matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,810 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class SolarPanelConfig(BaseConfig):
25
+ """Configuration for solar panel detection use case in solar panel monitoring."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ #confidence thresholds
34
+ confidence_threshold: float = 0.3
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: ['panel', 'cracked']
38
+ )
39
+
40
+ target_categories: List[str] = field(
41
+ default_factory=lambda: ['panel', 'cracked']
42
+ )
43
+
44
+ alert_config: Optional[AlertConfig] = None
45
+
46
+ index_to_category: Optional[Dict[int, str]] = field(
47
+ default_factory=lambda: {
48
+ 0: "panel",
49
+ 1: "cracked"
50
+ }
51
+ )
52
+
53
+
54
+ class SolarPanelUseCase(BaseProcessor):
55
+ # Human-friendly display names for categories
56
+ CATEGORY_DISPLAY = {
57
+ "panel": "Panel",
58
+ "cracked": "Cracked"
59
+ }
60
+
61
+ def __init__(self):
62
+ super().__init__("solar_panel")
63
+ self.category = "energy"
64
+
65
+ self.CASE_TYPE: Optional[str] = 'solar_panel'
66
+ self.CASE_VERSION: Optional[str] = '1.3'
67
+
68
+ # List of categories to track
69
+ self.target_categories = ['panel', 'cracked']
70
+
71
+ # Initialize smoothing tracker
72
+ self.smoothing_tracker = None
73
+
74
+ # Initialize advanced tracker (will be created on first use)
75
+ self.tracker = None
76
+
77
+ # Initialize tracking state variables
78
+ self._total_frame_counter = 0
79
+ self._global_frame_offset = 0
80
+
81
+ # Track start time for "TOTAL SINCE" calculation
82
+ self._tracking_start_time = None
83
+
84
+ self._track_aliases: Dict[Any, Any] = {}
85
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
86
+ # Tunable parameters – adjust if necessary for specific scenarios
87
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
88
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
89
+
90
+ self._ascending_alert_list: List[int] = []
91
+ self.current_incident_end_timestamp: str = "N/A"
92
+
93
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
94
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
95
+ """
96
+ Main entry point for post-processing.
97
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
98
+ Returns a ProcessingResult with all relevant outputs.
99
+ """
100
+ start_time = time.time()
101
+ # Ensure config is correct type
102
+ if not isinstance(config, SolarPanelConfig):
103
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
104
+ context=context)
105
+ if context is None:
106
+ context = ProcessingContext()
107
+
108
+ # Detect input format and store in context
109
+ input_format = match_results_structure(data)
110
+ context.input_format = input_format
111
+ context.confidence_threshold = config.confidence_threshold
112
+
113
+ if config.confidence_threshold is not None:
114
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
115
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
116
+ else:
117
+ processed_data = data
118
+
119
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
120
+
121
+ # Step 2: Apply category mapping if provided
122
+ if config.index_to_category:
123
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
124
+ self.logger.debug("Applied category mapping")
125
+
126
+ if config.target_categories:
127
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
128
+ self.logger.debug(f"Applied category filtering")
129
+
130
+ # Apply bbox smoothing if enabled
131
+ if config.enable_smoothing:
132
+ if self.smoothing_tracker is None:
133
+ smoothing_config = BBoxSmoothingConfig(
134
+ smoothing_algorithm=config.smoothing_algorithm,
135
+ window_size=config.smoothing_window_size,
136
+ cooldown_frames=config.smoothing_cooldown_frames,
137
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
138
+ confidence_range_factor=config.smoothing_confidence_range_factor,
139
+ enable_smoothing=True
140
+ )
141
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
142
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
143
+
144
+ # Advanced tracking (BYTETracker-like)
145
+ try:
146
+ from ..advanced_tracker import AdvancedTracker
147
+ from ..advanced_tracker.config import TrackerConfig
148
+
149
+ # Create tracker instance if it doesn't exist (preserves state across frames)
150
+ if self.tracker is None:
151
+ tracker_config = TrackerConfig()
152
+ self.tracker = AdvancedTracker(tracker_config)
153
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
154
+
155
+ # The tracker expects the data in the same format as input
156
+ # It will add track_id and frame_id to each detection
157
+ processed_data = self.tracker.update(processed_data)
158
+
159
+ except Exception as e:
160
+ # If advanced tracker fails, fallback to unsmoothed detections
161
+ self.logger.warning(f"AdvancedTracker failed: {e}")
162
+
163
+ # Update tracking state for total count per label
164
+ self._update_tracking_state(processed_data)
165
+
166
+ # Update frame counter
167
+ self._total_frame_counter += 1
168
+
169
+ # Extract frame information from stream_info
170
+ frame_number = None
171
+ if stream_info:
172
+ input_settings = stream_info.get("input_settings", {})
173
+ start_frame = input_settings.get("start_frame")
174
+ end_frame = input_settings.get("end_frame")
175
+ # If start and end frame are the same, it's a single frame
176
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
177
+ frame_number = start_frame
178
+
179
+ # Compute summaries and alerts
180
+ general_counting_summary = calculate_counting_summary(data)
181
+ counting_summary = self._count_categories(processed_data, config)
182
+ # Add total unique counts after tracking using only local state
183
+ total_counts = self.get_total_counts()
184
+ counting_summary['total_counts'] = total_counts
185
+
186
+ alerts = self._check_alerts(counting_summary, frame_number, config)
187
+ predictions = self._extract_predictions(processed_data)
188
+
189
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
190
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
191
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
192
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info)
193
+ business_analytics_list = []
194
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
195
+
196
+ # Extract frame-based dictionaries from the lists
197
+ incidents = incidents_list[0] if incidents_list else {}
198
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
199
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
200
+ summary = summary_list[0] if summary_list else {}
201
+ agg_summary = {str(frame_number): {
202
+ "incidents": incidents,
203
+ "tracking_stats": tracking_stats,
204
+ "business_analytics": business_analytics,
205
+ "alerts": alerts,
206
+ "human_text": summary}
207
+ }
208
+
209
+
210
+ context.mark_completed()
211
+
212
+ # Build result object following the new pattern
213
+
214
+ result = self.create_result(
215
+ data={"agg_summary": agg_summary},
216
+ usecase=self.name,
217
+ category=self.category,
218
+ context=context
219
+ )
220
+
221
+ return result
222
+
223
+ def _check_alerts(self, summary: dict, frame_number:Any, config: SolarPanelConfig) -> List[Dict]:
224
+ """
225
+ Check if any alert thresholds are exceeded and return alert dicts.
226
+ """
227
+ def get_trend(data, lookback=900, threshold=0.6):
228
+ '''
229
+ Determine if the trend is ascending or descending based on actual value progression.
230
+ Now works with values 0,1,2,3 (not just binary).
231
+ '''
232
+ window = data[-lookback:] if len(data) >= lookback else data
233
+ if len(window) < 2:
234
+ return True # not enough data to determine trend
235
+ increasing = 0
236
+ total = 0
237
+ for i in range(1, len(window)):
238
+ if window[i] >= window[i - 1]:
239
+ increasing += 1
240
+ total += 1
241
+ ratio = increasing / total
242
+ if ratio >= threshold:
243
+ return True
244
+ elif ratio <= (1 - threshold):
245
+ return False
246
+
247
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
248
+ alerts = []
249
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
250
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
251
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
252
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
253
+
254
+ if not config.alert_config:
255
+ return alerts
256
+
257
+ total = summary.get("total_count", 0)
258
+ #self._ascending_alert_list
259
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
260
+
261
+ for category, threshold in config.alert_config.count_thresholds.items():
262
+ if category == "all" and total > threshold:
263
+
264
+ alerts.append({
265
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
266
+ "alert_id": "alert_"+category+'_'+frame_key,
267
+ "incident_category": self.CASE_TYPE,
268
+ "threshold_level": threshold,
269
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
270
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
271
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
272
+ }
273
+ })
274
+ elif category in summary.get("per_category_count", {}):
275
+ count = summary.get("per_category_count", {})[category]
276
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
277
+ alerts.append({
278
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
279
+ "alert_id": "alert_"+category+'_'+frame_key,
280
+ "incident_category": self.CASE_TYPE,
281
+ "threshold_level": threshold,
282
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
283
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
284
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
285
+ }
286
+ })
287
+ else:
288
+ pass
289
+ return alerts
290
+
291
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: SolarPanelConfig,
292
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
293
+ Dict]:
294
+ """Generate structured incidents for the output format with frame-based keys."""
295
+
296
+ incidents = []
297
+ total_detections = counting_summary.get("total_count", 0)
298
+ current_timestamp = self._get_current_timestamp_str(stream_info)
299
+ camera_info = self.get_camera_info_from_stream(stream_info)
300
+
301
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
302
+
303
+ if total_detections > 0:
304
+ # Determine event level based on thresholds
305
+ level = "low"
306
+ intensity = 5.0
307
+ start_timestamp = self._get_start_timestamp_str(stream_info)
308
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
309
+ self.current_incident_end_timestamp = 'Incident still active'
310
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
311
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
312
+ self.current_incident_end_timestamp = current_timestamp
313
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
314
+ self.current_incident_end_timestamp = 'N/A'
315
+
316
+ if config.alert_config and config.alert_config.count_thresholds:
317
+ threshold = config.alert_config.count_thresholds.get("all", 15)
318
+ intensity = min(10.0, (total_detections / threshold) * 10)
319
+
320
+ if intensity >= 9:
321
+ level = "critical"
322
+ self._ascending_alert_list.append(3)
323
+ elif intensity >= 7:
324
+ level = "significant"
325
+ self._ascending_alert_list.append(2)
326
+ elif intensity >= 5:
327
+ level = "medium"
328
+ self._ascending_alert_list.append(1)
329
+ else:
330
+ level = "low"
331
+ self._ascending_alert_list.append(0)
332
+ else:
333
+ if total_detections > 30:
334
+ level = "critical"
335
+ intensity = 10.0
336
+ self._ascending_alert_list.append(3)
337
+ elif total_detections > 25:
338
+ level = "significant"
339
+ intensity = 9.0
340
+ self._ascending_alert_list.append(2)
341
+ elif total_detections > 15:
342
+ level = "medium"
343
+ intensity = 7.0
344
+ self._ascending_alert_list.append(1)
345
+ else:
346
+ level = "low"
347
+ intensity = min(10.0, total_detections / 3.0)
348
+ self._ascending_alert_list.append(0)
349
+
350
+ # Generate human text in new format
351
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
352
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
353
+ human_text = "\n".join(human_text_lines)
354
+
355
+ alert_settings=[]
356
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
357
+ alert_settings.append({
358
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
359
+ "incident_category": self.CASE_TYPE,
360
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
361
+ "ascending": True,
362
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
363
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
364
+ }
365
+ })
366
+
367
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
368
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
369
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
370
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
371
+ incidents.append(event)
372
+
373
+ else:
374
+ self._ascending_alert_list.append(0)
375
+ incidents.append({})
376
+
377
+ return incidents
378
+
379
+ def _generate_tracking_stats(
380
+ self,
381
+ counting_summary: Dict,
382
+ alerts: List,
383
+ config: SolarPanelConfig,
384
+ frame_number: Optional[int] = None,
385
+ stream_info: Optional[Dict[str, Any]] = None
386
+ ) -> List[Dict]:
387
+ """Generate structured tracking stats matching eg.json format."""
388
+ camera_info = self.get_camera_info_from_stream(stream_info)
389
+
390
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
391
+ # tracking_stats = [{frame_key: []}]
392
+ # frame_tracking_stats = tracking_stats[0][frame_key]
393
+ tracking_stats = []
394
+
395
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
396
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
397
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
398
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
399
+
400
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
401
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
402
+
403
+ # Create high precision timestamps for input_timestamp and reset_timestamp
404
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
405
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
406
+
407
+
408
+ # Build total_counts array in expected format
409
+ total_counts = []
410
+ for cat, count in total_counts_dict.items():
411
+ if count > 0:
412
+ total_counts.append({
413
+ "category": cat,
414
+ "count": count
415
+ })
416
+
417
+ # Build current_counts array in expected format
418
+ current_counts = []
419
+ for cat, count in per_category_count.items():
420
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
421
+ current_counts.append({
422
+ "category": cat,
423
+ "count": count
424
+ })
425
+
426
+ # Prepare detections without confidence scores (as per eg.json)
427
+ detections = []
428
+
429
+ for detection in counting_summary.get("detections", []):
430
+ detection_data = {
431
+ "category": detection.get("category"),
432
+ "bounding_box": detection.get("bounding_box", {})
433
+ }
434
+ # Include segmentation if available (like in eg.json)
435
+ if detection.get("masks"):
436
+ detection_data["masks"] = detection.get("masks", [])
437
+ if detection.get("segmentation"):
438
+ detection_data["segmentation"] = detection.get("segmentation")
439
+ if detection.get("mask"):
440
+ detection_data["mask"] = detection.get("mask")
441
+ detections.append(detection_data)
442
+
443
+ # Build alert_settings array in expected format
444
+ alert_settings = []
445
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
446
+ alert_settings.append({
447
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
448
+ "incident_category": self.CASE_TYPE,
449
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
450
+ "ascending": True,
451
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
452
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
453
+ }
454
+ })
455
+
456
+ # Generate human_text in expected format
457
+ human_text_lines = [f"Tracking Statistics:"]
458
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
459
+
460
+ for cat, count in per_category_count.items():
461
+ human_text_lines.append(f"\t{cat}: {count}")
462
+
463
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
464
+ for cat, count in total_counts_dict.items():
465
+ if count > 0:
466
+ human_text_lines.append(f"\t{cat}: {count}")
467
+
468
+ if alerts:
469
+ for alert in alerts:
470
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
471
+ else:
472
+ human_text_lines.append("Alerts: None")
473
+
474
+ human_text = "\n".join(human_text_lines)
475
+ reset_settings=[
476
+ {
477
+ "interval_type": "daily",
478
+ "reset_time": {
479
+ "value": 9,
480
+ "time_unit": "hour"
481
+ }
482
+ }
483
+ ]
484
+
485
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
486
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
487
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
488
+ reset_time=high_precision_reset_timestamp)
489
+
490
+ tracking_stats.append(tracking_stat)
491
+ return tracking_stats
492
+
493
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: SolarPanelConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=True) -> List[Dict]:
494
+ """Generate standardized business analytics for the agg_summary structure."""
495
+ if is_empty:
496
+ return []
497
+
498
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
499
+ #camera_info = self.get_camera_info_from_stream(stream_info)
500
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
501
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
502
+ # reset_settings)
503
+ # return business_analytics
504
+
505
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
506
+ """
507
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
508
+ """
509
+ lines = {}
510
+ lines["Application Name"] = self.CASE_TYPE
511
+ lines["Application Version"] = self.CASE_VERSION
512
+ if len(incidents) > 0:
513
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
514
+ if len(tracking_stats) > 0:
515
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
516
+ if len(business_analytics) > 0:
517
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
518
+
519
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
520
+ lines["Summary"] = "No Summary Data"
521
+
522
+ return [lines]
523
+
524
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
525
+ """
526
+ Get detailed information about track IDs (per frame).
527
+ """
528
+ # Collect all track_ids in this frame
529
+ frame_track_ids = set()
530
+ for det in detections:
531
+ tid = det.get('track_id')
532
+ if tid is not None:
533
+ frame_track_ids.add(tid)
534
+ # Use persistent total set for unique counting
535
+ total_track_ids = set()
536
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
537
+ total_track_ids.update(s)
538
+ return {
539
+ "total_count": len(total_track_ids),
540
+ "current_frame_count": len(frame_track_ids),
541
+ "total_unique_track_ids": len(total_track_ids),
542
+ "current_frame_track_ids": list(frame_track_ids),
543
+ "last_update_time": time.time(),
544
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
545
+ }
546
+
547
+ def _update_tracking_state(self, detections: list):
548
+ """
549
+ Track unique categories track_ids per category for total count after tracking.
550
+ Applies canonical ID merging to avoid duplicate counting when the underlying
551
+ tracker loses an object temporarily and assigns a new ID.
552
+ """
553
+ # Lazily initialise storage dicts
554
+ if not hasattr(self, "_per_category_total_track_ids"):
555
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
556
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
557
+
558
+ for det in detections:
559
+ cat = det.get("category")
560
+ raw_track_id = det.get("track_id")
561
+ if cat not in self.target_categories or raw_track_id is None:
562
+ continue
563
+ bbox = det.get("bounding_box", det.get("bbox"))
564
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
565
+ # Propagate canonical ID back to detection so downstream logic uses it
566
+ det["track_id"] = canonical_id
567
+
568
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
569
+ self._current_frame_track_ids[cat].add(canonical_id)
570
+
571
+ def get_total_counts(self):
572
+ """
573
+ Return total unique track_id count for each category.
574
+ """
575
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
576
+
577
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
578
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
579
+ hours = int(timestamp // 3600)
580
+ minutes = int((timestamp % 3600) // 60)
581
+ seconds = round(float(timestamp % 60),2)
582
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
583
+
584
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
585
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
586
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
587
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
588
+
589
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
590
+ """Get formatted current timestamp based on stream type."""
591
+ if not stream_info:
592
+ return "00:00:00.00"
593
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
594
+ if precision:
595
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
596
+ if frame_id:
597
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
598
+ else:
599
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
600
+ stream_time_str = self._format_timestamp_for_video(start_time)
601
+ return stream_time_str
602
+ else:
603
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
604
+
605
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
606
+ if frame_id:
607
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
608
+ else:
609
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
610
+ stream_time_str = self._format_timestamp_for_video(start_time)
611
+ return stream_time_str
612
+ else:
613
+ # For streams, use stream_time from stream_info
614
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
615
+ if stream_time_str:
616
+ # Parse the high precision timestamp string to get timestamp
617
+ try:
618
+ # Remove " UTC" suffix and parse
619
+ timestamp_str = stream_time_str.replace(" UTC", "")
620
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
621
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
622
+ return self._format_timestamp_for_stream(timestamp)
623
+ except:
624
+ # Fallback to current time if parsing fails
625
+ return self._format_timestamp_for_stream(time.time())
626
+ else:
627
+ return self._format_timestamp_for_stream(time.time())
628
+
629
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
630
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
631
+ if not stream_info:
632
+ return "00:00:00"
633
+ if precision:
634
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
635
+ return "00:00:00"
636
+ else:
637
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
638
+
639
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
640
+ # If video format, start from 00:00:00
641
+ return "00:00:00"
642
+ else:
643
+ # For streams, use tracking start time or current time with minutes/seconds reset
644
+ if self._tracking_start_time is None:
645
+ # Try to extract timestamp from stream_time string
646
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
647
+ if stream_time_str:
648
+ try:
649
+ # Remove " UTC" suffix and parse
650
+ timestamp_str = stream_time_str.replace(" UTC", "")
651
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
652
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
653
+ except:
654
+ # Fallback to current time if parsing fails
655
+ self._tracking_start_time = time.time()
656
+ else:
657
+ self._tracking_start_time = time.time()
658
+
659
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
660
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
661
+ dt = dt.replace(minute=0, second=0, microsecond=0)
662
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
663
+
664
+ def _count_categories(self, detections: list, config: SolarPanelConfig) -> dict:
665
+ """
666
+ Count the number of detections per category and return a summary dict.
667
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
668
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
669
+ """
670
+ counts = {}
671
+ for det in detections:
672
+ cat = det.get('category', 'unknown')
673
+ counts[cat] = counts.get(cat, 0) + 1
674
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
675
+ return {
676
+ "total_count": sum(counts.values()),
677
+ "per_category_count": counts,
678
+ "detections": [
679
+ {
680
+ "bounding_box": det.get("bounding_box"),
681
+ "category": det.get("category"),
682
+ "confidence": det.get("confidence"),
683
+ "track_id": det.get("track_id"),
684
+ "frame_id": det.get("frame_id")
685
+ }
686
+ for det in detections
687
+ ]
688
+ }
689
+
690
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
691
+ """
692
+ Extract prediction details for output (category, confidence, bounding box).
693
+ """
694
+ return [
695
+ {
696
+ "category": det.get("category", "unknown"),
697
+ "confidence": det.get("confidence", 0.0),
698
+ "bounding_box": det.get("bounding_box", {})
699
+ }
700
+ for det in detections
701
+ ]
702
+
703
+ # ------------------------------------------------------------------ #
704
+ # Canonical ID helpers #
705
+ # ------------------------------------------------------------------ #
706
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
707
+ """Compute IoU between two bounding boxes which may be dicts or lists.
708
+ Falls back to 0 when insufficient data is available."""
709
+
710
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
711
+ def _bbox_to_list(bbox):
712
+ if bbox is None:
713
+ return []
714
+ if isinstance(bbox, list):
715
+ return bbox[:4] if len(bbox) >= 4 else []
716
+ if isinstance(bbox, dict):
717
+ if "xmin" in bbox:
718
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
719
+ if "x1" in bbox:
720
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
721
+ # Fallback: first four numeric values
722
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
723
+ return values[:4] if len(values) >= 4 else []
724
+ return []
725
+
726
+ l1 = _bbox_to_list(box1)
727
+ l2 = _bbox_to_list(box2)
728
+ if len(l1) < 4 or len(l2) < 4:
729
+ return 0.0
730
+ x1_min, y1_min, x1_max, y1_max = l1
731
+ x2_min, y2_min, x2_max, y2_max = l2
732
+
733
+ # Ensure correct order
734
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
735
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
736
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
737
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
738
+
739
+ inter_x_min = max(x1_min, x2_min)
740
+ inter_y_min = max(y1_min, y2_min)
741
+ inter_x_max = min(x1_max, x2_max)
742
+ inter_y_max = min(y1_max, y2_max)
743
+
744
+ inter_w = max(0.0, inter_x_max - inter_x_min)
745
+ inter_h = max(0.0, inter_y_max - inter_y_min)
746
+ inter_area = inter_w * inter_h
747
+
748
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
749
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
750
+ union_area = area1 + area2 - inter_area
751
+
752
+ return (inter_area / union_area) if union_area > 0 else 0.0
753
+
754
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
755
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
756
+ tracks when IoU and temporal constraints indicate they represent the
757
+ same physical."""
758
+ if raw_id is None or bbox is None:
759
+ # Nothing to merge
760
+ return raw_id
761
+
762
+ now = time.time()
763
+
764
+ # Fast path – raw_id already mapped
765
+ if raw_id in self._track_aliases:
766
+ canonical_id = self._track_aliases[raw_id]
767
+ track_info = self._canonical_tracks.get(canonical_id)
768
+ if track_info is not None:
769
+ track_info["last_bbox"] = bbox
770
+ track_info["last_update"] = now
771
+ track_info["raw_ids"].add(raw_id)
772
+ return canonical_id
773
+
774
+ # Attempt to merge with an existing canonical track
775
+ for canonical_id, info in self._canonical_tracks.items():
776
+ # Only consider recently updated tracks
777
+ if now - info["last_update"] > self._track_merge_time_window:
778
+ continue
779
+ iou = self._compute_iou(bbox, info["last_bbox"])
780
+ if iou >= self._track_merge_iou_threshold:
781
+ # Merge
782
+ self._track_aliases[raw_id] = canonical_id
783
+ info["last_bbox"] = bbox
784
+ info["last_update"] = now
785
+ info["raw_ids"].add(raw_id)
786
+ return canonical_id
787
+
788
+ # No match – register new canonical track
789
+ canonical_id = raw_id
790
+ self._track_aliases[raw_id] = canonical_id
791
+ self._canonical_tracks[canonical_id] = {
792
+ "last_bbox": bbox,
793
+ "last_update": now,
794
+ "raw_ids": {raw_id},
795
+ }
796
+ return canonical_id
797
+
798
+ def _format_timestamp(self, timestamp: float) -> str:
799
+ """Format a timestamp for human-readable output."""
800
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
801
+
802
+ def _get_tracking_start_time(self) -> str:
803
+ """Get the tracking start time, formatted as a string."""
804
+ if self._tracking_start_time is None:
805
+ return "N/A"
806
+ return self._format_timestamp(self._tracking_start_time)
807
+
808
+ def _set_tracking_start_time(self) -> None:
809
+ """Set the tracking start time to the current time."""
810
+ self._tracking_start_time = time.time()