fount-vlm-nell-02 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (258) hide show
  1. fount_vlm_nell_02-0.3.11.dist-info/METADATA +418 -0
  2. fount_vlm_nell_02-0.3.11.dist-info/RECORD +258 -0
  3. fount_vlm_nell_02-0.3.11.dist-info/WHEEL +5 -0
  4. fount_vlm_nell_02-0.3.11.dist-info/entry_points.txt +5 -0
  5. fount_vlm_nell_02-0.3.11.dist-info/licenses/LICENSE +21 -0
  6. fount_vlm_nell_02-0.3.11.dist-info/top_level.txt +1 -0
  7. mlx_vlm/__init__.py +16 -0
  8. mlx_vlm/__main__.py +24 -0
  9. mlx_vlm/chat.py +234 -0
  10. mlx_vlm/chat_ui.py +508 -0
  11. mlx_vlm/convert.py +284 -0
  12. mlx_vlm/deprecation.py +52 -0
  13. mlx_vlm/evals/__init__.py +0 -0
  14. mlx_vlm/evals/math_vista.py +565 -0
  15. mlx_vlm/evals/mmmu.py +528 -0
  16. mlx_vlm/evals/mmstar.py +343 -0
  17. mlx_vlm/evals/ocrbench.py +453 -0
  18. mlx_vlm/evals/utils.py +37 -0
  19. mlx_vlm/generate.py +1457 -0
  20. mlx_vlm/lora.py +207 -0
  21. mlx_vlm/models/__init__.py +0 -0
  22. mlx_vlm/models/aya_vision/__init__.py +2 -0
  23. mlx_vlm/models/aya_vision/aya_vision.py +188 -0
  24. mlx_vlm/models/aya_vision/config.py +52 -0
  25. mlx_vlm/models/aya_vision/language.py +202 -0
  26. mlx_vlm/models/aya_vision/vision.py +340 -0
  27. mlx_vlm/models/base.py +356 -0
  28. mlx_vlm/models/cache.py +238 -0
  29. mlx_vlm/models/deepseek_vl_v2/__init__.py +2 -0
  30. mlx_vlm/models/deepseek_vl_v2/config.py +159 -0
  31. mlx_vlm/models/deepseek_vl_v2/conversation.py +264 -0
  32. mlx_vlm/models/deepseek_vl_v2/deepseek_vl_v2.py +418 -0
  33. mlx_vlm/models/deepseek_vl_v2/language.py +539 -0
  34. mlx_vlm/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +536 -0
  35. mlx_vlm/models/deepseek_vl_v2/vision.py +322 -0
  36. mlx_vlm/models/deepseekocr/__init__.py +2 -0
  37. mlx_vlm/models/deepseekocr/config.py +173 -0
  38. mlx_vlm/models/deepseekocr/conversation.py +264 -0
  39. mlx_vlm/models/deepseekocr/deepseekocr.py +371 -0
  40. mlx_vlm/models/deepseekocr/language.py +547 -0
  41. mlx_vlm/models/deepseekocr/processing_deepseekocr.py +655 -0
  42. mlx_vlm/models/deepseekocr/sam.py +489 -0
  43. mlx_vlm/models/deepseekocr/vision.py +263 -0
  44. mlx_vlm/models/deepseekocr_2/__init__.py +12 -0
  45. mlx_vlm/models/deepseekocr_2/config.py +216 -0
  46. mlx_vlm/models/deepseekocr_2/deepseekocr_2.py +297 -0
  47. mlx_vlm/models/deepseekocr_2/processing_deepseekocr.py +624 -0
  48. mlx_vlm/models/deepseekocr_2/vision.py +439 -0
  49. mlx_vlm/models/ernie4_5_moe_vl/__init__.py +5 -0
  50. mlx_vlm/models/ernie4_5_moe_vl/config.py +139 -0
  51. mlx_vlm/models/ernie4_5_moe_vl/ernie4_5_moe_vl.py +337 -0
  52. mlx_vlm/models/ernie4_5_moe_vl/language.py +770 -0
  53. mlx_vlm/models/ernie4_5_moe_vl/processor.py +686 -0
  54. mlx_vlm/models/ernie4_5_moe_vl/vision.py +322 -0
  55. mlx_vlm/models/fastvlm/__init__.py +2 -0
  56. mlx_vlm/models/fastvlm/config.py +79 -0
  57. mlx_vlm/models/fastvlm/fastvlm.py +198 -0
  58. mlx_vlm/models/fastvlm/language.py +49 -0
  59. mlx_vlm/models/fastvlm/vision.py +692 -0
  60. mlx_vlm/models/florence2/__init__.py +2 -0
  61. mlx_vlm/models/florence2/config.py +84 -0
  62. mlx_vlm/models/florence2/florence2.py +383 -0
  63. mlx_vlm/models/florence2/language.py +452 -0
  64. mlx_vlm/models/florence2/processing_florence2.py +30 -0
  65. mlx_vlm/models/florence2/vision.py +552 -0
  66. mlx_vlm/models/gemma3/__init__.py +2 -0
  67. mlx_vlm/models/gemma3/config.py +52 -0
  68. mlx_vlm/models/gemma3/gemma3.py +194 -0
  69. mlx_vlm/models/gemma3/language.py +293 -0
  70. mlx_vlm/models/gemma3/vision.py +215 -0
  71. mlx_vlm/models/gemma3n/__init__.py +2 -0
  72. mlx_vlm/models/gemma3n/audio.py +1038 -0
  73. mlx_vlm/models/gemma3n/config.py +130 -0
  74. mlx_vlm/models/gemma3n/gemma3n.py +322 -0
  75. mlx_vlm/models/gemma3n/language.py +631 -0
  76. mlx_vlm/models/gemma3n/vision.py +994 -0
  77. mlx_vlm/models/glm4v/__init__.py +3 -0
  78. mlx_vlm/models/glm4v/config.py +79 -0
  79. mlx_vlm/models/glm4v/glm4v.py +188 -0
  80. mlx_vlm/models/glm4v/language.py +574 -0
  81. mlx_vlm/models/glm4v/processing.py +220 -0
  82. mlx_vlm/models/glm4v/vision.py +406 -0
  83. mlx_vlm/models/glm4v_moe/__init__.py +3 -0
  84. mlx_vlm/models/glm4v_moe/config.py +81 -0
  85. mlx_vlm/models/glm4v_moe/glm4v_moe.py +176 -0
  86. mlx_vlm/models/glm4v_moe/language.py +674 -0
  87. mlx_vlm/models/glm4v_moe/processing.py +229 -0
  88. mlx_vlm/models/glm4v_moe/vision.py +405 -0
  89. mlx_vlm/models/glm_ocr/__init__.py +3 -0
  90. mlx_vlm/models/glm_ocr/config.py +93 -0
  91. mlx_vlm/models/glm_ocr/glm_ocr.py +180 -0
  92. mlx_vlm/models/glm_ocr/language.py +585 -0
  93. mlx_vlm/models/glm_ocr/processing.py +208 -0
  94. mlx_vlm/models/glm_ocr/vision.py +342 -0
  95. mlx_vlm/models/hunyuan_vl/__init__.py +7 -0
  96. mlx_vlm/models/hunyuan_vl/config.py +136 -0
  97. mlx_vlm/models/hunyuan_vl/hunyuan_vl.py +181 -0
  98. mlx_vlm/models/hunyuan_vl/language.py +509 -0
  99. mlx_vlm/models/hunyuan_vl/processing_hunyuan_vl.py +607 -0
  100. mlx_vlm/models/hunyuan_vl/vision.py +322 -0
  101. mlx_vlm/models/idefics2/__init__.py +2 -0
  102. mlx_vlm/models/idefics2/config.py +65 -0
  103. mlx_vlm/models/idefics2/idefics2.py +321 -0
  104. mlx_vlm/models/idefics2/language.py +161 -0
  105. mlx_vlm/models/idefics2/vision.py +244 -0
  106. mlx_vlm/models/idefics3/__init__.py +4 -0
  107. mlx_vlm/models/idefics3/config.py +54 -0
  108. mlx_vlm/models/idefics3/idefics3.py +221 -0
  109. mlx_vlm/models/idefics3/language.py +157 -0
  110. mlx_vlm/models/idefics3/vision.py +265 -0
  111. mlx_vlm/models/internvl_chat/__init__.py +3 -0
  112. mlx_vlm/models/internvl_chat/config.py +89 -0
  113. mlx_vlm/models/internvl_chat/internvl_chat.py +115 -0
  114. mlx_vlm/models/internvl_chat/language.py +187 -0
  115. mlx_vlm/models/internvl_chat/processor.py +395 -0
  116. mlx_vlm/models/internvl_chat/vision.py +265 -0
  117. mlx_vlm/models/interpolate.py +183 -0
  118. mlx_vlm/models/jina_vlm/__init__.py +3 -0
  119. mlx_vlm/models/jina_vlm/config.py +142 -0
  120. mlx_vlm/models/jina_vlm/image_processor.py +430 -0
  121. mlx_vlm/models/jina_vlm/jina_vlm.py +280 -0
  122. mlx_vlm/models/jina_vlm/language.py +272 -0
  123. mlx_vlm/models/jina_vlm/processing_jinavlm.py +266 -0
  124. mlx_vlm/models/jina_vlm/vision.py +202 -0
  125. mlx_vlm/models/kernels.py +447 -0
  126. mlx_vlm/models/kimi_vl/__init__.py +4 -0
  127. mlx_vlm/models/kimi_vl/config.py +84 -0
  128. mlx_vlm/models/kimi_vl/kimi_vl.py +127 -0
  129. mlx_vlm/models/kimi_vl/language.py +460 -0
  130. mlx_vlm/models/kimi_vl/processing_kimi_vl.py +560 -0
  131. mlx_vlm/models/kimi_vl/vision.py +485 -0
  132. mlx_vlm/models/lfm2_vl/__init__.py +2 -0
  133. mlx_vlm/models/lfm2_vl/config.py +94 -0
  134. mlx_vlm/models/lfm2_vl/language.py +49 -0
  135. mlx_vlm/models/lfm2_vl/lfm2_vl.py +223 -0
  136. mlx_vlm/models/lfm2_vl/processing_lfm2_vl.py +320 -0
  137. mlx_vlm/models/lfm2_vl/vision.py +223 -0
  138. mlx_vlm/models/llama4/__init__.py +2 -0
  139. mlx_vlm/models/llama4/config.py +83 -0
  140. mlx_vlm/models/llama4/language.py +334 -0
  141. mlx_vlm/models/llama4/llama4.py +146 -0
  142. mlx_vlm/models/llama4/vision.py +526 -0
  143. mlx_vlm/models/llava/__init__.py +2 -0
  144. mlx_vlm/models/llava/config.py +61 -0
  145. mlx_vlm/models/llava/language.py +200 -0
  146. mlx_vlm/models/llava/llava.py +132 -0
  147. mlx_vlm/models/llava/vision.py +233 -0
  148. mlx_vlm/models/llava_bunny/__init__.py +2 -0
  149. mlx_vlm/models/llava_bunny/config.py +85 -0
  150. mlx_vlm/models/llava_bunny/language.py +194 -0
  151. mlx_vlm/models/llava_bunny/llava_bunny.py +217 -0
  152. mlx_vlm/models/llava_bunny/vision.py +278 -0
  153. mlx_vlm/models/llava_next/__init__.py +2 -0
  154. mlx_vlm/models/llava_next/config.py +60 -0
  155. mlx_vlm/models/llava_next/language.py +192 -0
  156. mlx_vlm/models/llava_next/llava_next.py +138 -0
  157. mlx_vlm/models/llava_next/vision.py +217 -0
  158. mlx_vlm/models/mistral3/__init__.py +2 -0
  159. mlx_vlm/models/mistral3/config.py +59 -0
  160. mlx_vlm/models/mistral3/language.py +269 -0
  161. mlx_vlm/models/mistral3/mistral3.py +383 -0
  162. mlx_vlm/models/mllama/__init__.py +4 -0
  163. mlx_vlm/models/mllama/config.py +74 -0
  164. mlx_vlm/models/mllama/language.py +377 -0
  165. mlx_vlm/models/mllama/mllama.py +210 -0
  166. mlx_vlm/models/mllama/vision.py +458 -0
  167. mlx_vlm/models/molmo/__init__.py +5 -0
  168. mlx_vlm/models/molmo/config.py +93 -0
  169. mlx_vlm/models/molmo/language.py +208 -0
  170. mlx_vlm/models/molmo/molmo.py +108 -0
  171. mlx_vlm/models/molmo/processing_molmo.py +763 -0
  172. mlx_vlm/models/molmo/vision.py +408 -0
  173. mlx_vlm/models/molmo2/__init__.py +6 -0
  174. mlx_vlm/models/molmo2/config.py +137 -0
  175. mlx_vlm/models/molmo2/language.py +206 -0
  176. mlx_vlm/models/molmo2/molmo2.py +330 -0
  177. mlx_vlm/models/molmo2/processing.py +773 -0
  178. mlx_vlm/models/molmo2/vision.py +286 -0
  179. mlx_vlm/models/moondream2/__init__.py +11 -0
  180. mlx_vlm/models/moondream2/config.py +92 -0
  181. mlx_vlm/models/moondream2/image_crops.py +269 -0
  182. mlx_vlm/models/moondream2/language.py +267 -0
  183. mlx_vlm/models/moondream2/moondream2.py +522 -0
  184. mlx_vlm/models/moondream2/processing_moondream.py +144 -0
  185. mlx_vlm/models/moondream2/vision.py +200 -0
  186. mlx_vlm/models/multi_modality/__init__.py +4 -0
  187. mlx_vlm/models/multi_modality/config.py +108 -0
  188. mlx_vlm/models/multi_modality/language.py +191 -0
  189. mlx_vlm/models/multi_modality/multi_modality.py +338 -0
  190. mlx_vlm/models/multi_modality/sam.py +543 -0
  191. mlx_vlm/models/multi_modality/vision.py +450 -0
  192. mlx_vlm/models/paddleocr_vl/__init__.py +3 -0
  193. mlx_vlm/models/paddleocr_vl/config.py +93 -0
  194. mlx_vlm/models/paddleocr_vl/language.py +522 -0
  195. mlx_vlm/models/paddleocr_vl/paddleocr_vl.py +207 -0
  196. mlx_vlm/models/paddleocr_vl/processing_paddleocr_vl.py +425 -0
  197. mlx_vlm/models/paddleocr_vl/vision.py +358 -0
  198. mlx_vlm/models/paligemma/__init__.py +4 -0
  199. mlx_vlm/models/paligemma/config.py +50 -0
  200. mlx_vlm/models/paligemma/language.py +253 -0
  201. mlx_vlm/models/paligemma/paligemma.py +140 -0
  202. mlx_vlm/models/paligemma/vision.py +218 -0
  203. mlx_vlm/models/phi3_v/__init__.py +5 -0
  204. mlx_vlm/models/phi3_v/config.py +55 -0
  205. mlx_vlm/models/phi3_v/language.py +2 -0
  206. mlx_vlm/models/phi3_v/phi3_v.py +239 -0
  207. mlx_vlm/models/phi3_v/processing_phi3_v.py +704 -0
  208. mlx_vlm/models/phi3_v/vision.py +294 -0
  209. mlx_vlm/models/pixtral/__init__.py +4 -0
  210. mlx_vlm/models/pixtral/config.py +69 -0
  211. mlx_vlm/models/pixtral/language.py +195 -0
  212. mlx_vlm/models/pixtral/pixtral.py +208 -0
  213. mlx_vlm/models/pixtral/vision.py +293 -0
  214. mlx_vlm/models/qwen2_5_vl/__init__.py +2 -0
  215. mlx_vlm/models/qwen2_5_vl/config.py +90 -0
  216. mlx_vlm/models/qwen2_5_vl/language.py +541 -0
  217. mlx_vlm/models/qwen2_5_vl/qwen2_5_vl.py +184 -0
  218. mlx_vlm/models/qwen2_5_vl/vision.py +414 -0
  219. mlx_vlm/models/qwen2_vl/__init__.py +2 -0
  220. mlx_vlm/models/qwen2_vl/config.py +86 -0
  221. mlx_vlm/models/qwen2_vl/language.py +539 -0
  222. mlx_vlm/models/qwen2_vl/qwen2_vl.py +180 -0
  223. mlx_vlm/models/qwen2_vl/vision.py +308 -0
  224. mlx_vlm/models/qwen3_omni_moe/__init__.py +29 -0
  225. mlx_vlm/models/qwen3_omni_moe/audio.py +317 -0
  226. mlx_vlm/models/qwen3_omni_moe/code2wav.py +542 -0
  227. mlx_vlm/models/qwen3_omni_moe/config.py +264 -0
  228. mlx_vlm/models/qwen3_omni_moe/language.py +622 -0
  229. mlx_vlm/models/qwen3_omni_moe/omni_utils.py +69 -0
  230. mlx_vlm/models/qwen3_omni_moe/qwen3_omni_moe.py +706 -0
  231. mlx_vlm/models/qwen3_omni_moe/talker.py +873 -0
  232. mlx_vlm/models/qwen3_omni_moe/thinker.py +366 -0
  233. mlx_vlm/models/qwen3_omni_moe/vision.py +419 -0
  234. mlx_vlm/models/qwen3_vl/__init__.py +2 -0
  235. mlx_vlm/models/qwen3_vl/config.py +103 -0
  236. mlx_vlm/models/qwen3_vl/language.py +596 -0
  237. mlx_vlm/models/qwen3_vl/qwen3_vl.py +166 -0
  238. mlx_vlm/models/qwen3_vl/vision.py +441 -0
  239. mlx_vlm/models/qwen3_vl_moe/__init__.py +2 -0
  240. mlx_vlm/models/qwen3_vl_moe/config.py +108 -0
  241. mlx_vlm/models/qwen3_vl_moe/language.py +656 -0
  242. mlx_vlm/models/qwen3_vl_moe/qwen3_vl_moe.py +184 -0
  243. mlx_vlm/models/qwen3_vl_moe/vision.py +442 -0
  244. mlx_vlm/models/smolvlm/__init__.py +4 -0
  245. mlx_vlm/models/smolvlm/config.py +59 -0
  246. mlx_vlm/models/smolvlm/smolvlm.py +60 -0
  247. mlx_vlm/prompt_utils.py +565 -0
  248. mlx_vlm/sample_utils.py +39 -0
  249. mlx_vlm/server.py +1107 -0
  250. mlx_vlm/smolvlm_video_generate.py +109 -0
  251. mlx_vlm/tokenizer_utils.py +371 -0
  252. mlx_vlm/trainer/__init__.py +9 -0
  253. mlx_vlm/trainer/lora.py +70 -0
  254. mlx_vlm/trainer/trainer.py +299 -0
  255. mlx_vlm/trainer/utils.py +160 -0
  256. mlx_vlm/utils.py +1339 -0
  257. mlx_vlm/version.py +1 -0
  258. mlx_vlm/video_generate.py +611 -0
@@ -0,0 +1,543 @@
1
+ import copy
2
+ from typing import Optional, Tuple, Type
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+ import numpy as np
7
+ from PIL import Image
8
+ from PIL.Image import Resampling
9
+
10
+
11
+ class MLPBlock(nn.Module):
12
+ def __init__(
13
+ self,
14
+ embedding_dim: int,
15
+ mlp_dim: int,
16
+ act: Type[nn.Module] = nn.GELU,
17
+ ) -> None:
18
+ super().__init__()
19
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
20
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
21
+ self.act = act()
22
+
23
+ def __call__(self, x: mx.array):
24
+ return self.lin2(self.act(self.lin1(x)))
25
+
26
+
27
+ def resize_image(image_np, new_size=(96, 96), order=1):
28
+ """
29
+ Resize an image with multiple channels using PIL.
30
+
31
+ Args:
32
+ image_np (numpy.ndarray): The input image array of shape (batch, channels, height, width).
33
+ new_size (tuple): The target size as (height, width).
34
+ order (int): The order of interpolation (used to determine resampling method).
35
+
36
+ Returns:
37
+ numpy.ndarray: The resized image array in the same format as input.
38
+ """
39
+ # Remove batch dimension
40
+ image_np = np.array(image_np[0])
41
+
42
+ # Get dimensions
43
+ channels, height, width = image_np.shape
44
+
45
+ # Choose interpolation method based on order parameter
46
+ resample_method = Resampling.BILINEAR # Default to bilinear
47
+ if order == 0:
48
+ resample_method = Resampling.NEAREST
49
+ elif order == 2 or order == 3:
50
+ resample_method = Resampling.BICUBIC
51
+
52
+ # Handle different channel configurations
53
+ if channels == 1:
54
+ # For single-channel images (grayscale)
55
+ # Reshape to 2D array (height, width)
56
+ image_2d = image_np.reshape(height, width)
57
+
58
+ # Create PIL image - ensure proper mode and data type conversion
59
+ pil_image = Image.fromarray(image_2d.astype(np.float32))
60
+
61
+ # Resize using PIL (note: PIL takes width, height order)
62
+ resized_pil = pil_image.resize(
63
+ (new_size[1], new_size[0]), resample=resample_method
64
+ )
65
+
66
+ # Convert back to numpy array, reshape to add channel dimension
67
+ resized_np = np.array(resized_pil).reshape((1, new_size[0], new_size[1]))
68
+ else:
69
+ # For multi-channel images, process each channel individually
70
+ resized_channels = []
71
+
72
+ for c in range(channels):
73
+ channel_data = image_np[c]
74
+ pil_channel = Image.fromarray(channel_data.astype(np.float32))
75
+ resized_channel = pil_channel.resize(
76
+ (new_size[1], new_size[0]), resample=resample_method
77
+ )
78
+ resized_channels.append(np.array(resized_channel))
79
+
80
+ # Stack channels back together
81
+ resized_np = np.stack(resized_channels, axis=0)
82
+
83
+ # Add batch dimension back and convert to mx.array
84
+ return mx.array(resized_np)[None, :]
85
+
86
+
87
+ class SAMEncoder(nn.Module):
88
+ def __init__(
89
+ self,
90
+ img_size: int = 1024,
91
+ patch_size: int = 16,
92
+ in_chans: int = 3,
93
+ embed_dim: int = 768,
94
+ depth: int = 12,
95
+ num_heads: int = 12,
96
+ mlp_ratio: float = 4.0,
97
+ out_chans: int = 256,
98
+ qkv_bias: bool = True,
99
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
100
+ act_layer: Type[nn.Module] = nn.GELU,
101
+ use_abs_pos: bool = True,
102
+ use_rel_pos: bool = True,
103
+ rel_pos_zero_init: bool = True,
104
+ window_size: int = 14,
105
+ global_attn_indexes: Tuple[int, ...] = (2, 5, 8, 11),
106
+ downsample_channels: Tuple[int, ...] = (512, 1024),
107
+ ) -> None:
108
+ """
109
+ Args:
110
+ img_size (int): Input image size.
111
+ patch_size (int): Patch size.
112
+ in_chans (int): Number of input image channels.
113
+ embed_dim (int): Patch embedding dimension.
114
+ depth (int): Depth of ViT.
115
+ num_heads (int): Number of attention heads in each ViT block.
116
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
117
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
118
+ norm_layer (nn.Module): Normalization layer.
119
+ act_layer (nn.Module): Activation layer.
120
+ use_abs_pos (bool): If True, use absolute positional embeddings.
121
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
122
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
123
+ window_size (int): Window size for window attention blocks.
124
+ global_attn_indexes (list): Indexes for blocks using global attention.
125
+ downsample_channels (list): Channels for downsampling layers.
126
+ """
127
+ super().__init__()
128
+ self.img_size = img_size
129
+
130
+ self.patch_embed = PatchEmbed(
131
+ kernel_size=(patch_size, patch_size),
132
+ stride=(patch_size, patch_size),
133
+ in_chans=in_chans,
134
+ embed_dim=embed_dim,
135
+ )
136
+
137
+ if use_abs_pos:
138
+ # Initialize absolute positional embedding with pretrain image size.
139
+ self.pos_embed = mx.zeros(
140
+ (img_size // patch_size, img_size // patch_size, embed_dim)
141
+ )[None, :]
142
+
143
+ self.blocks = []
144
+ for i in range(depth):
145
+ block = Block(
146
+ dim=embed_dim,
147
+ num_heads=num_heads,
148
+ mlp_ratio=mlp_ratio,
149
+ qkv_bias=qkv_bias,
150
+ norm_layer=norm_layer,
151
+ act_layer=act_layer,
152
+ use_rel_pos=use_rel_pos,
153
+ rel_pos_zero_init=rel_pos_zero_init,
154
+ window_size=window_size if i not in global_attn_indexes else 0,
155
+ input_size=(img_size // patch_size, img_size // patch_size),
156
+ )
157
+ self.blocks.append(block)
158
+
159
+ self.neck = [
160
+ nn.Conv2d(
161
+ embed_dim,
162
+ out_chans,
163
+ kernel_size=1,
164
+ bias=False,
165
+ ),
166
+ nn.LayerNorm(out_chans),
167
+ nn.Conv2d(
168
+ out_chans,
169
+ out_chans,
170
+ kernel_size=3,
171
+ padding=1,
172
+ bias=False,
173
+ ),
174
+ nn.LayerNorm(out_chans),
175
+ ]
176
+
177
+ in_channels = out_chans
178
+ self.downsamples = []
179
+ for i in range(len(downsample_channels)):
180
+ out_channels = downsample_channels[i]
181
+ self.downsamples.append(
182
+ nn.Conv2d(
183
+ in_channels,
184
+ out_channels,
185
+ kernel_size=3,
186
+ stride=2,
187
+ padding=1,
188
+ bias=False,
189
+ )
190
+ )
191
+ in_channels = out_channels
192
+
193
+ self.sam_hd = True
194
+ if self.sam_hd:
195
+ self.hd_alpha_downsamples = mx.zeros((1))
196
+ self.neck_hd = copy.deepcopy(self.neck)
197
+
198
+ def __call__(self, x: mx.array):
199
+ x = self.patch_embed(x)
200
+ if self.pos_embed is not None:
201
+ x += self.pos_embed
202
+
203
+ global_features = []
204
+ for _, blk in enumerate(self.blocks):
205
+ x = blk(x)
206
+ if self.sam_hd and blk.window_size == 0:
207
+ global_features.append(x)
208
+
209
+ for _, n in enumerate(self.neck):
210
+ x = n(x)
211
+
212
+ x = x.transpose(0, 3, 1, 2)
213
+ x = resize_image(x)
214
+
215
+ x = x.transpose(0, 2, 3, 1)
216
+
217
+ for _, downsample in enumerate(self.downsamples):
218
+ x = downsample(x)
219
+
220
+ if self.sam_hd:
221
+ first_global_feature = global_features[0]
222
+ for _, n_hd in enumerate(self.neck_hd):
223
+ first_global_feature = n_hd(first_global_feature)
224
+
225
+ first_global_feature = first_global_feature.transpose(0, 3, 1, 2)
226
+
227
+ first_global_feature = resize_image(first_global_feature)
228
+
229
+ first_global_feature = first_global_feature.transpose(0, 2, 3, 1)
230
+ for _, downsample in enumerate(self.downsamples):
231
+ first_global_feature = downsample(first_global_feature)
232
+
233
+ x = x + first_global_feature * self.hd_alpha_downsamples
234
+
235
+ return x
236
+
237
+
238
+ class Block(nn.Module):
239
+ """Transformer blocks with support of window attention and residual propagation blocks"""
240
+
241
+ def __init__(
242
+ self,
243
+ dim: int,
244
+ num_heads: int,
245
+ mlp_ratio: float = 4.0,
246
+ qkv_bias: bool = True,
247
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
248
+ act_layer: Type[nn.Module] = nn.GELU,
249
+ use_rel_pos: bool = False,
250
+ rel_pos_zero_init: bool = True,
251
+ window_size: int = 0,
252
+ input_size: Optional[Tuple[int, int]] = None,
253
+ ) -> None:
254
+ """
255
+ Args:
256
+ dim (int): Number of input channels.
257
+ num_heads (int): Number of attention heads in each ViT block.
258
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
259
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
260
+ norm_layer (nn.Module): Normalization layer.
261
+ act_layer (nn.Module): Activation layer.
262
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
263
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
264
+ window_size (int): Window size for window attention blocks. If it equals 0, then
265
+ use global attention.
266
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
267
+ positional parameter size.
268
+ """
269
+ super().__init__()
270
+ self.norm1 = norm_layer(dim)
271
+ self.attn = Attention(
272
+ dim,
273
+ num_heads=num_heads,
274
+ qkv_bias=qkv_bias,
275
+ use_rel_pos=use_rel_pos,
276
+ rel_pos_zero_init=rel_pos_zero_init,
277
+ input_size=input_size if window_size == 0 else (window_size, window_size),
278
+ )
279
+
280
+ self.norm2 = norm_layer(dim)
281
+ self.mlp = MLPBlock(
282
+ embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
283
+ )
284
+
285
+ self.window_size = window_size
286
+
287
+ def __call__(self, x: mx.array):
288
+ shortcut = x
289
+ x = self.norm1(x)
290
+ # Window partition
291
+ if self.window_size > 0:
292
+ H, W = x.shape[1], x.shape[2]
293
+ x, pad_hw = window_partition(x, self.window_size)
294
+
295
+ x = self.attn(x)
296
+ # Reverse window partition
297
+ if self.window_size > 0:
298
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
299
+
300
+ x = shortcut + x
301
+ x = x + self.mlp(self.norm2(x))
302
+
303
+ return x
304
+
305
+
306
+ class Attention(nn.Module):
307
+ """Multi-head Attention block with relative position embeddings."""
308
+
309
+ def __init__(
310
+ self,
311
+ dim: int,
312
+ num_heads: int = 8,
313
+ qkv_bias: bool = True,
314
+ use_rel_pos: bool = False,
315
+ rel_pos_zero_init: bool = True,
316
+ input_size: Optional[Tuple[int, int]] = None,
317
+ ) -> None:
318
+ """
319
+ Args:
320
+ dim (int): Number of input channels.
321
+ num_heads (int): Number of attention heads.
322
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
323
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
324
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
325
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
326
+ positional parameter size.
327
+ """
328
+ super().__init__()
329
+ self.num_heads = num_heads
330
+ head_dim = dim // num_heads
331
+ self.scale = head_dim**-0.5
332
+
333
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
334
+ self.proj = nn.Linear(dim, dim)
335
+
336
+ self.use_rel_pos = use_rel_pos
337
+ if self.use_rel_pos:
338
+ assert (
339
+ input_size is not None
340
+ ), "Input size must be provided if using relative positional encoding."
341
+ # initialize relative positional embeddings
342
+
343
+ self.rel_pos_h = mx.zeros((2 * input_size[0] - 1, head_dim))
344
+ self.rel_pos_w = mx.zeros((2 * input_size[1] - 1, head_dim))
345
+
346
+ def __call__(self, x: mx.array):
347
+ B, H, W, _ = x.shape
348
+ x = mx.array(x)
349
+ # qkv with shape (3, B, nHead, H * W, C)
350
+ qkv = (
351
+ self.qkv(x)
352
+ .reshape(B, H * W, 3, self.num_heads, -1)
353
+ .transpose(2, 0, 3, 1, 4)
354
+ )
355
+ # q, k, v with shape (B * nHead, H * W, C)
356
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1)
357
+
358
+ def do_attention(q, k, v):
359
+ attn = (q * self.scale) @ k.transpose(0, -1, -2)
360
+ if self.use_rel_pos:
361
+ attn = add_decomposed_rel_pos(
362
+ attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
363
+ )
364
+
365
+ attn = mx.softmax(attn, axis=-1)
366
+ x = (
367
+ (attn @ v)
368
+ .reshape(B, self.num_heads, H, W, -1)
369
+ .transpose(0, 2, 3, 1, 4)
370
+ .reshape(B, H, W, -1)
371
+ )
372
+
373
+ return x
374
+
375
+ x = do_attention(q, k, v)
376
+ x = self.proj(x)
377
+
378
+ return x
379
+
380
+
381
+ def window_partition(
382
+ x: np.ndarray, window_size: int
383
+ ) -> Tuple[np.ndarray, Tuple[int, int]]:
384
+ """
385
+ Partition into non-overlapping windows with padding if needed.
386
+ Args:
387
+ x (ndarray): input tokens with [B, H, W, C].
388
+ window_size (int): window size.
389
+
390
+ Returns:
391
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
392
+ (Hp, Wp): padded height and width before partition
393
+ """
394
+ B, H, W, C = x.shape
395
+
396
+ pad_h = (window_size - H % window_size) % window_size
397
+ pad_w = (window_size - W % window_size) % window_size
398
+ if pad_h > 0 or pad_w > 0:
399
+ x = np.pad(x, ((0, 0), (0, pad_h), (0, pad_w), (0, 0)))
400
+ Hp, Wp = H + pad_h, W + pad_w
401
+
402
+ x = x.reshape(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
403
+ windows = x.transpose(0, 1, 3, 2, 4, 5).reshape(-1, window_size, window_size, C)
404
+ return windows, (Hp, Wp)
405
+
406
+
407
+ def window_unpartition(
408
+ windows: np.ndarray,
409
+ window_size: int,
410
+ pad_hw: Tuple[int, int],
411
+ hw: Tuple[int, int],
412
+ ):
413
+ """
414
+ Window unpartition into original sequences and removing padding.
415
+ Args:
416
+ windows (ndarray): input tokens with [B * num_windows, window_size, window_size, C].
417
+ window_size (int): window size.
418
+ pad_hw (Tuple): padded height and width (Hp, Wp).
419
+ hw (Tuple): original height and width (H, W) before padding.
420
+
421
+ Returns:
422
+ x: unpartitioned sequences with [B, H, W, C].
423
+ """
424
+ Hp, Wp = pad_hw
425
+ H, W = hw
426
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
427
+ x = windows.reshape(
428
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
429
+ )
430
+ x = x.transpose(0, 1, 3, 2, 4, 5).reshape(B, Hp, Wp, -1)
431
+
432
+ if Hp > H or Wp > W:
433
+ x = x[:, :H, :W, :]
434
+ return x
435
+
436
+
437
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: np.ndarray) -> np.ndarray:
438
+ """
439
+ Get relative positional embeddings according to the relative positions of
440
+ query and key sizes.
441
+ Args:
442
+ q_size (int): size of query q.
443
+ k_size (int): size of key k.
444
+ rel_pos (ndarray): relative position embeddings (L, C).
445
+
446
+ Returns:
447
+ Extracted positional embeddings according to relative positions.
448
+ """
449
+ rel_pos = np.array(rel_pos)
450
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
451
+ # Interpolate rel pos if needed.
452
+ if rel_pos.shape[0] != max_rel_dist:
453
+ # Interpolate rel pos.
454
+ rel_pos_resized = np.expand_dims(rel_pos, axis=0)
455
+ rel_pos_resized = np.transpose(rel_pos_resized, (0, 2, 1))
456
+ rel_pos_resized = np.interp(
457
+ np.linspace(0, max_rel_dist - 1, num=max_rel_dist),
458
+ np.arange(rel_pos.shape[0]),
459
+ rel_pos_resized[0],
460
+ )
461
+ rel_pos_resized = np.transpose(rel_pos_resized, (1, 0))
462
+ else:
463
+ rel_pos_resized = rel_pos
464
+
465
+ # Scale the coords with short length if shapes for q and k are different.
466
+ q_coords = np.arange(q_size)[:, np.newaxis] * max(k_size / q_size, 1.0)
467
+ k_coords = np.arange(k_size)[np.newaxis, :] * max(q_size / k_size, 1.0)
468
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
469
+ relative_coords = relative_coords.astype(np.int64)
470
+ return rel_pos_resized[relative_coords]
471
+
472
+
473
+ def add_decomposed_rel_pos(
474
+ attn: np.ndarray,
475
+ q: np.ndarray,
476
+ rel_pos_h: np.ndarray,
477
+ rel_pos_w: np.ndarray,
478
+ q_size: Tuple[int, int],
479
+ k_size: Tuple[int, int],
480
+ ) -> np.ndarray:
481
+ """
482
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
483
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
484
+ Args:
485
+ attn (ndarray): attention map.
486
+ q (ndarray): query q in the attention layer with shape (B, q_h * q_w, C).
487
+ rel_pos_h (ndarray): relative position embeddings (Lh, C) for height axis.
488
+ rel_pos_w (ndarray): relative position embeddings (Lw, C) for width axis.
489
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
490
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
491
+
492
+ Returns:
493
+ attn (ndarray): attention map with added relative positional embeddings.
494
+ """
495
+ q_h, q_w = q_size
496
+ k_h, k_w = k_size
497
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
498
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
499
+
500
+ B, _, dim = q.shape
501
+ r_q = q.reshape(B, q_h, q_w, dim)
502
+
503
+ rel_h = np.einsum("bhwc,hkc->bhwk", r_q, Rh)
504
+ rel_w = np.einsum("bhwc,wkc->bhwk", r_q, Rw)
505
+
506
+ attn = (
507
+ attn.reshape(B, q_h, q_w, k_h, k_w)
508
+ + rel_h[:, :, :, :, np.newaxis]
509
+ + rel_w[:, :, :, np.newaxis, :]
510
+ ).reshape(B, q_h * q_w, k_h * k_w)
511
+
512
+ return attn
513
+
514
+
515
+ class PatchEmbed(nn.Module):
516
+ """
517
+ Image to Patch Embedding.
518
+ """
519
+
520
+ def __init__(
521
+ self,
522
+ kernel_size: Tuple[int, int] = (16, 16),
523
+ stride: Tuple[int, int] = (16, 16),
524
+ in_chans: int = 3,
525
+ embed_dim: int = 768,
526
+ ) -> None:
527
+ """
528
+ Args:
529
+ kernel_size (Tuple): kernel size of the projection layer.
530
+ stride (Tuple): stride of the projection layer.
531
+ padding (Tuple): padding size of the projection layer.
532
+ in_chans (int): Number of input image channels.
533
+ embed_dim (int): Patch embedding dimension.
534
+ """
535
+ super().__init__()
536
+
537
+ self.proj = nn.Conv2d(
538
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride
539
+ )
540
+
541
+ def __call__(self, x: mx.array):
542
+ x = self.proj(x)
543
+ return x