matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,874 @@
1
+ """
2
+ Plaque Segmentation Use Case for Post-Processing
3
+
4
+ This module provides Plaque Segmentation functionality.
5
+
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+ from dataclasses import asdict
10
+ import time
11
+ from datetime import datetime, timezone
12
+
13
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
14
+ from ..utils import (
15
+ filter_by_confidence,
16
+ filter_by_categories,
17
+ apply_category_mapping,
18
+ count_objects_by_category,
19
+ count_objects_in_zones,
20
+ calculate_counting_summary,
21
+ match_results_structure,
22
+ bbox_smoothing,
23
+ BBoxSmoothingConfig,
24
+ BBoxSmoothingTracker
25
+ )
26
+ from dataclasses import dataclass, field
27
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
28
+
29
+
30
+ @dataclass
31
+ class PlaqueSegmentationConfig(BaseConfig):
32
+ """Configuration for PlaqueSegmentation detection use case in PlaqueSegmentation monitoring."""
33
+ # Smoothing configuration
34
+ enable_smoothing: bool = True
35
+ smoothing_algorithm: str = "observability" # "window" or "observability"
36
+ smoothing_window_size: int = 20
37
+ smoothing_cooldown_frames: int = 5
38
+ smoothing_confidence_range_factor: float = 0.5
39
+
40
+ #confidence thresholds
41
+ confidence_threshold: float = 0.6
42
+
43
+ usecase_categories: List[str] = field(
44
+ default_factory=lambda: ['stenosis']
45
+ )
46
+
47
+ target_categories: List[str] = field(
48
+ default_factory=lambda: ['stenosis']
49
+ )
50
+
51
+ alert_config: Optional[AlertConfig] = None
52
+
53
+ index_to_category: Optional[Dict[int, str]] = field(
54
+ default_factory=lambda: {
55
+ 0: "stenosis"
56
+ }
57
+ )
58
+
59
+
60
+ class PlaqueSegmentationUseCase(BaseProcessor):
61
+ # Human-friendly display names for categories
62
+ CATEGORY_DISPLAY = {
63
+ "Stenosis": "stenosis"
64
+ }
65
+
66
+ def __init__(self):
67
+ super().__init__("plaque_img_segmentation")
68
+ self.category = "healthcare"
69
+
70
+ # List of categories to track
71
+ self.target_categories = ['stenosis']
72
+
73
+ # Initialize smoothing tracker
74
+ self.smoothing_tracker = None
75
+
76
+ # Initialize advanced tracker (will be created on first use)
77
+ self.tracker = None
78
+
79
+ # Initialize tracking state variables
80
+ self._total_frame_counter = 0
81
+ self._global_frame_offset = 0
82
+
83
+ # Track start time for "TOTAL SINCE" calculation
84
+ self._tracking_start_time = None
85
+
86
+ # ------------------------------------------------------------------ #
87
+ # Canonical tracking aliasing to avoid duplicate counts #
88
+ # ------------------------------------------------------------------ #
89
+ # Maps raw tracker-generated IDs to stable canonical IDs that persist
90
+ # even if the underlying tracker re-assigns a new ID after a short
91
+ # interruption. This mirrors the logic used in people_counting to
92
+ # provide accurate unique counting.
93
+ self._track_aliases: Dict[Any, Any] = {}
94
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
95
+ # Tunable parameters – adjust if necessary for specific scenarios
96
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
97
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
98
+
99
+ self._ascending_alert_list: List[int] = []
100
+ self.current_incident_end_timestamp: str = "N/A"
101
+
102
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
103
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
104
+ """
105
+ Main entry point for post-processing.
106
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
107
+ Returns a ProcessingResult with all relevant outputs.
108
+ """
109
+ start_time = time.time()
110
+ # Ensure config is correct type
111
+ if not isinstance(config, PlaqueSegmentationConfig):
112
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
113
+ context=context)
114
+ if context is None:
115
+ context = ProcessingContext()
116
+
117
+ # Detect input format and store in context
118
+ input_format = match_results_structure(data)
119
+ context.input_format = input_format
120
+ context.confidence_threshold = config.confidence_threshold
121
+
122
+ if config.confidence_threshold is not None:
123
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
124
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
125
+ else:
126
+ processed_data = data
127
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
128
+
129
+ # Step 2: Apply category mapping if provided
130
+ if config.index_to_category:
131
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
132
+ self.logger.debug("Applied category mapping")
133
+
134
+ if config.target_categories:
135
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
136
+ self.logger.debug(f"Applied category filtering")
137
+
138
+ # Apply bbox smoothing if enabled
139
+ if config.enable_smoothing:
140
+ if self.smoothing_tracker is None:
141
+ smoothing_config = BBoxSmoothingConfig(
142
+ smoothing_algorithm=config.smoothing_algorithm,
143
+ window_size=config.smoothing_window_size,
144
+ cooldown_frames=config.smoothing_cooldown_frames,
145
+ confidence_threshold=config.confidence_threshold,
146
+ confidence_range_factor=config.smoothing_confidence_range_factor,
147
+ enable_smoothing=True
148
+ )
149
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
150
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
151
+
152
+
153
+ # Advanced tracking (BYTETracker-like)
154
+ try:
155
+ from ..advanced_tracker import AdvancedTracker
156
+ from ..advanced_tracker.config import TrackerConfig
157
+
158
+ # Create tracker instance if it doesn't exist (preserves state across frames)
159
+ if self.tracker is None:
160
+ tracker_config = TrackerConfig()
161
+ self.tracker = AdvancedTracker(tracker_config)
162
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
163
+
164
+ # The tracker expects the data in the same format as input
165
+ # It will add track_id and frame_id to each detection
166
+ processed_data = self.tracker.update(processed_data)
167
+
168
+ except Exception as e:
169
+ # If advanced tracker fails, fallback to unsmoothed detections
170
+ self.logger.warning(f"AdvancedTracker failed: {e}")
171
+
172
+ # Update tracking state for total count per label
173
+ self._update_tracking_state(processed_data)
174
+
175
+ # Update frame counter
176
+ self._total_frame_counter += 1
177
+
178
+ # Extract frame information from stream_info
179
+ frame_number = None
180
+ if stream_info:
181
+ input_settings = stream_info.get("input_settings", {})
182
+ start_frame = input_settings.get("start_frame")
183
+ end_frame = input_settings.get("end_frame")
184
+ # If start and end frame are the same, it's a single frame
185
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
186
+ frame_number = start_frame
187
+
188
+ # Compute summaries and alerts
189
+ general_counting_summary = calculate_counting_summary(data) #done
190
+ counting_summary = self._count_categories(processed_data, config) #done
191
+ # Add total unique counts after tracking using only local state
192
+ total_counts = self.get_total_counts() #done
193
+ counting_summary['total_counts'] = total_counts #done
194
+
195
+ alerts = self._check_alerts(counting_summary, frame_number, config)
196
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
197
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
198
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
199
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=True)
200
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
201
+
202
+ # Extract frame-based dictionaries from the lists
203
+ incidents = incidents_list[0] if incidents_list else {}
204
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
205
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
206
+ summary = summary_list[0] if summary_list else {}
207
+ agg_summary = {str(frame_number): {
208
+ "incidents": incidents,
209
+ "tracking_stats": tracking_stats,
210
+ "business_analytics": business_analytics,
211
+ "alerts": alerts,
212
+ "human_text": summary}
213
+ }
214
+ context.mark_completed()
215
+
216
+ # Build result object following the new pattern
217
+ result = self.create_result(
218
+ data={"agg_summary": agg_summary},
219
+ usecase=self.name,
220
+ category=self.category,
221
+ context=context
222
+ )
223
+
224
+ return result
225
+
226
+ def _check_alerts(self, summary: dict, frame_number:Any, config: PlaqueSegmentationConfig) -> List[Dict]:
227
+ """
228
+ Check if any alert thresholds are exceeded and return alert dicts.
229
+ """
230
+ def get_trend(data, lookback=900, threshold=0.6):
231
+ '''
232
+ Determine if the trend is ascending or descending based on actual value progression.
233
+ Now works with values 0,1,2,3 (not just binary).
234
+ '''
235
+ window = data[-lookback:] if len(data) >= lookback else data
236
+ if len(window) < 2:
237
+ return True # not enough data to determine trend
238
+ increasing = 0
239
+ total = 0
240
+ for i in range(1, len(window)):
241
+ if window[i] >= window[i - 1]:
242
+ increasing += 1
243
+ total += 1
244
+ ratio = increasing / total
245
+ if ratio >= threshold:
246
+ return True
247
+ elif ratio <= (1 - threshold):
248
+ return False
249
+
250
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
251
+ alerts = []
252
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
253
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
254
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
255
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
256
+
257
+ if not config.alert_config:
258
+ return alerts
259
+
260
+ total = summary.get("total_count", 0)
261
+ #self._ascending_alert_list
262
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
263
+
264
+ for category, threshold in config.alert_config.count_thresholds.items():
265
+ if category == "all" and total > threshold:
266
+
267
+ alerts.append({
268
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
269
+ "alert_id": "alert_"+category+'_'+frame_key,
270
+ "incident_category": self.CASE_TYPE,
271
+ "threshold_level": threshold,
272
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
273
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
274
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
275
+ }
276
+ })
277
+ elif category in summary.get("per_category_count", {}):
278
+ count = summary.get("per_category_count", {})[category]
279
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
280
+ alerts.append({
281
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
282
+ "alert_id": "alert_"+category+'_'+frame_key,
283
+ "incident_category": self.CASE_TYPE,
284
+ "threshold_level": threshold,
285
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
286
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
287
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
288
+ }
289
+ })
290
+ else:
291
+ pass
292
+ return alerts
293
+
294
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: PlaqueSegmentationConfig,
295
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
296
+ Dict]:
297
+ """Generate structured incidents for the output format with frame-based keys."""
298
+
299
+ incidents = []
300
+ total_detections = counting_summary.get("total_count", 0)
301
+ current_timestamp = self._get_current_timestamp_str(stream_info)
302
+ camera_info = self.get_camera_info_from_stream(stream_info)
303
+
304
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
305
+
306
+ if total_detections > 0:
307
+ # Determine event level based on thresholds
308
+ level = "low"
309
+ intensity = 5.0
310
+ start_timestamp = self._get_start_timestamp_str(stream_info)
311
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
312
+ self.current_incident_end_timestamp = 'Incident still active'
313
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
314
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
315
+ self.current_incident_end_timestamp = current_timestamp
316
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
317
+ self.current_incident_end_timestamp = 'N/A'
318
+
319
+ if config.alert_config and config.alert_config.count_thresholds:
320
+ threshold = config.alert_config.count_thresholds.get("all", 15)
321
+ intensity = min(10.0, (total_detections / threshold) * 10)
322
+
323
+ if intensity >= 9:
324
+ level = "critical"
325
+ self._ascending_alert_list.append(3)
326
+ elif intensity >= 7:
327
+ level = "significant"
328
+ self._ascending_alert_list.append(2)
329
+ elif intensity >= 5:
330
+ level = "medium"
331
+ self._ascending_alert_list.append(1)
332
+ else:
333
+ level = "low"
334
+ self._ascending_alert_list.append(0)
335
+ else:
336
+ if total_detections > 30:
337
+ level = "critical"
338
+ intensity = 10.0
339
+ self._ascending_alert_list.append(3)
340
+ elif total_detections > 25:
341
+ level = "significant"
342
+ intensity = 9.0
343
+ self._ascending_alert_list.append(2)
344
+ elif total_detections > 15:
345
+ level = "medium"
346
+ intensity = 7.0
347
+ self._ascending_alert_list.append(1)
348
+ else:
349
+ level = "low"
350
+ intensity = min(10.0, total_detections / 3.0)
351
+ self._ascending_alert_list.append(0)
352
+
353
+ # Generate human text in new format
354
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
355
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
356
+ human_text = "\n".join(human_text_lines)
357
+
358
+ alert_settings=[]
359
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
360
+ alert_settings.append({
361
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
362
+ "incident_category": self.CASE_TYPE,
363
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
364
+ "ascending": True,
365
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
366
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
367
+ }
368
+ })
369
+
370
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
371
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
372
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
373
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
374
+ incidents.append(event)
375
+
376
+ else:
377
+ self._ascending_alert_list.append(0)
378
+ incidents.append({})
379
+
380
+ return incidents
381
+
382
+ def _generate_tracking_stats(
383
+ self,
384
+ counting_summary: Dict,
385
+ alerts: List,
386
+ config: PlaqueSegmentationConfig,
387
+ frame_number: Optional[int] = None,
388
+ stream_info: Optional[Dict[str, Any]] = None
389
+ ) -> List[Dict]:
390
+ """Generate structured tracking stats matching eg.json format."""
391
+ camera_info = self.get_camera_info_from_stream(stream_info)
392
+
393
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
394
+ # tracking_stats = [{frame_key: []}]
395
+ # frame_tracking_stats = tracking_stats[0][frame_key]
396
+ tracking_stats = []
397
+
398
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
399
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
400
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
401
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
402
+
403
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
404
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
405
+
406
+ # Create high precision timestamps for input_timestamp and reset_timestamp
407
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
408
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
409
+
410
+ # Build total_counts array in expected format
411
+ total_counts = []
412
+ for cat, count in total_counts_dict.items():
413
+ if count > 0:
414
+ total_counts.append({
415
+ "category": cat,
416
+ "count": count
417
+ })
418
+
419
+ # Build current_counts array in expected format
420
+ current_counts = []
421
+ for cat, count in per_category_count.items():
422
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
423
+ current_counts.append({
424
+ "category": cat,
425
+ "count": count
426
+ })
427
+
428
+ # Prepare detections without confidence scores (as per eg.json)
429
+ detections = []
430
+ for detection in counting_summary.get("detections", []):
431
+ bbox = detection.get("bounding_box", {})
432
+ category = detection.get("category", "unknown")
433
+ # Include segmentation if available (like in eg.json)
434
+ if detection.get("masks"):
435
+ segmentation= detection.get("masks", [])
436
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
437
+ elif detection.get("segmentation"):
438
+ segmentation= detection.get("segmentation")
439
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
440
+ elif detection.get("mask"):
441
+ segmentation= detection.get("mask")
442
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
443
+ else:
444
+ detection_obj = self.create_detection_object(category, bbox)
445
+ detections.append(detection_obj)
446
+
447
+ # Build alert_settings array in expected format
448
+ alert_settings = []
449
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
450
+ alert_settings.append({
451
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
452
+ "incident_category": self.CASE_TYPE,
453
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
454
+ "ascending": True,
455
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
456
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
457
+ }
458
+ })
459
+
460
+ # Generate human_text in expected format
461
+ human_text_lines = [f"Tracking Statistics:"]
462
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
463
+
464
+ for cat, count in per_category_count.items():
465
+ human_text_lines.append(f"\t{cat}: {count}")
466
+
467
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
468
+ for cat, count in total_counts_dict.items():
469
+ if count > 0:
470
+ human_text_lines.append(f"\t{cat}: {count}")
471
+
472
+ if alerts:
473
+ for alert in alerts:
474
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
475
+ else:
476
+ human_text_lines.append("Alerts: None")
477
+
478
+ human_text = "\n".join(human_text_lines)
479
+ reset_settings=[
480
+ {
481
+ "interval_type": "daily",
482
+ "reset_time": {
483
+ "value": 9,
484
+ "time_unit": "hour"
485
+ }
486
+ }
487
+ ]
488
+
489
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
490
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
491
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
492
+ reset_time=high_precision_reset_timestamp)
493
+
494
+ tracking_stats.append(tracking_stat)
495
+ return tracking_stats
496
+
497
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: PlaqueSegmentationConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
498
+ """Generate standardized business analytics for the agg_summary structure."""
499
+ if is_empty:
500
+ return []
501
+
502
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
503
+ #camera_info = self.get_camera_info_from_stream(stream_info)
504
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
505
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
506
+ # reset_settings)
507
+ # return business_analytics
508
+
509
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
510
+ """
511
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
512
+ """
513
+ lines = {}
514
+ lines["Application Name"] = self.CASE_TYPE
515
+ lines["Application Version"] = self.CASE_VERSION
516
+ if len(incidents) > 0:
517
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
518
+ if len(tracking_stats) > 0:
519
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
520
+ if len(business_analytics) > 0:
521
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
522
+
523
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
524
+ lines["Summary"] = "No Summary Data"
525
+
526
+ return [lines]
527
+
528
+ def _count_categories(self, detections: list, config: PlaqueSegmentationConfig) -> dict:
529
+ """
530
+ Count the number of detections per category and return a summary dict.
531
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
532
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
533
+ """
534
+ counts = {}
535
+ for det in detections:
536
+ cat = det.get('category', 'unknown')
537
+ counts[cat] = counts.get(cat, 0) + 1
538
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
539
+ return {
540
+ "total_count": sum(counts.values()),
541
+ "per_category_count": counts,
542
+ "detections": [
543
+ {
544
+ "bounding_box": det.get("bounding_box"),
545
+ "category": det.get("category"),
546
+ "confidence": det.get("confidence"),
547
+ "track_id": det.get("track_id"),
548
+ "frame_id": det.get("frame_id")
549
+ }
550
+ for det in detections
551
+ ]
552
+ }
553
+
554
+ def _generate_insights(self, summary: dict, config: PlaqueSegmentationConfig) -> List[str]:
555
+ """
556
+ Generate human-readable insights for each category.
557
+ """
558
+ insights = []
559
+ per_cat = summary.get("per_category_count", {})
560
+ total_detections = summary.get("total_count", 0)
561
+
562
+ if total_detections == 0:
563
+ insights.append("No detections in the scene")
564
+ return insights
565
+ insights.append(f"EVENT: Detected {total_detections} in the scene")
566
+ # Intensity calculation based on threshold percentage
567
+ intensity_threshold = None
568
+ if (config.alert_config and
569
+ config.alert_config.count_thresholds and
570
+ "all" in config.alert_config.count_thresholds):
571
+ intensity_threshold = config.alert_config.count_thresholds["all"]
572
+
573
+ if intensity_threshold is not None:
574
+ # Calculate percentage relative to threshold
575
+ percentage = (total_detections / intensity_threshold) * 100
576
+
577
+ if percentage < 20:
578
+ insights.append(f"INTENSITY: Low congestion in the scene ({percentage:.1f}% of capacity)")
579
+ elif percentage <= 50:
580
+ insights.append(f"INTENSITY: Moderate congestion in the scene ({percentage:.1f}% of capacity)")
581
+ elif percentage <= 70:
582
+ insights.append(f"INTENSITY: Heavy congestion in the scene ({percentage:.1f}% of capacity)")
583
+ else:
584
+ insights.append(f"INTENSITY: Severe congestion in the scene ({percentage:.1f}% of capacity)")
585
+
586
+
587
+ for cat, count in per_cat.items():
588
+ display = self.CATEGORY_DISPLAY.get(cat, cat)
589
+ insights.append(f"{display}:{count}")
590
+ return insights
591
+
592
+
593
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
594
+ """
595
+ Extract prediction details for output (category, confidence, bounding box).
596
+ """
597
+ return [
598
+ {
599
+ "category": det.get("category", "unknown"),
600
+ "confidence": det.get("confidence", 0.0),
601
+ "bounding_box": det.get("bounding_box", {})
602
+ }
603
+ for det in detections
604
+ ]
605
+
606
+ def _generate_summary(self, summary: dict, alerts: List) -> str:
607
+ """
608
+ Generate a human_text string for the result, including per-category insights if available.
609
+ Adds a tab before each label for better formatting.
610
+ Also always includes the cumulative count so far.
611
+ """
612
+ total = summary.get("total_count", 0)
613
+ per_cat = summary.get("per_category_count", {})
614
+ cumulative = summary.get("total_counts", {})
615
+ cumulative_total = sum(cumulative.values()) if cumulative else 0
616
+ lines = []
617
+ if total > 0:
618
+ lines.append(f"{total} detections")
619
+ if per_cat:
620
+ lines.append("detections:")
621
+ for cat, count in per_cat.items():
622
+ lines.append(f"\t{cat}:{count}")
623
+ else:
624
+ lines.append("No detections")
625
+ lines.append(f"Total detections: {cumulative_total}")
626
+ if alerts:
627
+ lines.append(f"{len(alerts)} alert(s)")
628
+ return "\n".join(lines)
629
+
630
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
631
+ """
632
+ Get detailed information about track IDs (per frame).
633
+ """
634
+ # Collect all track_ids in this frame
635
+ frame_track_ids = set()
636
+ for det in detections:
637
+ tid = det.get('track_id')
638
+ if tid is not None:
639
+ frame_track_ids.add(tid)
640
+ # Use persistent total set for unique counting
641
+ total_track_ids = set()
642
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
643
+ total_track_ids.update(s)
644
+ return {
645
+ "total_count": len(total_track_ids),
646
+ "current_frame_count": len(frame_track_ids),
647
+ "total_unique_track_ids": len(total_track_ids),
648
+ "current_frame_track_ids": list(frame_track_ids),
649
+ "last_update_time": time.time(),
650
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
651
+ }
652
+
653
+ def _update_tracking_state(self, detections: list):
654
+ """
655
+ Track unique categories track_ids per category for total count after tracking.
656
+ Applies canonical ID merging to avoid duplicate counting when the underlying
657
+ tracker loses an object temporarily and assigns a new ID.
658
+ """
659
+ # Lazily initialise storage dicts
660
+ if not hasattr(self, "_per_category_total_track_ids"):
661
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
662
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
663
+
664
+ for det in detections:
665
+ cat = det.get("category")
666
+ raw_track_id = det.get("track_id")
667
+ if cat not in self.target_categories or raw_track_id is None:
668
+ continue
669
+ bbox = det.get("bounding_box", det.get("bbox"))
670
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
671
+ # Propagate canonical ID back to detection so downstream logic uses it
672
+ det["track_id"] = canonical_id
673
+
674
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
675
+ self._current_frame_track_ids[cat].add(canonical_id)
676
+
677
+ def get_total_counts(self):
678
+ """
679
+ Return total unique track_id count for each category.
680
+ """
681
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
682
+
683
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
684
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
685
+ hours = int(timestamp // 3600)
686
+ minutes = int((timestamp % 3600) // 60)
687
+ seconds = timestamp % 60
688
+ return f"{hours:02d}:{minutes:02d}:{seconds:06.2f}"
689
+
690
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
691
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
692
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
693
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
694
+
695
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
696
+ """Get formatted current timestamp based on stream type."""
697
+ if not stream_info:
698
+ return "00:00:00.00"
699
+
700
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
701
+ if precision:
702
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
703
+ stream_time_str = stream_info.get("video_timestamp", "")
704
+ return stream_time_str[:8]
705
+ else:
706
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
707
+
708
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
709
+ # If video format, return video timestamp
710
+ stream_time_str = stream_info.get("video_timestamp", "")
711
+ return stream_time_str[:8]
712
+ else:
713
+ # For streams, use stream_time from stream_info
714
+ stream_time_str = stream_info.get("stream_time", "")
715
+ if stream_time_str:
716
+ # Parse the high precision timestamp string to get timestamp
717
+ try:
718
+ # Remove " UTC" suffix and parse
719
+ timestamp_str = stream_time_str.replace(" UTC", "")
720
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
721
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
722
+ return self._format_timestamp_for_stream(timestamp)
723
+ except:
724
+ # Fallback to current time if parsing fails
725
+ return self._format_timestamp_for_stream(time.time())
726
+ else:
727
+ return self._format_timestamp_for_stream(time.time())
728
+
729
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
730
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
731
+ if not stream_info:
732
+ return "00:00:00"
733
+
734
+ is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
735
+ if precision:
736
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
737
+ return "00:00:00"
738
+ else:
739
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
740
+
741
+
742
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
743
+ # If video format, start from 00:00:00
744
+ return "00:00:00"
745
+ else:
746
+ # For streams, use tracking start time or current time with minutes/seconds reset
747
+ if self._tracking_start_time is None:
748
+ # Try to extract timestamp from stream_time string
749
+ stream_time_str = stream_info.get("stream_time", "")
750
+ if stream_time_str:
751
+ try:
752
+ # Remove " UTC" suffix and parse
753
+ timestamp_str = stream_time_str.replace(" UTC", "")
754
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
755
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
756
+ except:
757
+ # Fallback to current time if parsing fails
758
+ self._tracking_start_time = time.time()
759
+ else:
760
+ self._tracking_start_time = time.time()
761
+
762
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
763
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
764
+ dt = dt.replace(minute=0, second=0, microsecond=0)
765
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
766
+
767
+ # ------------------------------------------------------------------ #
768
+ # Canonical ID helpers #
769
+ # ------------------------------------------------------------------ #
770
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
771
+ """Compute IoU between two bounding boxes which may be dicts or lists.
772
+ Falls back to 0 when insufficient data is available."""
773
+
774
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
775
+ def _bbox_to_list(bbox):
776
+ if bbox is None:
777
+ return []
778
+ if isinstance(bbox, list):
779
+ return bbox[:4] if len(bbox) >= 4 else []
780
+ if isinstance(bbox, dict):
781
+ if "xmin" in bbox:
782
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
783
+ if "x1" in bbox:
784
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
785
+ # Fallback: first four numeric values
786
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
787
+ return values[:4] if len(values) >= 4 else []
788
+ return []
789
+
790
+ l1 = _bbox_to_list(box1)
791
+ l2 = _bbox_to_list(box2)
792
+ if len(l1) < 4 or len(l2) < 4:
793
+ return 0.0
794
+ x1_min, y1_min, x1_max, y1_max = l1
795
+ x2_min, y2_min, x2_max, y2_max = l2
796
+
797
+ # Ensure correct order
798
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
799
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
800
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
801
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
802
+
803
+ inter_x_min = max(x1_min, x2_min)
804
+ inter_y_min = max(y1_min, y2_min)
805
+ inter_x_max = min(x1_max, x2_max)
806
+ inter_y_max = min(y1_max, y2_max)
807
+
808
+ inter_w = max(0.0, inter_x_max - inter_x_min)
809
+ inter_h = max(0.0, inter_y_max - inter_y_min)
810
+ inter_area = inter_w * inter_h
811
+
812
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
813
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
814
+ union_area = area1 + area2 - inter_area
815
+
816
+ return (inter_area / union_area) if union_area > 0 else 0.0
817
+
818
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
819
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
820
+ tracks when IoU and temporal constraints indicate they represent the
821
+ same physical."""
822
+ if raw_id is None or bbox is None:
823
+ # Nothing to merge
824
+ return raw_id
825
+
826
+ now = time.time()
827
+
828
+ # Fast path – raw_id already mapped
829
+ if raw_id in self._track_aliases:
830
+ canonical_id = self._track_aliases[raw_id]
831
+ track_info = self._canonical_tracks.get(canonical_id)
832
+ if track_info is not None:
833
+ track_info["last_bbox"] = bbox
834
+ track_info["last_update"] = now
835
+ track_info["raw_ids"].add(raw_id)
836
+ return canonical_id
837
+
838
+ # Attempt to merge with an existing canonical track
839
+ for canonical_id, info in self._canonical_tracks.items():
840
+ # Only consider recently updated tracks
841
+ if now - info["last_update"] > self._track_merge_time_window:
842
+ continue
843
+ iou = self._compute_iou(bbox, info["last_bbox"])
844
+ if iou >= self._track_merge_iou_threshold:
845
+ # Merge
846
+ self._track_aliases[raw_id] = canonical_id
847
+ info["last_bbox"] = bbox
848
+ info["last_update"] = now
849
+ info["raw_ids"].add(raw_id)
850
+ return canonical_id
851
+
852
+ # No match – register new canonical track
853
+ canonical_id = raw_id
854
+ self._track_aliases[raw_id] = canonical_id
855
+ self._canonical_tracks[canonical_id] = {
856
+ "last_bbox": bbox,
857
+ "last_update": now,
858
+ "raw_ids": {raw_id},
859
+ }
860
+ return canonical_id
861
+
862
+ def _format_timestamp(self, timestamp: float) -> str:
863
+ """Format a timestamp for human-readable output."""
864
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
865
+
866
+ def _get_tracking_start_time(self) -> str:
867
+ """Get the tracking start time, formatted as a string."""
868
+ if self._tracking_start_time is None:
869
+ return "N/A"
870
+ return self._format_timestamp(self._tracking_start_time)
871
+
872
+ def _set_tracking_start_time(self) -> None:
873
+ """Set the tracking start time to the current time."""
874
+ self._tracking_start_time = time.time()