thw[video_index][2],
|
|
393
|
+
)
|
|
394
|
+
video_index += 1
|
|
395
|
+
remain_videos -= 1
|
|
396
|
+
ed = ed_video
|
|
397
|
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
398
|
+
t.item(),
|
|
399
|
+
h.item() // spatial_merge_size,
|
|
400
|
+
w.item() // spatial_merge_size,
|
|
401
|
+
)
|
|
402
|
+
text_len = ed - st
|
|
403
|
+
st_idx = (
|
|
404
|
+
llm_pos_ids_list[-1].max() + 1
|
|
405
|
+
if len(llm_pos_ids_list) > 0
|
|
406
|
+
else 0
|
|
407
|
+
)
|
|
408
|
+
index = mx.arange(text_len).reshape(1, text_len)
|
|
409
|
+
index = mx.broadcast_to(index, (3, text_len))
|
|
410
|
+
index = index + st_idx
|
|
411
|
+
llm_pos_ids_list.append(index)
|
|
412
|
+
t_index = mx.arange(llm_grid_t).reshape(llm_grid_t, 1)
|
|
413
|
+
t_index = mx.broadcast_to(
|
|
414
|
+
t_index, (llm_grid_t, llm_grid_h * llm_grid_w)
|
|
415
|
+
)
|
|
416
|
+
t_index = t_index.flatten()
|
|
417
|
+
|
|
418
|
+
h_index = mx.arange(llm_grid_h).reshape(1, llm_grid_h, 1)
|
|
419
|
+
h_index = mx.broadcast_to(
|
|
420
|
+
h_index, (llm_grid_t, llm_grid_h, llm_grid_w)
|
|
421
|
+
)
|
|
422
|
+
h_index = h_index.flatten()
|
|
423
|
+
|
|
424
|
+
w_index = mx.arange(llm_grid_w).reshape(1, 1, llm_grid_w)
|
|
425
|
+
w_index = mx.broadcast_to(
|
|
426
|
+
w_index, (llm_grid_t, llm_grid_h, llm_grid_w)
|
|
427
|
+
)
|
|
428
|
+
w_index = w_index.flatten()
|
|
429
|
+
|
|
430
|
+
llm_pos_ids_list.append(
|
|
431
|
+
mx.stack([t_index, h_index, w_index]) + text_len + st_idx
|
|
432
|
+
)
|
|
433
|
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
|
434
|
+
if st < len(input_tokens):
|
|
435
|
+
st_idx = (
|
|
436
|
+
llm_pos_ids_list[-1].max() + 1
|
|
437
|
+
if len(llm_pos_ids_list) > 0
|
|
438
|
+
else 0
|
|
439
|
+
)
|
|
440
|
+
text_len = len(input_tokens) - st
|
|
441
|
+
|
|
442
|
+
t_index = mx.arange(text_len).reshape(1, text_len)
|
|
443
|
+
t_index = mx.broadcast_to(t_index, (3, text_len))
|
|
444
|
+
|
|
445
|
+
llm_pos_ids_list.append(t_index + st_idx)
|
|
446
|
+
|
|
447
|
+
llm_positions = mx.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
|
|
448
|
+
mask = mx.array(attention_mask[i] == 1)
|
|
449
|
+
expanded_mask = mx.expand_dims(mask, axis=0)
|
|
450
|
+
expanded_mask = mx.broadcast_to(expanded_mask, (3, 1, mask.shape[0]))
|
|
451
|
+
expanded_positions = mx.expand_dims(llm_positions, axis=1)
|
|
452
|
+
new_positions = mx.where(
|
|
453
|
+
expanded_mask, expanded_positions, position_ids[:, i : i + 1, :]
|
|
454
|
+
)
|
|
455
|
+
updated_position_ids = mx.concatenate(
|
|
456
|
+
[
|
|
457
|
+
position_ids[:, :i, :],
|
|
458
|
+
new_positions,
|
|
459
|
+
position_ids[:, i + 1 :, :],
|
|
460
|
+
],
|
|
461
|
+
axis=1,
|
|
462
|
+
)
|
|
463
|
+
position_ids = updated_position_ids
|
|
464
|
+
mrope_position_deltas.append(
|
|
465
|
+
llm_positions.max() + 1 - len(total_input_ids[i])
|
|
466
|
+
)
|
|
467
|
+
mrope_position_deltas = mx.array(mrope_position_deltas)[0]
|
|
468
|
+
return position_ids, mrope_position_deltas
|
|
469
|
+
else:
|
|
470
|
+
if attention_mask is not None:
|
|
471
|
+
position_ids = mx.cumsum(attention_mask.astype(mx.int64), axis=-1) - 1
|
|
472
|
+
position_ids = mx.where(
|
|
473
|
+
attention_mask == 0, mx.ones_like(position_ids), position_ids
|
|
474
|
+
)
|
|
475
|
+
position_ids = mx.expand_dims(position_ids[0], axis=0)
|
|
476
|
+
position_ids = mx.tile(position_ids, (3, 1, 1))
|
|
477
|
+
max_position_ids = position_ids.max(0, keepdims=False)[0].max(
|
|
478
|
+
-1, keepdims=True
|
|
479
|
+
)[0]
|
|
480
|
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
|
481
|
+
else:
|
|
482
|
+
position_ids = mx.arange(input_ids.shape[1]).reshape(1, -1)
|
|
483
|
+
position_ids = mx.broadcast_to(
|
|
484
|
+
position_ids, (3, input_ids.shape[0], input_ids.shape[1])
|
|
485
|
+
)
|
|
486
|
+
mrope_position_deltas = mx.zeros(
|
|
487
|
+
[input_ids.shape[0], 1],
|
|
488
|
+
dtype=input_ids.dtype,
|
|
489
|
+
)
|
|
490
|
+
return position_ids, mrope_position_deltas
|
|
491
|
+
|
|
492
|
+
def __call__(
|
|
493
|
+
self,
|
|
494
|
+
inputs: mx.array,
|
|
495
|
+
inputs_embeds: Optional[mx.array] = None,
|
|
496
|
+
mask: Optional[mx.array] = None,
|
|
497
|
+
cache=None,
|
|
498
|
+
**kwargs,
|
|
499
|
+
):
|
|
500
|
+
|
|
501
|
+
position_ids = kwargs.pop("position_ids", None)
|
|
502
|
+
pixel_values = kwargs.pop("pixel_values", None)
|
|
503
|
+
image_grid_thw = kwargs.pop("image_grid_thw", None)
|
|
504
|
+
video_grid_thw = kwargs.pop("video_grid_thw", None)
|
|
505
|
+
if pixel_values is not None:
|
|
506
|
+
self._rope_deltas = None
|
|
507
|
+
|
|
508
|
+
cache_offset = 0
|
|
509
|
+
if cache and cache[0] is not None:
|
|
510
|
+
offset = cache[0].offset
|
|
511
|
+
if isinstance(offset, int):
|
|
512
|
+
cache_offset = offset
|
|
513
|
+
elif isinstance(offset, mx.array):
|
|
514
|
+
cache_offset = (offset if offset.ndim == 0 else offset[0]).item()
|
|
515
|
+
else:
|
|
516
|
+
raise ValueError(f"Unexpected cache offset type: {type(offset)}")
|
|
517
|
+
|
|
518
|
+
# Check if mask shape matches input shape (for chunked prefill compatibility)
|
|
519
|
+
rope_mask = mask
|
|
520
|
+
if mask is not None and mask.shape[-1] != inputs.shape[-1]:
|
|
521
|
+
rope_mask = None
|
|
522
|
+
|
|
523
|
+
if position_ids is None and (rope_mask is None or rope_mask.ndim == 2):
|
|
524
|
+
# Calculate RoPE index once per generation in the pre-fill stage only
|
|
525
|
+
if (
|
|
526
|
+
(cache is not None and cache[0] is not None and (cache_offset == 0))
|
|
527
|
+
or self._rope_deltas is None
|
|
528
|
+
or cache is None
|
|
529
|
+
):
|
|
530
|
+
# Use cached position_ids if available (pre-computed in get_input_embeddings)
|
|
531
|
+
if self._position_ids is not None:
|
|
532
|
+
seq_length = inputs.shape[1]
|
|
533
|
+
position_ids = self._position_ids[
|
|
534
|
+
:, :, cache_offset : cache_offset + seq_length
|
|
535
|
+
]
|
|
536
|
+
else:
|
|
537
|
+
position_ids, rope_deltas = self.get_rope_index(
|
|
538
|
+
inputs, image_grid_thw, video_grid_thw, rope_mask
|
|
539
|
+
)
|
|
540
|
+
self._rope_deltas = rope_deltas
|
|
541
|
+
self._position_ids = position_ids
|
|
542
|
+
else:
|
|
543
|
+
# Use the prev pre-calculated rope-deltas to get the correct position ids
|
|
544
|
+
batch_size, seq_length = inputs.shape
|
|
545
|
+
delta = mx.array(
|
|
546
|
+
cache_offset + self._rope_deltas if cache is not None else 0
|
|
547
|
+
)
|
|
548
|
+
position_ids = mx.arange(seq_length).reshape(1, -1)
|
|
549
|
+
position_ids = mx.broadcast_to(position_ids, (batch_size, seq_length))
|
|
550
|
+
|
|
551
|
+
if cache_offset is not None:
|
|
552
|
+
if delta.ndim == 0:
|
|
553
|
+
delta = mx.expand_dims(delta, axis=0)
|
|
554
|
+
|
|
555
|
+
if delta.shape[0] < batch_size:
|
|
556
|
+
delta = mx.tile(delta, (batch_size, 1))
|
|
557
|
+
else:
|
|
558
|
+
delta = delta[:batch_size]
|
|
559
|
+
|
|
560
|
+
position_ids = mx.add(position_ids, delta)[None, ...]
|
|
561
|
+
position_ids = mx.broadcast_to(
|
|
562
|
+
position_ids, (3, batch_size, seq_length)
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
out = self.model(
|
|
566
|
+
inputs,
|
|
567
|
+
cache=cache,
|
|
568
|
+
inputs_embeds=inputs_embeds,
|
|
569
|
+
position_ids=position_ids,
|
|
570
|
+
mask=mask,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
out = self.lm_head(out)
|
|
574
|
+
return LanguageModelOutput(logits=out)
|
|
575
|
+
|
|
576
|
+
def sanitize(self, weights):
|
|
577
|
+
return weights
|
|
578
|
+
|
|
579
|
+
@property
|
|
580
|
+
def layers(self):
|
|
581
|
+
return self.model.layers
|
|
582
|
+
|
|
583
|
+
@property
|
|
584
|
+
def n_kv_heads(self):
|
|
585
|
+
return self.args.num_key_value_heads
|