matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,808 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class PedestrianDetectionConfig(BaseConfig):
25
+ """Configuration for pedestrian detection use case in pedestrian monitoring."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ #confidence thresholds
34
+ confidence_threshold: float = 0.6
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: ["ped"]
38
+ )
39
+
40
+ target_categories: List[str] = field(
41
+ default_factory=lambda: ["ped"]
42
+ )
43
+
44
+ alert_config: Optional[AlertConfig] = None
45
+
46
+ index_to_category: Optional[Dict[int, str]] = field(
47
+ default_factory=lambda: {
48
+ 0: "ped",
49
+ }
50
+ )
51
+
52
+
53
+ class PedestrianDetectionUseCase(BaseProcessor):
54
+ # Human-friendly display names for categories
55
+ CATEGORY_DISPLAY = {
56
+ "ped": "Pedestrian",
57
+ }
58
+ def __init__(self):
59
+ super().__init__("pedestrian_detection")
60
+ self.category = "pedestrian"
61
+
62
+ self.CASE_TYPE: Optional[str] = 'pedestrian_detection'
63
+ self.CASE_VERSION: Optional[str] = '1.3'
64
+
65
+ # List of categories to track
66
+ self.target_categories = ["ped"]
67
+
68
+ # Initialize smoothing tracker
69
+ self.smoothing_tracker = None
70
+
71
+ # Initialize advanced tracker (will be created on first use)
72
+ self.tracker = None
73
+
74
+ # Initialize tracking state variables
75
+ self._total_frame_counter = 0
76
+ self._global_frame_offset = 0
77
+
78
+ # Track start time for "TOTAL SINCE" calculation
79
+ self._tracking_start_time = None
80
+
81
+ self._track_aliases: Dict[Any, Any] = {}
82
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
83
+ # Tunable parameters – adjust if necessary for specific scenarios
84
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
85
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
86
+
87
+ self._ascending_alert_list: List[int] = []
88
+ self.current_incident_end_timestamp: str = "N/A"
89
+
90
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
91
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
92
+ """
93
+ Main entry point for post-processing.
94
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
95
+ Returns a ProcessingResult with all relevant outputs.
96
+ """
97
+ start_time = time.time()
98
+ # Ensure config is correct type
99
+ if not isinstance(config, PedestrianDetectionConfig):
100
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
101
+ context=context)
102
+ if context is None:
103
+ context = ProcessingContext()
104
+
105
+ # Detect input format and store in context
106
+ input_format = match_results_structure(data)
107
+ context.input_format = input_format
108
+ context.confidence_threshold = config.confidence_threshold
109
+
110
+ if config.confidence_threshold is not None:
111
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
112
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
113
+ else:
114
+ processed_data = data
115
+
116
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
117
+
118
+ # Step 2: Apply category mapping if provided
119
+ if config.index_to_category:
120
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
121
+ self.logger.debug("Applied category mapping")
122
+
123
+ if config.target_categories:
124
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
125
+ self.logger.debug(f"Applied category filtering")
126
+
127
+ # Apply bbox smoothing if enabled
128
+ if config.enable_smoothing:
129
+ if self.smoothing_tracker is None:
130
+ smoothing_config = BBoxSmoothingConfig(
131
+ smoothing_algorithm=config.smoothing_algorithm,
132
+ window_size=config.smoothing_window_size,
133
+ cooldown_frames=config.smoothing_cooldown_frames,
134
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
135
+ confidence_range_factor=config.smoothing_confidence_range_factor,
136
+ enable_smoothing=True
137
+ )
138
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
139
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
140
+
141
+ # Advanced tracking (BYTETracker-like)
142
+ try:
143
+ from ..advanced_tracker import AdvancedTracker
144
+ from ..advanced_tracker.config import TrackerConfig
145
+
146
+ # Create tracker instance if it doesn't exist (preserves state across frames)
147
+ if self.tracker is None:
148
+ tracker_config = TrackerConfig()
149
+ self.tracker = AdvancedTracker(tracker_config)
150
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
151
+
152
+ # The tracker expects the data in the same format as input
153
+ # It will add track_id and frame_id to each detection
154
+ processed_data = self.tracker.update(processed_data)
155
+
156
+ except Exception as e:
157
+ # If advanced tracker fails, fallback to unsmoothed detections
158
+ self.logger.warning(f"AdvancedTracker failed: {e}")
159
+
160
+ # Update tracking state for total count per label
161
+ self._update_tracking_state(processed_data)
162
+
163
+ # Update frame counter
164
+ self._total_frame_counter += 1
165
+
166
+ # Extract frame information from stream_info
167
+ frame_number = None
168
+ if stream_info:
169
+ input_settings = stream_info.get("input_settings", {})
170
+ start_frame = input_settings.get("start_frame")
171
+ end_frame = input_settings.get("end_frame")
172
+ # If start and end frame are the same, it's a single frame
173
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
174
+ frame_number = start_frame
175
+
176
+ # Compute summaries and alerts
177
+ general_counting_summary = calculate_counting_summary(data)
178
+ counting_summary = self._count_categories(processed_data, config)
179
+ # Add total unique counts after tracking using only local state
180
+ total_counts = self.get_total_counts()
181
+ counting_summary['total_counts'] = total_counts
182
+
183
+ alerts = self._check_alerts(counting_summary, frame_number, config)
184
+ predictions = self._extract_predictions(processed_data)
185
+
186
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
187
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
188
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
189
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=True)
190
+ business_analytics_list = []
191
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
192
+
193
+ # Extract frame-based dictionaries from the lists
194
+ incidents = incidents_list[0] if incidents_list else {}
195
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
196
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
197
+ summary = summary_list[0] if summary_list else {}
198
+ agg_summary = {str(frame_number): {
199
+ "incidents": incidents,
200
+ "tracking_stats": tracking_stats,
201
+ "business_analytics": business_analytics,
202
+ "alerts": alerts,
203
+ "human_text": summary}
204
+ }
205
+
206
+ context.mark_completed()
207
+
208
+ # Build result object following the new pattern
209
+
210
+ result = self.create_result(
211
+ data={"agg_summary": agg_summary},
212
+ usecase=self.name,
213
+ category=self.category,
214
+ context=context
215
+ )
216
+
217
+ return result
218
+
219
+ def _check_alerts(self, summary: dict, frame_number:Any, config: PedestrianDetectionConfig) -> List[Dict]:
220
+ """
221
+ Check if any alert thresholds are exceeded and return alert dicts.
222
+ """
223
+ def get_trend(data, lookback=900, threshold=0.6):
224
+ '''
225
+ Determine if the trend is ascending or descending based on actual value progression.
226
+ Now works with values 0,1,2,3 (not just binary).
227
+ '''
228
+ window = data[-lookback:] if len(data) >= lookback else data
229
+ if len(window) < 2:
230
+ return True # not enough data to determine trend
231
+ increasing = 0
232
+ total = 0
233
+ for i in range(1, len(window)):
234
+ if window[i] >= window[i - 1]:
235
+ increasing += 1
236
+ total += 1
237
+ ratio = increasing / total
238
+ if ratio >= threshold:
239
+ return True
240
+ elif ratio <= (1 - threshold):
241
+ return False
242
+
243
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
244
+ alerts = []
245
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
246
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
247
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
248
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
249
+
250
+ if not config.alert_config:
251
+ return alerts
252
+
253
+ total = summary.get("total_count", 0)
254
+ #self._ascending_alert_list
255
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
256
+
257
+ for category, threshold in config.alert_config.count_thresholds.items():
258
+ if category == "all" and total > threshold:
259
+
260
+ alerts.append({
261
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
262
+ "alert_id": "alert_"+category+'_'+frame_key,
263
+ "incident_category": self.CASE_TYPE,
264
+ "threshold_level": threshold,
265
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
266
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
267
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
268
+ }
269
+ })
270
+ elif category in summary.get("per_category_count", {}):
271
+ count = summary.get("per_category_count", {})[category]
272
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
273
+ alerts.append({
274
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
275
+ "alert_id": "alert_"+category+'_'+frame_key,
276
+ "incident_category": self.CASE_TYPE,
277
+ "threshold_level": threshold,
278
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
279
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
280
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
281
+ }
282
+ })
283
+ else:
284
+ pass
285
+ return alerts
286
+
287
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: PedestrianDetectionConfig,
288
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
289
+ Dict]:
290
+ """Generate structured incidents for the output format with frame-based keys."""
291
+
292
+ incidents = []
293
+ total_detections = counting_summary.get("total_count", 0)
294
+ current_timestamp = self._get_current_timestamp_str(stream_info)
295
+ camera_info = self.get_camera_info_from_stream(stream_info)
296
+
297
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
298
+
299
+ if total_detections > 0:
300
+ # Determine event level based on thresholds
301
+ level = "low"
302
+ intensity = 5.0
303
+ start_timestamp = self._get_start_timestamp_str(stream_info)
304
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
305
+ self.current_incident_end_timestamp = 'Incident still active'
306
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
307
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
308
+ self.current_incident_end_timestamp = current_timestamp
309
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
310
+ self.current_incident_end_timestamp = 'N/A'
311
+
312
+ if config.alert_config and config.alert_config.count_thresholds:
313
+ threshold = config.alert_config.count_thresholds.get("all", 15)
314
+ intensity = min(10.0, (total_detections / threshold) * 10)
315
+
316
+ if intensity >= 9:
317
+ level = "critical"
318
+ self._ascending_alert_list.append(3)
319
+ elif intensity >= 7:
320
+ level = "significant"
321
+ self._ascending_alert_list.append(2)
322
+ elif intensity >= 5:
323
+ level = "medium"
324
+ self._ascending_alert_list.append(1)
325
+ else:
326
+ level = "low"
327
+ self._ascending_alert_list.append(0)
328
+ else:
329
+ if total_detections > 30:
330
+ level = "critical"
331
+ intensity = 10.0
332
+ self._ascending_alert_list.append(3)
333
+ elif total_detections > 25:
334
+ level = "significant"
335
+ intensity = 9.0
336
+ self._ascending_alert_list.append(2)
337
+ elif total_detections > 15:
338
+ level = "medium"
339
+ intensity = 7.0
340
+ self._ascending_alert_list.append(1)
341
+ else:
342
+ level = "low"
343
+ intensity = min(10.0, total_detections / 3.0)
344
+ self._ascending_alert_list.append(0)
345
+
346
+ # Generate human text in new format
347
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
348
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
349
+ human_text = "\n".join(human_text_lines)
350
+
351
+ alert_settings=[]
352
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
353
+ alert_settings.append({
354
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
355
+ "incident_category": self.CASE_TYPE,
356
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
357
+ "ascending": True,
358
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
359
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
360
+ }
361
+ })
362
+
363
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
364
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
365
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
366
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
367
+ incidents.append(event)
368
+
369
+ else:
370
+ self._ascending_alert_list.append(0)
371
+ incidents.append({})
372
+
373
+ return incidents
374
+
375
+ def _generate_tracking_stats(
376
+ self,
377
+ counting_summary: Dict,
378
+ alerts: List,
379
+ config: PedestrianDetectionConfig,
380
+ frame_number: Optional[int] = None,
381
+ stream_info: Optional[Dict[str, Any]] = None
382
+ ) -> List[Dict]:
383
+ """Generate structured tracking stats matching eg.json format."""
384
+ camera_info = self.get_camera_info_from_stream(stream_info)
385
+
386
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
387
+ # tracking_stats = [{frame_key: []}]
388
+ # frame_tracking_stats = tracking_stats[0][frame_key]
389
+ tracking_stats = []
390
+
391
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
392
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
393
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
394
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
395
+
396
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
397
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
398
+
399
+ # Create high precision timestamps for input_timestamp and reset_timestamp
400
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
401
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
402
+
403
+
404
+ # Build total_counts array in expected format
405
+ total_counts = []
406
+ for cat, count in total_counts_dict.items():
407
+ if count > 0:
408
+ total_counts.append({
409
+ "category": cat,
410
+ "count": count
411
+ })
412
+
413
+ # Build current_counts array in expected format
414
+ current_counts = []
415
+ for cat, count in per_category_count.items():
416
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
417
+ current_counts.append({
418
+ "category": cat,
419
+ "count": count
420
+ })
421
+
422
+ # Prepare detections without confidence scores (as per eg.json)
423
+ detections = []
424
+ for detection in counting_summary.get("detections", []):
425
+ bbox = detection.get("bounding_box", {})
426
+ category = detection.get("category", "person")
427
+ # Include segmentation if available (like in eg.json)
428
+ if detection.get("masks"):
429
+ segmentation= detection.get("masks", [])
430
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
431
+ elif detection.get("segmentation"):
432
+ segmentation= detection.get("segmentation")
433
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
434
+ elif detection.get("mask"):
435
+ segmentation= detection.get("mask")
436
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
437
+ else:
438
+ detection_obj = self.create_detection_object(category, bbox)
439
+ detections.append(detection_obj)
440
+
441
+ # Build alert_settings array in expected format
442
+ alert_settings = []
443
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
444
+ alert_settings.append({
445
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
446
+ "incident_category": self.CASE_TYPE,
447
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
448
+ "ascending": True,
449
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
450
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
451
+ }
452
+ })
453
+
454
+ # Generate human_text in expected format
455
+ human_text_lines = [f"Tracking Statistics:"]
456
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
457
+
458
+ for cat, count in per_category_count.items():
459
+ human_text_lines.append(f"\t{cat}: {count}")
460
+
461
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
462
+ for cat, count in total_counts_dict.items():
463
+ if count > 0:
464
+ human_text_lines.append(f"\t{cat}: {count}")
465
+
466
+ if alerts:
467
+ for alert in alerts:
468
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
469
+ else:
470
+ human_text_lines.append("Alerts: None")
471
+
472
+ human_text = "\n".join(human_text_lines)
473
+ reset_settings=[
474
+ {
475
+ "interval_type": "daily",
476
+ "reset_time": {
477
+ "value": 9,
478
+ "time_unit": "hour"
479
+ }
480
+ }
481
+ ]
482
+
483
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
484
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
485
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
486
+ reset_time=high_precision_reset_timestamp)
487
+
488
+ tracking_stats.append(tracking_stat)
489
+ return tracking_stats
490
+
491
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: PedestrianDetectionConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
492
+ """Generate standardized business analytics for the agg_summary structure."""
493
+ if is_empty:
494
+ return []
495
+
496
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
497
+ #camera_info = self.get_camera_info_from_stream(stream_info)
498
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
499
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
500
+ # reset_settings)
501
+ # return business_analytics
502
+
503
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
504
+ """
505
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
506
+ """
507
+ lines = {}
508
+ lines["Application Name"] = self.CASE_TYPE
509
+ lines["Application Version"] = self.CASE_VERSION
510
+ if len(incidents) > 0:
511
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
512
+ if len(tracking_stats) > 0:
513
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
514
+ if len(business_analytics) > 0:
515
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
516
+
517
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
518
+ lines["Summary"] = "No Summary Data"
519
+
520
+ return [lines]
521
+
522
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
523
+ """
524
+ Get detailed information about track IDs (per frame).
525
+ """
526
+ # Collect all track_ids in this frame
527
+ frame_track_ids = set()
528
+ for det in detections:
529
+ tid = det.get('track_id')
530
+ if tid is not None:
531
+ frame_track_ids.add(tid)
532
+ # Use persistent total set for unique counting
533
+ total_track_ids = set()
534
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
535
+ total_track_ids.update(s)
536
+ return {
537
+ "total_count": len(total_track_ids),
538
+ "current_frame_count": len(frame_track_ids),
539
+ "total_unique_track_ids": len(total_track_ids),
540
+ "current_frame_track_ids": list(frame_track_ids),
541
+ "last_update_time": time.time(),
542
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
543
+ }
544
+
545
+ def _update_tracking_state(self, detections: list):
546
+ """
547
+ Track unique categories track_ids per category for total count after tracking.
548
+ Applies canonical ID merging to avoid duplicate counting when the underlying
549
+ tracker loses an object temporarily and assigns a new ID.
550
+ """
551
+ # Lazily initialise storage dicts
552
+ if not hasattr(self, "_per_category_total_track_ids"):
553
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
554
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
555
+
556
+ for det in detections:
557
+ cat = det.get("category")
558
+ raw_track_id = det.get("track_id")
559
+ if cat not in self.target_categories or raw_track_id is None:
560
+ continue
561
+ bbox = det.get("bounding_box", det.get("bbox"))
562
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
563
+ # Propagate canonical ID back to detection so downstream logic uses it
564
+ det["track_id"] = canonical_id
565
+
566
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
567
+ self._current_frame_track_ids[cat].add(canonical_id)
568
+
569
+ def get_total_counts(self):
570
+ """
571
+ Return total unique track_id count for each category.
572
+ """
573
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
574
+
575
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
576
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
577
+ hours = int(timestamp // 3600)
578
+ minutes = int((timestamp % 3600) // 60)
579
+ seconds = round(float(timestamp % 60),2)
580
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
581
+
582
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
583
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
584
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
585
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
586
+
587
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
588
+ """Get formatted current timestamp based on stream type."""
589
+ if not stream_info:
590
+ return "00:00:00.00"
591
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
592
+ if precision:
593
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
594
+ if frame_id:
595
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
596
+ else:
597
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
598
+ stream_time_str = self._format_timestamp_for_video(start_time)
599
+ return stream_time_str
600
+ else:
601
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
602
+
603
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
604
+ if frame_id:
605
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
606
+ else:
607
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
608
+ stream_time_str = self._format_timestamp_for_video(start_time)
609
+ return stream_time_str
610
+ else:
611
+ # For streams, use stream_time from stream_info
612
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
613
+ if stream_time_str:
614
+ # Parse the high precision timestamp string to get timestamp
615
+ try:
616
+ # Remove " UTC" suffix and parse
617
+ timestamp_str = stream_time_str.replace(" UTC", "")
618
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
619
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
620
+ return self._format_timestamp_for_stream(timestamp)
621
+ except:
622
+ # Fallback to current time if parsing fails
623
+ return self._format_timestamp_for_stream(time.time())
624
+ else:
625
+ return self._format_timestamp_for_stream(time.time())
626
+
627
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
628
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
629
+ if not stream_info:
630
+ return "00:00:00"
631
+ if precision:
632
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
633
+ return "00:00:00"
634
+ else:
635
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
636
+
637
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
638
+ # If video format, start from 00:00:00
639
+ return "00:00:00"
640
+ else:
641
+ # For streams, use tracking start time or current time with minutes/seconds reset
642
+ if self._tracking_start_time is None:
643
+ # Try to extract timestamp from stream_time string
644
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
645
+ if stream_time_str:
646
+ try:
647
+ # Remove " UTC" suffix and parse
648
+ timestamp_str = stream_time_str.replace(" UTC", "")
649
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
650
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
651
+ except:
652
+ # Fallback to current time if parsing fails
653
+ self._tracking_start_time = time.time()
654
+ else:
655
+ self._tracking_start_time = time.time()
656
+
657
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
658
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
659
+ dt = dt.replace(minute=0, second=0, microsecond=0)
660
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
661
+
662
+ def _count_categories(self, detections: list, config: PedestrianDetectionConfig) -> dict:
663
+ """
664
+ Count the number of detections per category and return a summary dict.
665
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
666
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
667
+ """
668
+ counts = {}
669
+ for det in detections:
670
+ cat = det.get('category', 'unknown')
671
+ counts[cat] = counts.get(cat, 0) + 1
672
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
673
+ return {
674
+ "total_count": sum(counts.values()),
675
+ "per_category_count": counts,
676
+ "detections": [
677
+ {
678
+ "bounding_box": det.get("bounding_box"),
679
+ "category": det.get("category"),
680
+ "confidence": det.get("confidence"),
681
+ "track_id": det.get("track_id"),
682
+ "frame_id": det.get("frame_id")
683
+ }
684
+ for det in detections
685
+ ]
686
+ }
687
+
688
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
689
+ """
690
+ Extract prediction details for output (category, confidence, bounding box).
691
+ """
692
+ return [
693
+ {
694
+ "category": det.get("category", "unknown"),
695
+ "confidence": det.get("confidence", 0.0),
696
+ "bounding_box": det.get("bounding_box", {})
697
+ }
698
+ for det in detections
699
+ ]
700
+
701
+ # ------------------------------------------------------------------ #
702
+ # Canonical ID helpers #
703
+ # ------------------------------------------------------------------ #
704
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
705
+ """Compute IoU between two bounding boxes which may be dicts or lists.
706
+ Falls back to 0 when insufficient data is available."""
707
+
708
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
709
+ def _bbox_to_list(bbox):
710
+ if bbox is None:
711
+ return []
712
+ if isinstance(bbox, list):
713
+ return bbox[:4] if len(bbox) >= 4 else []
714
+ if isinstance(bbox, dict):
715
+ if "xmin" in bbox:
716
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
717
+ if "x1" in bbox:
718
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
719
+ # Fallback: first four numeric values
720
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
721
+ return values[:4] if len(values) >= 4 else []
722
+ return []
723
+
724
+ l1 = _bbox_to_list(box1)
725
+ l2 = _bbox_to_list(box2)
726
+ if len(l1) < 4 or len(l2) < 4:
727
+ return 0.0
728
+ x1_min, y1_min, x1_max, y1_max = l1
729
+ x2_min, y2_min, x2_max, y2_max = l2
730
+
731
+ # Ensure correct order
732
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
733
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
734
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
735
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
736
+
737
+ inter_x_min = max(x1_min, x2_min)
738
+ inter_y_min = max(y1_min, y2_min)
739
+ inter_x_max = min(x1_max, x2_max)
740
+ inter_y_max = min(y1_max, y2_max)
741
+
742
+ inter_w = max(0.0, inter_x_max - inter_x_min)
743
+ inter_h = max(0.0, inter_y_max - inter_y_min)
744
+ inter_area = inter_w * inter_h
745
+
746
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
747
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
748
+ union_area = area1 + area2 - inter_area
749
+
750
+ return (inter_area / union_area) if union_area > 0 else 0.0
751
+
752
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
753
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
754
+ tracks when IoU and temporal constraints indicate they represent the
755
+ same physical."""
756
+ if raw_id is None or bbox is None:
757
+ # Nothing to merge
758
+ return raw_id
759
+
760
+ now = time.time()
761
+
762
+ # Fast path – raw_id already mapped
763
+ if raw_id in self._track_aliases:
764
+ canonical_id = self._track_aliases[raw_id]
765
+ track_info = self._canonical_tracks.get(canonical_id)
766
+ if track_info is not None:
767
+ track_info["last_bbox"] = bbox
768
+ track_info["last_update"] = now
769
+ track_info["raw_ids"].add(raw_id)
770
+ return canonical_id
771
+
772
+ # Attempt to merge with an existing canonical track
773
+ for canonical_id, info in self._canonical_tracks.items():
774
+ # Only consider recently updated tracks
775
+ if now - info["last_update"] > self._track_merge_time_window:
776
+ continue
777
+ iou = self._compute_iou(bbox, info["last_bbox"])
778
+ if iou >= self._track_merge_iou_threshold:
779
+ # Merge
780
+ self._track_aliases[raw_id] = canonical_id
781
+ info["last_bbox"] = bbox
782
+ info["last_update"] = now
783
+ info["raw_ids"].add(raw_id)
784
+ return canonical_id
785
+
786
+ # No match – register new canonical track
787
+ canonical_id = raw_id
788
+ self._track_aliases[raw_id] = canonical_id
789
+ self._canonical_tracks[canonical_id] = {
790
+ "last_bbox": bbox,
791
+ "last_update": now,
792
+ "raw_ids": {raw_id},
793
+ }
794
+ return canonical_id
795
+
796
+ def _format_timestamp(self, timestamp: float) -> str:
797
+ """Format a timestamp for human-readable output."""
798
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
799
+
800
+ def _get_tracking_start_time(self) -> str:
801
+ """Get the tracking start time, formatted as a string."""
802
+ if self._tracking_start_time is None:
803
+ return "N/A"
804
+ return self._format_timestamp(self._tracking_start_time)
805
+
806
+ def _set_tracking_start_time(self) -> None:
807
+ """Set the tracking start time to the current time."""
808
+ self._tracking_start_time = time.time()