semantic-link-labs 0.12.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (243) hide show
  1. semantic_link_labs-0.12.8.dist-info/METADATA +354 -0
  2. semantic_link_labs-0.12.8.dist-info/RECORD +243 -0
  3. semantic_link_labs-0.12.8.dist-info/WHEEL +5 -0
  4. semantic_link_labs-0.12.8.dist-info/licenses/LICENSE +21 -0
  5. semantic_link_labs-0.12.8.dist-info/top_level.txt +1 -0
  6. sempy_labs/__init__.py +606 -0
  7. sempy_labs/_a_lib_info.py +2 -0
  8. sempy_labs/_ai.py +437 -0
  9. sempy_labs/_authentication.py +264 -0
  10. sempy_labs/_bpa_translation/_model/_translations_am-ET.po +869 -0
  11. sempy_labs/_bpa_translation/_model/_translations_ar-AE.po +908 -0
  12. sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +968 -0
  13. sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +963 -0
  14. sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po +943 -0
  15. sempy_labs/_bpa_translation/_model/_translations_da-DK.po +945 -0
  16. sempy_labs/_bpa_translation/_model/_translations_de-DE.po +988 -0
  17. sempy_labs/_bpa_translation/_model/_translations_el-GR.po +993 -0
  18. sempy_labs/_bpa_translation/_model/_translations_es-ES.po +971 -0
  19. sempy_labs/_bpa_translation/_model/_translations_fa-IR.po +933 -0
  20. sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +942 -0
  21. sempy_labs/_bpa_translation/_model/_translations_fr-FR.po +994 -0
  22. sempy_labs/_bpa_translation/_model/_translations_ga-IE.po +967 -0
  23. sempy_labs/_bpa_translation/_model/_translations_he-IL.po +902 -0
  24. sempy_labs/_bpa_translation/_model/_translations_hi-IN.po +944 -0
  25. sempy_labs/_bpa_translation/_model/_translations_hu-HU.po +963 -0
  26. sempy_labs/_bpa_translation/_model/_translations_id-ID.po +946 -0
  27. sempy_labs/_bpa_translation/_model/_translations_is-IS.po +939 -0
  28. sempy_labs/_bpa_translation/_model/_translations_it-IT.po +986 -0
  29. sempy_labs/_bpa_translation/_model/_translations_ja-JP.po +846 -0
  30. sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +839 -0
  31. sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +967 -0
  32. sempy_labs/_bpa_translation/_model/_translations_nl-NL.po +978 -0
  33. sempy_labs/_bpa_translation/_model/_translations_pl-PL.po +962 -0
  34. sempy_labs/_bpa_translation/_model/_translations_pt-BR.po +962 -0
  35. sempy_labs/_bpa_translation/_model/_translations_pt-PT.po +957 -0
  36. sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +968 -0
  37. sempy_labs/_bpa_translation/_model/_translations_ru-RU.po +964 -0
  38. sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +952 -0
  39. sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +950 -0
  40. sempy_labs/_bpa_translation/_model/_translations_sv-SE.po +942 -0
  41. sempy_labs/_bpa_translation/_model/_translations_ta-IN.po +976 -0
  42. sempy_labs/_bpa_translation/_model/_translations_te-IN.po +947 -0
  43. sempy_labs/_bpa_translation/_model/_translations_th-TH.po +924 -0
  44. sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +953 -0
  45. sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +961 -0
  46. sempy_labs/_bpa_translation/_model/_translations_zh-CN.po +804 -0
  47. sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po +969 -0
  48. sempy_labs/_capacities.py +1198 -0
  49. sempy_labs/_capacity_migration.py +660 -0
  50. sempy_labs/_clear_cache.py +351 -0
  51. sempy_labs/_connections.py +610 -0
  52. sempy_labs/_dashboards.py +69 -0
  53. sempy_labs/_data_access_security.py +98 -0
  54. sempy_labs/_data_pipelines.py +162 -0
  55. sempy_labs/_dataflows.py +668 -0
  56. sempy_labs/_dax.py +501 -0
  57. sempy_labs/_daxformatter.py +80 -0
  58. sempy_labs/_delta_analyzer.py +467 -0
  59. sempy_labs/_delta_analyzer_history.py +301 -0
  60. sempy_labs/_dictionary_diffs.py +221 -0
  61. sempy_labs/_documentation.py +147 -0
  62. sempy_labs/_domains.py +51 -0
  63. sempy_labs/_eventhouses.py +182 -0
  64. sempy_labs/_external_data_shares.py +230 -0
  65. sempy_labs/_gateways.py +521 -0
  66. sempy_labs/_generate_semantic_model.py +521 -0
  67. sempy_labs/_get_connection_string.py +84 -0
  68. sempy_labs/_git.py +543 -0
  69. sempy_labs/_graphQL.py +90 -0
  70. sempy_labs/_helper_functions.py +2833 -0
  71. sempy_labs/_icons.py +149 -0
  72. sempy_labs/_job_scheduler.py +609 -0
  73. sempy_labs/_kql_databases.py +149 -0
  74. sempy_labs/_kql_querysets.py +124 -0
  75. sempy_labs/_kusto.py +137 -0
  76. sempy_labs/_labels.py +124 -0
  77. sempy_labs/_list_functions.py +1720 -0
  78. sempy_labs/_managed_private_endpoints.py +253 -0
  79. sempy_labs/_mirrored_databases.py +416 -0
  80. sempy_labs/_mirrored_warehouses.py +60 -0
  81. sempy_labs/_ml_experiments.py +113 -0
  82. sempy_labs/_model_auto_build.py +140 -0
  83. sempy_labs/_model_bpa.py +557 -0
  84. sempy_labs/_model_bpa_bulk.py +378 -0
  85. sempy_labs/_model_bpa_rules.py +859 -0
  86. sempy_labs/_model_dependencies.py +343 -0
  87. sempy_labs/_mounted_data_factories.py +123 -0
  88. sempy_labs/_notebooks.py +441 -0
  89. sempy_labs/_one_lake_integration.py +151 -0
  90. sempy_labs/_onelake.py +131 -0
  91. sempy_labs/_query_scale_out.py +433 -0
  92. sempy_labs/_refresh_semantic_model.py +435 -0
  93. sempy_labs/_semantic_models.py +468 -0
  94. sempy_labs/_spark.py +455 -0
  95. sempy_labs/_sql.py +241 -0
  96. sempy_labs/_sql_audit_settings.py +207 -0
  97. sempy_labs/_sql_endpoints.py +214 -0
  98. sempy_labs/_tags.py +201 -0
  99. sempy_labs/_translations.py +43 -0
  100. sempy_labs/_user_delegation_key.py +44 -0
  101. sempy_labs/_utils.py +79 -0
  102. sempy_labs/_vertipaq.py +1021 -0
  103. sempy_labs/_vpax.py +388 -0
  104. sempy_labs/_warehouses.py +234 -0
  105. sempy_labs/_workloads.py +140 -0
  106. sempy_labs/_workspace_identity.py +72 -0
  107. sempy_labs/_workspaces.py +595 -0
  108. sempy_labs/admin/__init__.py +170 -0
  109. sempy_labs/admin/_activities.py +167 -0
  110. sempy_labs/admin/_apps.py +145 -0
  111. sempy_labs/admin/_artifacts.py +65 -0
  112. sempy_labs/admin/_basic_functions.py +463 -0
  113. sempy_labs/admin/_capacities.py +508 -0
  114. sempy_labs/admin/_dataflows.py +45 -0
  115. sempy_labs/admin/_datasets.py +186 -0
  116. sempy_labs/admin/_domains.py +522 -0
  117. sempy_labs/admin/_external_data_share.py +100 -0
  118. sempy_labs/admin/_git.py +72 -0
  119. sempy_labs/admin/_items.py +265 -0
  120. sempy_labs/admin/_labels.py +211 -0
  121. sempy_labs/admin/_reports.py +241 -0
  122. sempy_labs/admin/_scanner.py +118 -0
  123. sempy_labs/admin/_shared.py +82 -0
  124. sempy_labs/admin/_sharing_links.py +110 -0
  125. sempy_labs/admin/_tags.py +131 -0
  126. sempy_labs/admin/_tenant.py +503 -0
  127. sempy_labs/admin/_tenant_keys.py +89 -0
  128. sempy_labs/admin/_users.py +140 -0
  129. sempy_labs/admin/_workspaces.py +236 -0
  130. sempy_labs/deployment_pipeline/__init__.py +23 -0
  131. sempy_labs/deployment_pipeline/_items.py +580 -0
  132. sempy_labs/directlake/__init__.py +57 -0
  133. sempy_labs/directlake/_autosync.py +58 -0
  134. sempy_labs/directlake/_directlake_schema_compare.py +120 -0
  135. sempy_labs/directlake/_directlake_schema_sync.py +161 -0
  136. sempy_labs/directlake/_dl_helper.py +274 -0
  137. sempy_labs/directlake/_generate_shared_expression.py +94 -0
  138. sempy_labs/directlake/_get_directlake_lakehouse.py +62 -0
  139. sempy_labs/directlake/_get_shared_expression.py +34 -0
  140. sempy_labs/directlake/_guardrails.py +96 -0
  141. sempy_labs/directlake/_list_directlake_model_calc_tables.py +70 -0
  142. sempy_labs/directlake/_show_unsupported_directlake_objects.py +90 -0
  143. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +239 -0
  144. sempy_labs/directlake/_update_directlake_partition_entity.py +259 -0
  145. sempy_labs/directlake/_warm_cache.py +236 -0
  146. sempy_labs/dotnet_lib/dotnet.runtime.config.json +10 -0
  147. sempy_labs/environment/__init__.py +23 -0
  148. sempy_labs/environment/_items.py +212 -0
  149. sempy_labs/environment/_pubstage.py +223 -0
  150. sempy_labs/eventstream/__init__.py +37 -0
  151. sempy_labs/eventstream/_items.py +263 -0
  152. sempy_labs/eventstream/_topology.py +652 -0
  153. sempy_labs/graph/__init__.py +59 -0
  154. sempy_labs/graph/_groups.py +651 -0
  155. sempy_labs/graph/_sensitivity_labels.py +120 -0
  156. sempy_labs/graph/_teams.py +125 -0
  157. sempy_labs/graph/_user_licenses.py +96 -0
  158. sempy_labs/graph/_users.py +516 -0
  159. sempy_labs/graph_model/__init__.py +15 -0
  160. sempy_labs/graph_model/_background_jobs.py +63 -0
  161. sempy_labs/graph_model/_items.py +149 -0
  162. sempy_labs/lakehouse/__init__.py +67 -0
  163. sempy_labs/lakehouse/_blobs.py +247 -0
  164. sempy_labs/lakehouse/_get_lakehouse_columns.py +102 -0
  165. sempy_labs/lakehouse/_get_lakehouse_tables.py +274 -0
  166. sempy_labs/lakehouse/_helper.py +250 -0
  167. sempy_labs/lakehouse/_lakehouse.py +351 -0
  168. sempy_labs/lakehouse/_livy_sessions.py +143 -0
  169. sempy_labs/lakehouse/_materialized_lake_views.py +157 -0
  170. sempy_labs/lakehouse/_partitioning.py +165 -0
  171. sempy_labs/lakehouse/_schemas.py +217 -0
  172. sempy_labs/lakehouse/_shortcuts.py +440 -0
  173. sempy_labs/migration/__init__.py +35 -0
  174. sempy_labs/migration/_create_pqt_file.py +238 -0
  175. sempy_labs/migration/_direct_lake_to_import.py +105 -0
  176. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +398 -0
  177. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +148 -0
  178. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +533 -0
  179. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +172 -0
  180. sempy_labs/migration/_migration_validation.py +71 -0
  181. sempy_labs/migration/_refresh_calc_tables.py +131 -0
  182. sempy_labs/mirrored_azure_databricks_catalog/__init__.py +15 -0
  183. sempy_labs/mirrored_azure_databricks_catalog/_discover.py +213 -0
  184. sempy_labs/mirrored_azure_databricks_catalog/_refresh_catalog_metadata.py +45 -0
  185. sempy_labs/ml_model/__init__.py +23 -0
  186. sempy_labs/ml_model/_functions.py +427 -0
  187. sempy_labs/report/_BPAReportTemplate.json +232 -0
  188. sempy_labs/report/__init__.py +55 -0
  189. sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json +9 -0
  190. sempy_labs/report/_bpareporttemplate/.platform +11 -0
  191. sempy_labs/report/_bpareporttemplate/StaticResources/SharedResources/BaseThemes/CY24SU06.json +710 -0
  192. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/page.json +11 -0
  193. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/1b08bce3bebabb0a27a8/visual.json +191 -0
  194. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/2f22ddb70c301693c165/visual.json +438 -0
  195. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/3b1182230aa6c600b43a/visual.json +127 -0
  196. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/58577ba6380c69891500/visual.json +576 -0
  197. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/a2a8fa5028b3b776c96c/visual.json +207 -0
  198. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/adfd47ef30652707b987/visual.json +506 -0
  199. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/b6a80ee459e716e170b1/visual.json +127 -0
  200. sempy_labs/report/_bpareporttemplate/definition/pages/01d72098bda5055bd500/visuals/ce3130a721c020cc3d81/visual.json +513 -0
  201. sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/page.json +8 -0
  202. sempy_labs/report/_bpareporttemplate/definition/pages/92735ae19b31712208ad/visuals/66e60dfb526437cd78d1/visual.json +112 -0
  203. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/page.json +11 -0
  204. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/07deb8bce824e1be37d7/visual.json +513 -0
  205. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0b1c68838818b32ad03b/visual.json +352 -0
  206. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0c171de9d2683d10b930/visual.json +37 -0
  207. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/0efa01be0510e40a645e/visual.json +542 -0
  208. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/6bf2f0eb830ab53cc668/visual.json +221 -0
  209. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/88d8141cb8500b60030c/visual.json +127 -0
  210. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/a753273590beed656a03/visual.json +576 -0
  211. sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visuals/b8fdc82cddd61ac447bc/visual.json +127 -0
  212. sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json +9 -0
  213. sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json +38 -0
  214. sempy_labs/report/_bpareporttemplate/definition/pages/pages.json +10 -0
  215. sempy_labs/report/_bpareporttemplate/definition/report.json +176 -0
  216. sempy_labs/report/_bpareporttemplate/definition/version.json +4 -0
  217. sempy_labs/report/_bpareporttemplate/definition.pbir +14 -0
  218. sempy_labs/report/_download_report.py +76 -0
  219. sempy_labs/report/_export_report.py +257 -0
  220. sempy_labs/report/_generate_report.py +427 -0
  221. sempy_labs/report/_paginated.py +76 -0
  222. sempy_labs/report/_report_bpa.py +354 -0
  223. sempy_labs/report/_report_bpa_rules.py +115 -0
  224. sempy_labs/report/_report_functions.py +581 -0
  225. sempy_labs/report/_report_helper.py +227 -0
  226. sempy_labs/report/_report_list_functions.py +110 -0
  227. sempy_labs/report/_report_rebind.py +149 -0
  228. sempy_labs/report/_reportwrapper.py +3100 -0
  229. sempy_labs/report/_save_report.py +147 -0
  230. sempy_labs/snowflake_database/__init__.py +10 -0
  231. sempy_labs/snowflake_database/_items.py +105 -0
  232. sempy_labs/sql_database/__init__.py +21 -0
  233. sempy_labs/sql_database/_items.py +201 -0
  234. sempy_labs/sql_database/_mirroring.py +79 -0
  235. sempy_labs/theme/__init__.py +12 -0
  236. sempy_labs/theme/_org_themes.py +129 -0
  237. sempy_labs/tom/__init__.py +3 -0
  238. sempy_labs/tom/_model.py +5977 -0
  239. sempy_labs/variable_library/__init__.py +19 -0
  240. sempy_labs/variable_library/_functions.py +403 -0
  241. sempy_labs/warehouse/__init__.py +28 -0
  242. sempy_labs/warehouse/_items.py +234 -0
  243. sempy_labs/warehouse/_restore_points.py +309 -0
@@ -0,0 +1,120 @@
1
+ import sempy.fabric as fabric
2
+ import pandas as pd
3
+ from .._helper_functions import (
4
+ format_dax_object_name,
5
+ resolve_workspace_name_and_id,
6
+ resolve_dataset_name_and_id,
7
+ resolve_workspace_name,
8
+ )
9
+ from IPython.display import display
10
+ from ..lakehouse import get_lakehouse_columns
11
+ from ..directlake._dl_helper import get_direct_lake_source
12
+ from typing import Optional
13
+ import sempy_labs._icons as icons
14
+ from sempy._utils._log import log
15
+ from uuid import UUID
16
+
17
+
18
+ @log
19
+ def direct_lake_schema_compare(
20
+ dataset: str | UUID,
21
+ workspace: Optional[str | UUID] = None,
22
+ **kwargs,
23
+ ):
24
+ """
25
+ Checks that all the tables in a Direct Lake semantic model map to tables in their corresponding lakehouse and that the columns in each table exist.
26
+
27
+ Parameters
28
+ ----------
29
+ dataset : str | uuid.UUID
30
+ Name or ID of the semantic model.
31
+ workspace : str | uuid.UUID, default=None
32
+ The Fabric workspace name or ID.
33
+ Defaults to None which resolves to the workspace of the attached lakehouse
34
+ or if no lakehouse attached, resolves to the workspace of the notebook.
35
+ """
36
+
37
+ if "lakehouse" in kwargs:
38
+ print(
39
+ "The 'lakehouse' parameter has been deprecated as it is no longer necessary. Please remove this parameter from the function going forward."
40
+ )
41
+ del kwargs["lakehouse"]
42
+ if "lakehouse_workspace" in kwargs:
43
+ print(
44
+ "The 'lakehouse_workspace' parameter has been deprecated as it is no longer necessary. Please remove this parameter from the function going forward."
45
+ )
46
+ del kwargs["lakehouse_workspace"]
47
+
48
+ fabric.refresh_tom_cache(workspace=workspace)
49
+
50
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
51
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
52
+
53
+ artifact_type, lakehouse_name, lakehouse_id, lakehouse_workspace_id = (
54
+ get_direct_lake_source(dataset=dataset_id, workspace=workspace_id)
55
+ )
56
+
57
+ if artifact_type == "Warehouse":
58
+ raise ValueError(
59
+ f"{icons.red_dot} This function is only valid for Direct Lake semantic models which source from Fabric lakehouses (not warehouses)."
60
+ )
61
+
62
+ dfP = fabric.list_partitions(dataset=dataset_id, workspace=workspace_id)
63
+
64
+ if not any(r["Mode"] == "DirectLake" for _, r in dfP.iterrows()):
65
+ raise ValueError(
66
+ f"{icons.red_dot} The '{dataset_name}' semantic model within the '{workspace_name}' workspace is not in Direct Lake mode."
67
+ )
68
+
69
+ if artifact_type is None:
70
+ raise ValueError(
71
+ f"{icons.red_dot} This function only supports Direct Lake semantic models where the source lakehouse resides in the same workpace as the semantic model."
72
+ )
73
+
74
+ lakehouse_workspace = resolve_workspace_name(workspace_id=lakehouse_workspace_id)
75
+ dfT = fabric.list_tables(dataset=dataset_id, workspace=workspace_id)
76
+ dfC = fabric.list_columns(dataset=dataset_id, workspace=workspace_id)
77
+ lc = get_lakehouse_columns(lakehouse_name, lakehouse_workspace)
78
+
79
+ dfT.rename(columns={"Type": "Table Type"}, inplace=True)
80
+ dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
81
+ dfC = pd.merge(dfC, dfP[["Table Name", "Query"]], on="Table Name", how="inner")
82
+ dfC = pd.merge(
83
+ dfC,
84
+ dfT[["Name", "Table Type"]],
85
+ left_on="Table Name",
86
+ right_on="Name",
87
+ how="inner",
88
+ )
89
+ dfC["Full Column Name"] = format_dax_object_name(dfC["Query"], dfC["Source"])
90
+ dfC_filt = dfC[dfC["Table Type"] == "Table"]
91
+ # Schema compare
92
+ missingtbls = dfP_filt[~dfP_filt["Query"].isin(lc["Table Name"])]
93
+ missingtbls = missingtbls[["Table Name", "Query"]]
94
+ missingtbls.rename(columns={"Query": "Source Table"}, inplace=True)
95
+ missingcols = dfC_filt[~dfC_filt["Full Column Name"].isin(lc["Full Column Name"])]
96
+ missingcols = missingcols[
97
+ ["Table Name", "Column Name", "Type", "Data Type", "Source"]
98
+ ]
99
+ missingcols.rename(columns={"Source": "Source Column"}, inplace=True)
100
+
101
+ if len(missingtbls) == 0:
102
+ print(
103
+ f"{icons.green_dot} All tables exist in the '{lakehouse_name}' lakehouse within the '{lakehouse_workspace}' workspace."
104
+ )
105
+ else:
106
+ print(
107
+ f"{icons.yellow_dot} The following tables exist in the '{dataset_name}' semantic model within the '{workspace_name}' workspace"
108
+ f" but do not exist in the '{lakehouse_name}' lakehouse within the '{lakehouse_workspace}' workspace."
109
+ )
110
+ display(missingtbls)
111
+ if len(missingcols) == 0:
112
+ print(
113
+ f"{icons.green_dot} All columns exist in the '{lakehouse_name}' lakehouse within the '{lakehouse_workspace}' workspace."
114
+ )
115
+ else:
116
+ print(
117
+ f"{icons.yellow_dot} The following columns exist in the '{dataset_name}' semantic model within the '{workspace_name}' workspace "
118
+ f"but do not exist in the '{lakehouse_name}' lakehouse within the '{lakehouse_workspace}' workspace."
119
+ )
120
+ display(missingcols)
@@ -0,0 +1,161 @@
1
+ import sempy
2
+ import pandas as pd
3
+ from ..lakehouse import get_lakehouse_columns
4
+ from ._dl_helper import get_direct_lake_source
5
+ from ..tom import connect_semantic_model
6
+ from .._helper_functions import (
7
+ _convert_data_type,
8
+ resolve_workspace_name_and_id,
9
+ resolve_dataset_name_and_id,
10
+ )
11
+ from typing import Optional
12
+ from sempy._utils._log import log
13
+ import sempy_labs._icons as icons
14
+ from uuid import UUID
15
+
16
+
17
+ @log
18
+ def direct_lake_schema_sync(
19
+ dataset: str | UUID,
20
+ workspace: Optional[str | UUID] = None,
21
+ add_to_model: bool = False,
22
+ remove_from_model: bool = False,
23
+ ) -> pd.DataFrame:
24
+ """
25
+ Shows/adds columns which exist in the lakehouse but do not exist in the semantic model (only for tables in the semantic model).
26
+
27
+ Parameters
28
+ ----------
29
+ dataset : str | uuid.UUID
30
+ Name or ID of the semantic model.
31
+ workspace : str | uuid.UUID, default=None
32
+ The Fabric workspace name or ID.
33
+ Defaults to None which resolves to the workspace of the attached lakehouse
34
+ or if no lakehouse attached, resolves to the workspace of the notebook.
35
+ add_to_model : bool, default=False
36
+ If set to True, columns which exist in the lakehouse but do not exist in the semantic model are added to the semantic model. No new tables are added.
37
+ remove_from_model : bool, default=False
38
+ If set to True, columns which exist in the semantic model but do not exist in the lakehouse are removed from the semantic model. No new tables are removed.
39
+
40
+ Returns
41
+ -------
42
+ pandas.DataFrame
43
+ A pandas dataframe showing the status of columns in the semantic model and lakehouse (prior to adding/removing them from the model using this function).
44
+ """
45
+
46
+ sempy.fabric._client._utils._init_analysis_services()
47
+ import Microsoft.AnalysisServices.Tabular as TOM
48
+
49
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
50
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
51
+
52
+ artifact_type, lakehouse_name, lakehouse_id, lakehouse_workspace_id = (
53
+ get_direct_lake_source(dataset=dataset_id, workspace=workspace_id)
54
+ )
55
+
56
+ if artifact_type == "Warehouse":
57
+ raise ValueError(
58
+ f"{icons.red_dot} This function is only valid for Direct Lake semantic models which source from Fabric lakehouses (not warehouses)."
59
+ )
60
+
61
+ if artifact_type is None:
62
+ raise ValueError(
63
+ f"{icons.red_dot} This function only supports Direct Lake semantic models where the source lakehouse resides in the same workpace as the semantic model."
64
+ )
65
+
66
+ lc = get_lakehouse_columns(lakehouse_id, lakehouse_workspace_id)
67
+
68
+ readonly = True
69
+ if add_to_model or remove_from_model:
70
+ readonly = False
71
+ df = pd.DataFrame(
72
+ columns=[
73
+ "TableName",
74
+ "ColumnName",
75
+ "SourceTableName",
76
+ "SourceColumnName",
77
+ "Status",
78
+ ]
79
+ )
80
+
81
+ with connect_semantic_model(
82
+ dataset=dataset_id, readonly=readonly, workspace=workspace_id
83
+ ) as tom:
84
+ # Check if the columns in the semantic model exist in the lakehouse
85
+ for c in tom.all_columns():
86
+ column_name = c.Name
87
+ table_name = c.Parent.Name
88
+ partition_name = next(p.Name for p in c.Table.Partitions)
89
+ p = c.Table.Partitions[partition_name]
90
+ if p.SourceType == TOM.PartitionSourceType.Entity:
91
+ entity_name = p.Source.EntityName
92
+ source_column = c.SourceColumn
93
+ lc_filt = lc[
94
+ (lc["Table Name"] == entity_name)
95
+ & (lc["Column Name"] == source_column)
96
+ ]
97
+ # Remove column from model if it doesn't exist in the lakehouse
98
+ if lc_filt.empty:
99
+ new_data = {
100
+ "TableName": table_name,
101
+ "ColumnName": column_name,
102
+ "SourceTableName": entity_name,
103
+ "SourceColumnName": source_column,
104
+ "Status": "Not in lakehouse",
105
+ }
106
+ df = pd.concat(
107
+ [df, pd.DataFrame(new_data, index=[0])], ignore_index=True
108
+ )
109
+ if remove_from_model:
110
+ tom.remove_object(object=c)
111
+ print(
112
+ f"{icons.green_dot} The '{table_name}'[{column_name}] column has been removed from the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
113
+ )
114
+
115
+ # Check if the lakehouse columns exist in the semantic model
116
+ for i, r in lc.iterrows():
117
+ lakeTName = r["Table Name"]
118
+ lakeCName = r["Column Name"]
119
+ dType = r["Data Type"]
120
+
121
+ if any(
122
+ p.Source.EntityName == lakeTName
123
+ for p in tom.all_partitions()
124
+ if p.SourceType == TOM.PartitionSourceType.Entity
125
+ ):
126
+ table_name = next(
127
+ t.Name
128
+ for t in tom.model.Tables
129
+ for p in t.Partitions
130
+ if p.SourceType == TOM.PartitionSourceType.Entity
131
+ and p.Source.EntityName == lakeTName
132
+ )
133
+
134
+ if not any(
135
+ c.SourceColumn == lakeCName and c.Parent.Name == table_name
136
+ for c in tom.all_columns()
137
+ ):
138
+ new_data = {
139
+ "TableName": table_name,
140
+ "ColumnName": None,
141
+ "SourceTableName": lakeTName,
142
+ "SourceColumnName": lakeCName,
143
+ "Status": "Not in semantic model",
144
+ }
145
+ df = pd.concat(
146
+ [df, pd.DataFrame(new_data, index=[0])], ignore_index=True
147
+ )
148
+
149
+ if add_to_model:
150
+ dt = _convert_data_type(dType)
151
+ tom.add_data_column(
152
+ table_name=table_name,
153
+ column_name=lakeCName,
154
+ source_column=lakeCName,
155
+ data_type=dt,
156
+ )
157
+ print(
158
+ f"{icons.green_dot} The '{lakeCName}' column in the '{lakeTName}' lakehouse table was added to the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
159
+ )
160
+
161
+ return df
@@ -0,0 +1,274 @@
1
+ import sempy.fabric as fabric
2
+ import numpy as np
3
+ import pandas as pd
4
+ from typing import Optional, List, Union, Tuple
5
+ from uuid import UUID
6
+ import sempy_labs._icons as icons
7
+ from sempy._utils._log import log
8
+ from .._helper_functions import (
9
+ retry,
10
+ _convert_data_type,
11
+ resolve_dataset_name_and_id,
12
+ resolve_workspace_name_and_id,
13
+ )
14
+
15
+
16
+ @log
17
+ def check_fallback_reason(
18
+ dataset: str | UUID, workspace: Optional[str | UUID] = None
19
+ ) -> pd.DataFrame:
20
+ """
21
+ Shows the reason a table in a Direct Lake semantic model would fallback to DirectQuery.
22
+
23
+ Parameters
24
+ ----------
25
+ dataset : str | uuid.UUID
26
+ Name or ID of the semantic model.
27
+ workspace : str | uuid.UUID, default=None
28
+ The Fabric workspace name or ID.
29
+ Defaults to None which resolves to the workspace of the attached lakehouse
30
+ or if no lakehouse attached, resolves to the workspace of the notebook.
31
+
32
+ Returns
33
+ -------
34
+ pandas.DataFrame
35
+ The tables in the semantic model and their fallback reason.
36
+ """
37
+ from sempy_labs.tom import connect_semantic_model
38
+
39
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
40
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(
41
+ dataset, workspace=workspace_id
42
+ )
43
+
44
+ with connect_semantic_model(
45
+ dataset=dataset_id, workspace=workspace_id, readonly=True
46
+ ) as tom:
47
+ if not tom.is_direct_lake():
48
+ raise ValueError(
49
+ f"{icons.red_dot} The '{dataset_name}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
50
+ )
51
+
52
+ df = fabric.evaluate_dax(
53
+ dataset=dataset_id,
54
+ workspace=workspace_id,
55
+ dax_string="""
56
+ SELECT [TableName] AS [Table Name],[FallbackReason] AS [FallbackReasonID]
57
+ FROM $SYSTEM.TMSCHEMA_DELTA_TABLE_METADATA_STORAGES
58
+ """,
59
+ )
60
+
61
+ value_mapping = {
62
+ 0: "No reason for fallback",
63
+ 1: "This table is not framed",
64
+ 2: "This object is a view in the lakehouse",
65
+ 3: "The table does not exist in the lakehouse",
66
+ 4: "Transient error",
67
+ 5: "Using OLS will result in fallback to DQ",
68
+ 6: "Using RLS will result in fallback to DQ",
69
+ }
70
+
71
+ # Create a new column based on the mapping
72
+ df["Fallback Reason Detail"] = np.vectorize(value_mapping.get)(
73
+ df["FallbackReasonID"]
74
+ )
75
+
76
+ return df
77
+
78
+
79
+ @log
80
+ def generate_direct_lake_semantic_model(
81
+ dataset: str,
82
+ lakehouse_tables: Union[str, List[str]],
83
+ workspace: Optional[str | UUID] = None,
84
+ lakehouse: Optional[str] = None,
85
+ lakehouse_workspace: Optional[str | UUID] = None,
86
+ schema: str = "dbo",
87
+ overwrite: bool = False,
88
+ refresh: bool = True,
89
+ ):
90
+ """
91
+ Dynamically generates a Direct Lake semantic model based on tables in a Fabric lakehouse.
92
+
93
+ Parameters
94
+ ----------
95
+ dataset : str
96
+ Name of the semantic model to be created.
97
+ lakehouse_tables : str | List[str]
98
+ The table(s) within the Fabric lakehouse to add to the semantic model. All columns from these tables will be added to the semantic model.
99
+ workspace : str | uuid.UUID, default=None
100
+ The Fabric workspace name or ID in which the semantic model will reside.
101
+ Defaults to None which resolves to the workspace of the attached lakehouse
102
+ or if no lakehouse attached, resolves to the workspace of the notebook.
103
+ lakehouse : str, default=None
104
+ The lakehouse which stores the delta tables which will feed the Direct Lake semantic model.
105
+ Defaults to None which resolves to the attached lakehouse.
106
+ lakehouse_workspace : str | uuid.UUID, default=None
107
+ The Fabric workspace name or ID in which the lakehouse resides.
108
+ Defaults to None which resolves to the workspace of the attached lakehouse
109
+ or if no lakehouse attached, resolves to the workspace of the notebook.
110
+ schema : str, default="dbo"
111
+ The schema used for the lakehouse.
112
+ overwrite : bool, default=False
113
+ If set to True, overwrites the existing semantic model if it already exists.
114
+ refresh: bool, default=True
115
+ If True, refreshes the newly created semantic model after it is created.
116
+ """
117
+
118
+ from sempy_labs.lakehouse import get_lakehouse_tables, get_lakehouse_columns
119
+ from sempy_labs.directlake._generate_shared_expression import (
120
+ generate_shared_expression,
121
+ )
122
+ from sempy_labs.tom import connect_semantic_model
123
+ from sempy_labs._generate_semantic_model import create_blank_semantic_model
124
+ from sempy_labs._refresh_semantic_model import refresh_semantic_model
125
+
126
+ if isinstance(lakehouse_tables, str):
127
+ lakehouse_tables = [lakehouse_tables]
128
+
129
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
130
+ if lakehouse_workspace is None:
131
+ lakehouse_workspace = workspace
132
+
133
+ dfLT = get_lakehouse_tables(lakehouse=lakehouse, workspace=lakehouse_workspace)
134
+
135
+ icons.sll_tags.append("GenerateDLModel")
136
+
137
+ # Validate lakehouse tables
138
+ for t in lakehouse_tables:
139
+ if t not in dfLT["Table Name"].values:
140
+ raise ValueError(
141
+ f"{icons.red_dot} The '{t}' table does not exist as a delta table in the '{lakehouse}' within the '{workspace_name}' workspace."
142
+ )
143
+
144
+ dfLC = get_lakehouse_columns(lakehouse=lakehouse, workspace=lakehouse_workspace)
145
+ expr = generate_shared_expression(
146
+ item_name=lakehouse, item_type="Lakehouse", workspace=lakehouse_workspace
147
+ )
148
+ dfD = fabric.list_datasets(workspace=workspace_id, mode="rest")
149
+ dfD_filt = dfD[dfD["Dataset Name"] == dataset]
150
+
151
+ if len(dfD_filt) > 0 and not overwrite:
152
+ raise ValueError(
153
+ f"{icons.red_dot} The '{dataset}' semantic model within the '{workspace_name}' workspace already exists. Overwrite is set to False so the new semantic model has not been created."
154
+ )
155
+
156
+ create_blank_semantic_model(
157
+ dataset=dataset, workspace=workspace_id, overwrite=overwrite
158
+ )
159
+
160
+ @retry(
161
+ sleep_time=1,
162
+ timeout_error_message=f"{icons.red_dot} Function timed out after 1 minute",
163
+ )
164
+ def dyn_connect():
165
+ with connect_semantic_model(
166
+ dataset=dataset, readonly=True, workspace=workspace_id
167
+ ) as tom:
168
+
169
+ tom.model
170
+
171
+ dyn_connect()
172
+
173
+ expression_name = "DatabaseQuery"
174
+ with connect_semantic_model(
175
+ dataset=dataset, workspace=workspace_id, readonly=False
176
+ ) as tom:
177
+ if not any(e.Name == expression_name for e in tom.model.Expressions):
178
+ tom.add_expression(name=expression_name, expression=expr)
179
+
180
+ for t in lakehouse_tables:
181
+ tom.add_table(name=t)
182
+ tom.add_entity_partition(table_name=t, entity_name=t, schema_name=schema)
183
+ dfLC_filt = dfLC[dfLC["Table Name"] == t]
184
+ for i, r in dfLC_filt.iterrows():
185
+ lakeCName = r["Column Name"]
186
+ dType = r["Data Type"]
187
+ dt = _convert_data_type(dType)
188
+ tom.add_data_column(
189
+ table_name=t,
190
+ column_name=lakeCName,
191
+ source_column=lakeCName,
192
+ data_type=dt,
193
+ )
194
+
195
+ if refresh:
196
+ refresh_semantic_model(dataset=dataset, workspace=workspace_id)
197
+
198
+
199
+ @log
200
+ def get_direct_lake_source(
201
+ dataset: str | UUID, workspace: Optional[str | UUID] = None
202
+ ) -> Tuple[str, str, UUID, UUID]:
203
+ """
204
+ Obtains the source information for a direct lake semantic model (if the source is located in the same workspace as the semantic model).
205
+
206
+ Parameters
207
+ ----------
208
+ dataset : str | uuid.UUID
209
+ The name or ID of the semantic model.
210
+ workspace : str | uuid.UUID, default=None
211
+ The Fabric workspace name or ID.
212
+ Defaults to None which resolves to the workspace of the attached lakehouse
213
+ or if no lakehouse attached, resolves to the workspace of the notebook.
214
+
215
+ Returns
216
+ -------
217
+ Tuple[str, str, UUID, UUID]
218
+ If the source of the direct lake semantic model is a lakehouse this will return: 'Lakehouse', Lakehouse Name, SQL Endpoint Id, Workspace Id
219
+ If the source of the direct lake semantic model is a warehouse this will return: 'Warehouse', Warehouse Name, Warehouse Id, Workspace Id
220
+ If the semantic model is not a Direct Lake semantic model, it will return None, None, None.
221
+ """
222
+
223
+ from sempy_labs._helper_functions import get_direct_lake_sql_endpoint
224
+
225
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
226
+ sql_endpoint_id = get_direct_lake_sql_endpoint(dataset=dataset, workspace=workspace)
227
+ dfI = fabric.list_items(workspace=workspace)
228
+ dfI_filt = dfI[
229
+ (dfI["Id"] == sql_endpoint_id)
230
+ & (dfI["Type"].isin(["SQLEndpoint", "Warehouse"]))
231
+ ]
232
+
233
+ artifact_type, artifact_name, artifact_id = None, None, None
234
+
235
+ if not dfI_filt.empty:
236
+ artifact_name = dfI_filt["Display Name"].iloc[0]
237
+ artifact_id = dfI[
238
+ (dfI["Display Name"] == artifact_name)
239
+ & (dfI["Type"].isin(["Lakehouse", "Warehouse"]))
240
+ ]["Id"].iloc[0]
241
+ artifact_type = dfI[
242
+ (dfI["Display Name"] == artifact_name)
243
+ & (dfI["Type"].isin(["Lakehouse", "Warehouse"]))
244
+ ]["Type"].iloc[0]
245
+
246
+ return artifact_type, artifact_name, artifact_id, workspace_id
247
+
248
+ # payload = {
249
+ # "artifacts": [
250
+ # {
251
+ # "objectId": dataset_id,
252
+ # "type": "dataset",
253
+ # }
254
+ # ]
255
+ # }
256
+
257
+ # response = _base_api(request="metadata/relations/upstream?apiVersion=3", payload=payload, method="post")
258
+
259
+ # artifacts = response.json().get("artifacts", [])
260
+ # sql_id, sql_object_name, sql_workspace_id, artifact_type = None, None, None, None
261
+
262
+ # for artifact in artifacts:
263
+ # object_type = artifact.get("typeName")
264
+ # display_name = artifact.get("displayName")
265
+ # if object_type in ["Datawarehouse", "Lakewarehouse"]:
266
+ # artifact_type = (
267
+ # "Warehouse" if object_type == "Datawarehouse" else "Lakehouse"
268
+ # )
269
+ # sql_id = artifact.get("objectId")
270
+ # sql_workspace_id = artifact.get("workspace", {}).get("objectId")
271
+ # sql_object_name = display_name
272
+ # break
273
+
274
+ # return artifact_type, sql_object_name, sql_id, sql_workspace_id
@@ -0,0 +1,94 @@
1
+ from .._helper_functions import (
2
+ resolve_workspace_name_and_id,
3
+ _base_api,
4
+ resolve_lakehouse_name_and_id,
5
+ resolve_item_name_and_id,
6
+ _get_fabric_context_setting,
7
+ )
8
+ from typing import Optional
9
+ import sempy_labs._icons as icons
10
+ from uuid import UUID
11
+ from sempy._utils._log import log
12
+
13
+
14
+ @log
15
+ def generate_shared_expression(
16
+ item_name: Optional[str] = None,
17
+ item_type: str = "Lakehouse",
18
+ workspace: Optional[str | UUID] = None,
19
+ use_sql_endpoint: bool = True,
20
+ ) -> str:
21
+ """
22
+ Dynamically generates the M expression used by a Direct Lake model for a given lakehouse/warehouse.
23
+
24
+ Parameters
25
+ ----------
26
+ item_name : str, default=None
27
+ The Fabric lakehouse or warehouse name.
28
+ Defaults to None which resolves to the lakehouse attached to the notebook.
29
+ item_type : str, default="Lakehouse"
30
+ The Fabric item name. Valid options: 'Lakehouse', 'Warehouse'.
31
+ workspace : str | uuid.UUID, default=None
32
+ The Fabric workspace name or ID used by the item.
33
+ Defaults to None which resolves to the workspace of the attached lakehouse
34
+ or if no lakehouse attached, resolves to the workspace of the notebook.
35
+ use_sql_endpoint : bool, default=True
36
+ Whether to use the SQL Endpoint for the lakehouse/warehouse.
37
+ If False, the expression will be generated without using the SQL Endpoint.
38
+
39
+ Returns
40
+ -------
41
+ str
42
+ Shows the expression which can be used to connect a Direct Lake semantic model to its SQL Endpoint.
43
+ """
44
+
45
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
46
+ item_types = ["Lakehouse", "Warehouse"]
47
+ item_type = item_type.capitalize()
48
+ if item_type not in item_types:
49
+ raise ValueError(
50
+ f"{icons.red_dot} Invalid item type. Valid options: {item_types}."
51
+ )
52
+
53
+ if item_type == "Lakehouse":
54
+ (item_name, item_id) = resolve_lakehouse_name_and_id(
55
+ lakehouse=item_name, workspace=workspace_id
56
+ )
57
+ else:
58
+ (item_name, item_id) = resolve_item_name_and_id(
59
+ item=item_name, type=item_type, workspace=workspace_id
60
+ )
61
+
62
+ if use_sql_endpoint:
63
+ item_type_rest = f"{item_type.lower()}s"
64
+ response = _base_api(
65
+ request=f"/v1/workspaces/{workspace_id}/{item_type_rest}/{item_id}"
66
+ )
67
+
68
+ prop = response.json().get("properties")
69
+
70
+ if item_type == "Lakehouse":
71
+ sqlprop = prop.get("sqlEndpointProperties")
72
+ sqlEPCS = sqlprop.get("connectionString")
73
+ sqlepid = sqlprop.get("id")
74
+ provStatus = sqlprop.get("provisioningStatus")
75
+ elif item_type == "Warehouse":
76
+ sqlEPCS = prop.get("connectionString")
77
+ sqlepid = item_id
78
+ provStatus = None
79
+
80
+ if provStatus == "InProgress":
81
+ raise ValueError(
82
+ f"{icons.red_dot} The SQL Endpoint for the '{item_name}' {item_type.lower()} within the '{workspace_name}' workspace has not yet been provisioned. Please wait until it has been provisioned."
83
+ )
84
+
85
+ start_expr = "let\n\tdatabase = "
86
+ end_expr = "\nin\n\tdatabase"
87
+ mid_expr = f'Sql.Database("{sqlEPCS}", "{sqlepid}")'
88
+ return f"{start_expr}{mid_expr}{end_expr}"
89
+ else:
90
+ # Build DL/OL expression
91
+ env = _get_fabric_context_setting("spark.trident.pbienv").lower()
92
+ env = "" if env == "prod" else f"{env}-"
93
+
94
+ return f"""let\n\tSource = AzureStorage.DataLake("https://{env}onelake.dfs.fabric.microsoft.com/{workspace_id}/{item_id}")\nin\n\tSource"""