matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,897 @@
1
+ """
2
+ Cell Segmentation in Microscopy Images Use Case for Post-Processing
3
+
4
+ This module provides cell microscopy segmenatation.
5
+ """
6
+
7
+ from typing import Any, Dict, List, Optional
8
+ from dataclasses import asdict
9
+ import time
10
+ from datetime import datetime, timezone
11
+ import copy # Added for deep copying detections to preserve original masks
12
+
13
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
14
+ from ..utils import (
15
+ filter_by_confidence,
16
+ filter_by_categories,
17
+ apply_category_mapping,
18
+ count_objects_by_category,
19
+ count_objects_in_zones,
20
+ calculate_counting_summary,
21
+ match_results_structure,
22
+ bbox_smoothing,
23
+ BBoxSmoothingConfig,
24
+ BBoxSmoothingTracker
25
+ )
26
+ from dataclasses import dataclass, field
27
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
28
+
29
+
30
+ @dataclass
31
+ class CellMicroscopyConfig(BaseConfig):
32
+ """Configuration for Cell segmentation in microscopy images use case for post-processing."""
33
+ # Smoothing configuration
34
+ enable_smoothing: bool = True
35
+ smoothing_algorithm: str = "observability" # "window" or "observability"
36
+ smoothing_window_size: int = 20
37
+ smoothing_cooldown_frames: int = 5
38
+ smoothing_confidence_range_factor: float = 0.5
39
+
40
+ # confidence thresholds
41
+ confidence_threshold: float = 0.5
42
+
43
+ usecase_categories: List[str] = field(
44
+ default_factory=lambda: ['Culture']
45
+ )
46
+
47
+ target_categories: List[str] = field(
48
+ default_factory=lambda: ['Culture']
49
+ )
50
+
51
+ alert_config: Optional[AlertConfig] = None
52
+
53
+ index_to_category: Optional[Dict[int, str]] = field(
54
+ default_factory=lambda: {
55
+ 0: "Culture"
56
+ }
57
+ )
58
+
59
+
60
+ class CellMicroscopyUseCase(BaseProcessor):
61
+
62
+ # Human-friendly display names for categories
63
+ CATEGORY_DISPLAY = {
64
+ "Culture": "Culture"
65
+ }
66
+ def __init__(self):
67
+ super().__init__("cell_microscopy_segmentation")
68
+ self.category = "healthcare"
69
+
70
+ # List of categories to track
71
+ self.target_categories = ["Culture"]
72
+
73
+ self.CASE_TYPE: Optional[str] = 'cell_microscopy_segmentation'
74
+ self.CASE_VERSION: Optional[str] = '1.0'
75
+
76
+ # Initialize smoothing tracker
77
+ self.smoothing_tracker = None
78
+
79
+ # Initialize advanced tracker (will be created on first use)
80
+ self.tracker = None
81
+
82
+ # Initialize tracking state variables
83
+ self._total_frame_counter = 0
84
+ self._global_frame_offset = 0
85
+
86
+ # Track start time for "TOTAL SINCE" calculation
87
+ self._tracking_start_time = None
88
+
89
+ # ------------------------------------------------------------------ #
90
+ # Canonical tracking aliasing to avoid duplicate counts #
91
+ # ------------------------------------------------------------------ #
92
+ # Maps raw tracker-generated IDs to stable canonical IDs that persist
93
+ # even if the underlying tracker re-assigns a new ID after a short
94
+ # interruption. This mirrors the logic used in people_counting to
95
+ # provide accurate unique counting.
96
+ self._track_aliases: Dict[Any, Any] = {}
97
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
98
+ # Tunable parameters – adjust if necessary for specific scenarios
99
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
100
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
101
+
102
+ self._ascending_alert_list: List[int] = []
103
+ self.current_incident_end_timestamp: str = "N/A"
104
+
105
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
106
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
107
+ """
108
+ Main entry point for post-processing.
109
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
110
+ Returns a ProcessingResult with all relevant outputs.
111
+ """
112
+ start_time = time.time()
113
+ # Ensure config is correct type
114
+ if not isinstance(config, CellMicroscopyConfig):
115
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
116
+ context=context)
117
+ if context is None:
118
+ context = ProcessingContext()
119
+
120
+ # Detect input format and store in context
121
+ input_format = match_results_structure(data)
122
+ context.input_format = input_format
123
+ context.confidence_threshold = config.confidence_threshold
124
+
125
+ # Step 1: Confidence filtering
126
+ if config.confidence_threshold is not None:
127
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
128
+ else:
129
+ processed_data = data
130
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
131
+
132
+ # Step 2: Apply category mapping if provided
133
+ if config.index_to_category:
134
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
135
+
136
+ # Step 3: Category filtering
137
+ if config.target_categories:
138
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
139
+
140
+ # Step 4: Apply bbox smoothing if enabled
141
+ # Deep-copy detections so that we preserve the original masks before any
142
+ # smoothing/tracking logic potentially removes them.
143
+ raw_processed_data = [copy.deepcopy(det) for det in processed_data]
144
+ if config.enable_smoothing:
145
+ if self.smoothing_tracker is None:
146
+ smoothing_config = BBoxSmoothingConfig(
147
+ smoothing_algorithm=config.smoothing_algorithm,
148
+ window_size=config.smoothing_window_size,
149
+ cooldown_frames=config.smoothing_cooldown_frames,
150
+ confidence_threshold=config.confidence_threshold,
151
+ confidence_range_factor=config.smoothing_confidence_range_factor,
152
+ enable_smoothing=True
153
+ )
154
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
155
+
156
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
157
+ # Restore masks after smoothing
158
+
159
+ # Step 5: Advanced tracking (BYTETracker-like)
160
+ try:
161
+ from ..advanced_tracker import AdvancedTracker
162
+ from ..advanced_tracker.config import TrackerConfig
163
+
164
+ # Create tracker instance if it doesn't exist (preserves state across frames)
165
+ if self.tracker is None:
166
+ tracker_config = TrackerConfig()
167
+ self.tracker = AdvancedTracker(tracker_config)
168
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
169
+
170
+ processed_data = self.tracker.update(processed_data)
171
+ except Exception as e:
172
+ # If advanced tracker fails, fallback to unsmoothed detections
173
+ self.logger.warning(f"AdvancedTracker failed: {e}")
174
+
175
+ # Update tracking state for total count per label
176
+ self._update_tracking_state(processed_data)
177
+
178
+ # ------------------------------------------------------------------ #
179
+ # Re-attach segmentation masks that were present in the original input
180
+ # but may have been stripped during smoothing/tracking. We match each
181
+ # processed detection back to the raw detection with the highest IoU
182
+ # and copy over its "masks" field (if available).
183
+ # ------------------------------------------------------------------ #
184
+ processed_data = self._attach_masks_to_detections(processed_data, raw_processed_data)
185
+
186
+ # Update frame counter
187
+ self._total_frame_counter += 1
188
+
189
+ # Extract frame information from stream_info
190
+ frame_number = None
191
+ if stream_info:
192
+ input_settings = stream_info.get("input_settings", {})
193
+ start_frame = input_settings.get("start_frame")
194
+ end_frame = input_settings.get("end_frame")
195
+ # If start and end frame are the same, it's a single frame
196
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
197
+ frame_number = start_frame
198
+
199
+ # Compute summaries and alerts
200
+ general_counting_summary = calculate_counting_summary(data)
201
+ counting_summary = self._count_categories(processed_data, config)
202
+ # Add total unique counts after tracking using only local state
203
+ total_counts = self.get_total_counts()
204
+ counting_summary['total_counts'] = total_counts
205
+
206
+ alerts = self._check_alerts(counting_summary, frame_number, config)
207
+ predictions = self._extract_predictions(processed_data)
208
+
209
+ # Step: Generate structured events and tracking stats with frame-based keys
210
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
211
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number,stream_info)
212
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=False)
213
+ business_analytics_list = []
214
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
215
+
216
+ # Extract frame-based dictionaries from the lists
217
+ incidents = incidents_list[0] if incidents_list else {}
218
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
219
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
220
+ summary = summary_list[0] if summary_list else {}
221
+ agg_summary = {str(frame_number): {
222
+ "incidents": incidents,
223
+ "tracking_stats": tracking_stats,
224
+ "business_analytics": business_analytics,
225
+ "alerts": alerts,
226
+ "human_text": summary}
227
+ }
228
+
229
+ context.mark_completed()
230
+
231
+ # Build result object following the new pattern
232
+
233
+ result = self.create_result(
234
+ data={"agg_summary": agg_summary},
235
+ usecase=self.name,
236
+ category=self.category,
237
+ context=context
238
+ )
239
+
240
+ return result
241
+
242
+ def _check_alerts(self, summary: dict, frame_number: Any, config: CellMicroscopyConfig) -> List[Dict]:
243
+ """
244
+ Check if any alert thresholds are exceeded and return alert dicts.
245
+ """
246
+ def get_trend(data, lookback=900, threshold=0.6):
247
+ '''
248
+ Determine if the trend is ascending or descending based on actual value progression.
249
+ Now works with values 0,1,2,3 (not just binary).
250
+ '''
251
+ window = data[-lookback:] if len(data) >= lookback else data
252
+ if len(window) < 2:
253
+ return True # not enough data to determine trend
254
+ increasing = 0
255
+ total = 0
256
+ for i in range(1, len(window)):
257
+ if window[i] >= window[i - 1]:
258
+ increasing += 1
259
+ total += 1
260
+ ratio = increasing / total
261
+ if ratio >= threshold:
262
+ return True
263
+ elif ratio <= (1 - threshold):
264
+ return False
265
+
266
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
267
+ alerts = []
268
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
269
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
270
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
271
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
272
+
273
+ if not config.alert_config:
274
+ return alerts
275
+
276
+ total = summary.get("total_count", 0)
277
+ #self._ascending_alert_list
278
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
279
+
280
+ for category, threshold in config.alert_config.count_thresholds.items():
281
+ if category == "all" and total > threshold:
282
+
283
+ alerts.append({
284
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
285
+ "alert_id": "alert_"+category+'_'+frame_key,
286
+ "incident_category": self.CASE_TYPE,
287
+ "threshold_level": threshold,
288
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
289
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
290
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
291
+ }
292
+ })
293
+ elif category in summary.get("per_category_count", {}):
294
+ count = summary.get("per_category_count", {})[category]
295
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
296
+ alerts.append({
297
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
298
+ "alert_id": "alert_"+category+'_'+frame_key,
299
+ "incident_category": self.CASE_TYPE,
300
+ "threshold_level": threshold,
301
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
302
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
303
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
304
+ }
305
+ })
306
+ else:
307
+ pass
308
+ return alerts
309
+
310
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: CellMicroscopyConfig,
311
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
312
+ Dict]:
313
+ """Generate structured events for the output format with frame-based keys."""
314
+
315
+ # Use frame number as key, fallback to 'current_frame' if not available
316
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
317
+ incidents=[]
318
+ total_detections = counting_summary.get("total_count", 0)
319
+ current_timestamp = self._get_current_timestamp_str(stream_info)
320
+ camera_info = self.get_camera_info_from_stream(stream_info)
321
+
322
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
323
+
324
+ if total_detections > 0:
325
+ # Determine event level based on thresholds
326
+ level = "low"
327
+ intensity = 5.0
328
+ start_timestamp = self._get_start_timestamp_str(stream_info)
329
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
330
+ self.current_incident_end_timestamp = 'Incident still active'
331
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
332
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
333
+ self.current_incident_end_timestamp = current_timestamp
334
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
335
+ self.current_incident_end_timestamp = 'N/A'
336
+
337
+ if config.alert_config and config.alert_config.count_thresholds:
338
+ threshold = config.alert_config.count_thresholds.get("all", 15)
339
+ intensity = min(10.0, (total_detections / threshold) * 10)
340
+
341
+ if intensity >= 9:
342
+ level = "critical"
343
+ self._ascending_alert_list.append(3)
344
+ elif intensity >= 7:
345
+ level = "significant"
346
+ self._ascending_alert_list.append(2)
347
+ elif intensity >= 5:
348
+ level = "medium"
349
+ self._ascending_alert_list.append(1)
350
+ else:
351
+ level = "low"
352
+ self._ascending_alert_list.append(0)
353
+ else:
354
+ if total_detections > 30:
355
+ level = "critical"
356
+ intensity = 10.0
357
+ self._ascending_alert_list.append(3)
358
+ elif total_detections > 25:
359
+ level = "significant"
360
+ intensity = 9.0
361
+ self._ascending_alert_list.append(2)
362
+ elif total_detections > 15:
363
+ level = "medium"
364
+ intensity = 7.0
365
+ self._ascending_alert_list.append(1)
366
+ else:
367
+ level = "low"
368
+ intensity = min(10.0, total_detections / 3.0)
369
+ self._ascending_alert_list.append(0)
370
+
371
+ # Generate human text in new format
372
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
373
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
374
+ human_text = "\n".join(human_text_lines)
375
+
376
+ alert_settings = []
377
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
378
+ alert_settings.append({
379
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
380
+ "incident_category": self.CASE_TYPE,
381
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
382
+ "ascending": True,
383
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
384
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
385
+ }
386
+ })
387
+
388
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
389
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
390
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
391
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
392
+ incidents.append(event)
393
+
394
+ else:
395
+ self._ascending_alert_list.append(0)
396
+ incidents.append({})
397
+
398
+ return incidents
399
+
400
+ def _generate_tracking_stats(
401
+ self,
402
+ counting_summary: Dict,
403
+ alerts: List,
404
+ config: CellMicroscopyConfig,
405
+ frame_number: Optional[int] = None,
406
+ stream_info: Optional[Dict[str, Any]] = None
407
+ ) -> List[Dict]:
408
+ """Generate structured tracking stats matching eg.json format."""
409
+ camera_info = self.get_camera_info_from_stream(stream_info)
410
+
411
+ tracking_stats = []
412
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
413
+ # tracking_stats = [{frame_key: []}]
414
+ # frame_tracking_stats = tracking_stats[0][frame_key]
415
+
416
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
417
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
418
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
419
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
420
+
421
+ track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
422
+
423
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
424
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
425
+
426
+ # Create high precision timestamps for input_timestamp and reset_timestamp
427
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
428
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
429
+
430
+
431
+ # Build total_counts array in expected format
432
+ total_counts = []
433
+ for cat, count in total_counts_dict.items():
434
+ if count > 0:
435
+ total_counts.append({
436
+ "category": cat,
437
+ "count": count
438
+ })
439
+ print(total_counts)
440
+ # Build current_counts array in expected format
441
+ current_counts = []
442
+ for cat, count in per_category_count.items():
443
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
444
+ current_counts.append({
445
+ "category": cat,
446
+ "count": count
447
+ })
448
+ print(current_counts)
449
+ # Prepare detections without confidence scores (as per eg.json)
450
+ detections = []
451
+ for detection in counting_summary.get("detections", []):
452
+ bbox = detection.get("bounding_box", {})
453
+ category = detection.get("category", "person")
454
+ # Include segmentation if available (like in eg.json)
455
+ if detection.get("masks"):
456
+ segmentation= detection.get("masks", [])
457
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
458
+ elif detection.get("segmentation"):
459
+ segmentation= detection.get("segmentation")
460
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
461
+ elif detection.get("mask"):
462
+ segmentation= detection.get("mask")
463
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
464
+ else:
465
+ detection_obj = self.create_detection_object(category, bbox)
466
+ detections.append(detection_obj)
467
+ print(detections)
468
+ # Build alert_settings array in expected format
469
+ alert_settings = []
470
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
471
+ alert_settings.append({
472
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
473
+ "incident_category": self.CASE_TYPE,
474
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
475
+ "ascending": True,
476
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
477
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
478
+ }
479
+ })
480
+ print(alert_settings)
481
+ # Generate human_text in expected format
482
+ human_text_lines = [f"Tracking Statistics:"]
483
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
484
+
485
+ for cat, count in per_category_count.items():
486
+ human_text_lines.append(f"\t{cat}: {count}")
487
+
488
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
489
+ for cat, count in total_counts_dict.items():
490
+ if count > 0:
491
+ human_text_lines.append(f"\t{cat}: {count}")
492
+
493
+ if alerts:
494
+ for alert in alerts:
495
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
496
+ else:
497
+ human_text_lines.append("Alerts: None")
498
+
499
+ human_text = "\n".join(human_text_lines)
500
+ reset_settings = [
501
+ {
502
+ "interval_type": "daily",
503
+ "reset_time": {
504
+ "value": 9,
505
+ "time_unit": "hour"
506
+ }
507
+ }
508
+ ]
509
+ print(human_text)
510
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
511
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
512
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
513
+ reset_time=high_precision_reset_timestamp)
514
+
515
+ tracking_stats.append(tracking_stat)
516
+ print(tracking_stats)
517
+ return tracking_stats
518
+
519
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: CellMicroscopyConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
520
+ """Generate standardized business analytics for the agg_summary structure."""
521
+ if is_empty:
522
+ return []
523
+
524
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
525
+ #camera_info = self.get_camera_info_from_stream(stream_info)
526
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
527
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
528
+ # reset_settings)
529
+ # return business_analytics
530
+
531
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
532
+ """
533
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
534
+ """
535
+ lines = {}
536
+ lines["Application Name"] = self.CASE_TYPE
537
+ lines["Application Version"] = self.CASE_VERSION
538
+ if len(incidents) > 0:
539
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
540
+ if len(tracking_stats) > 0:
541
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
542
+ if len(business_analytics) > 0:
543
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
544
+
545
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
546
+ lines["Summary"] = "No Summary Data"
547
+
548
+ return [lines]
549
+
550
+
551
+ def _count_categories(self, detections: list, config: CellMicroscopyConfig) -> dict:
552
+ """
553
+ Count the number of detections per category and return a summary dict.
554
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', 'masks', etc.
555
+ Output structure will include 'track_id' and 'masks' for each detection as per AdvancedTracker output.
556
+ """
557
+ counts = {}
558
+ valid_detections = []
559
+ for det in detections:
560
+ cat = det.get('category', 'unknown')
561
+ if not all(k in det for k in ['category', 'confidence', 'bounding_box']): # Validate required fields
562
+ self.logger.warning(f"Skipping invalid detection: {det}")
563
+ continue
564
+ counts[cat] = counts.get(cat, 0) + 1
565
+ valid_detections.append({
566
+ "bounding_box": det.get("bounding_box"),
567
+ "category": det.get("category"),
568
+ "confidence": det.get("confidence"),
569
+ "track_id": det.get("track_id"),
570
+ "frame_id": det.get("frame_id"),
571
+ "masks": det.get("masks", det.get("mask", [])) # Include masks, fallback to empty list
572
+ })
573
+ self.logger.debug(f"Valid detections after filtering: {len(valid_detections)}")
574
+ return {
575
+ "total_count": sum(counts.values()),
576
+ "per_category_count": counts,
577
+ "detections": valid_detections
578
+ }
579
+
580
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
581
+ """
582
+ Get detailed information about track IDs (per frame).
583
+ """
584
+ # Collect all track_ids in this frame
585
+ frame_track_ids = set()
586
+ for det in detections:
587
+ tid = det.get('track_id')
588
+ if tid is not None:
589
+ frame_track_ids.add(tid)
590
+ # Use persistent total set for unique counting
591
+ total_track_ids = set()
592
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
593
+ total_track_ids.update(s)
594
+ return {
595
+ "total_count": len(total_track_ids),
596
+ "current_frame_count": len(frame_track_ids),
597
+ "total_unique_track_ids": len(total_track_ids),
598
+ "current_frame_track_ids": list(frame_track_ids),
599
+ "last_update_time": time.time(),
600
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
601
+ }
602
+
603
+ def _update_tracking_state(self, detections: list):
604
+ """
605
+ Track unique categories track_ids per category for total count after tracking.
606
+ Applies canonical ID merging to avoid duplicate counting when the underlying
607
+ tracker loses an object temporarily and assigns a new ID.
608
+ """
609
+ # Lazily initialise storage dicts
610
+ if not hasattr(self, "_per_category_total_track_ids"):
611
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
612
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
613
+
614
+ for det in detections:
615
+ cat = det.get("category")
616
+ raw_track_id = det.get("track_id")
617
+ if cat not in self.target_categories or raw_track_id is None:
618
+ continue
619
+ bbox = det.get("bounding_box", det.get("bbox"))
620
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
621
+ # Propagate canonical ID back to detection so downstream logic uses it
622
+ det["track_id"] = canonical_id
623
+
624
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
625
+ self._current_frame_track_ids[cat].add(canonical_id)
626
+
627
+ def get_total_counts(self):
628
+ """
629
+ Return total unique track_id count for each category.
630
+ """
631
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
632
+
633
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
634
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
635
+ hours = int(timestamp // 3600)
636
+ minutes = int((timestamp % 3600) // 60)
637
+ seconds = round(float(timestamp % 60),2)
638
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
639
+
640
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
641
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
642
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
643
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
644
+
645
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
646
+ """Get formatted current timestamp based on stream type."""
647
+ if not stream_info:
648
+ return "00:00:00.00"
649
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
650
+ if precision:
651
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
652
+ if frame_id:
653
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
654
+ else:
655
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
656
+ stream_time_str = self._format_timestamp_for_video(start_time)
657
+ return stream_time_str
658
+ else:
659
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
660
+
661
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
662
+ if frame_id:
663
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
664
+ else:
665
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
666
+ stream_time_str = self._format_timestamp_for_video(start_time)
667
+ return stream_time_str
668
+ else:
669
+ # For streams, use stream_time from stream_info
670
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
671
+ if stream_time_str:
672
+ # Parse the high precision timestamp string to get timestamp
673
+ try:
674
+ # Remove " UTC" suffix and parse
675
+ timestamp_str = stream_time_str.replace(" UTC", "")
676
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
677
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
678
+ return self._format_timestamp_for_stream(timestamp)
679
+ except:
680
+ # Fallback to current time if parsing fails
681
+ return self._format_timestamp_for_stream(time.time())
682
+ else:
683
+ return self._format_timestamp_for_stream(time.time())
684
+
685
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
686
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
687
+ if not stream_info:
688
+ return "00:00:00"
689
+ if precision:
690
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
691
+ return "00:00:00"
692
+ else:
693
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
694
+
695
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
696
+ # If video format, start from 00:00:00
697
+ return "00:00:00"
698
+ else:
699
+ # For streams, use tracking start time or current time with minutes/seconds reset
700
+ if self._tracking_start_time is None:
701
+ # Try to extract timestamp from stream_time string
702
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
703
+ if stream_time_str:
704
+ try:
705
+ # Remove " UTC" suffix and parse
706
+ timestamp_str = stream_time_str.replace(" UTC", "")
707
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
708
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
709
+ except:
710
+ # Fallback to current time if parsing fails
711
+ self._tracking_start_time = time.time()
712
+ else:
713
+ self._tracking_start_time = time.time()
714
+
715
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
716
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
717
+ dt = dt.replace(minute=0, second=0, microsecond=0)
718
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
719
+
720
+ # ------------------------------------------------------------------ #
721
+ # Helper to merge masks back into detections #
722
+ # ------------------------------------------------------------------ #
723
+ def _attach_masks_to_detections(
724
+ self,
725
+ processed_detections: List[Dict[str, Any]],
726
+ raw_detections: List[Dict[str, Any]],
727
+ iou_threshold: float = 0.5,
728
+ ) -> List[Dict[str, Any]]:
729
+ """
730
+ Attach segmentation masks from the original `raw_detections` list to the
731
+ `processed_detections` list returned after smoothing/tracking.
732
+
733
+ Matching between detections is performed using Intersection-over-Union
734
+ (IoU) of the bounding boxes. For each processed detection we select the
735
+ raw detection with the highest IoU above `iou_threshold` and copy its
736
+ `masks` (or `mask`) field. If no suitable match is found, the detection
737
+ keeps an empty list for `masks` to maintain a consistent schema.
738
+ """
739
+
740
+ if not processed_detections or not raw_detections:
741
+ # Nothing to do – ensure masks key exists for downstream logic.
742
+ for det in processed_detections:
743
+ det.setdefault("masks", [])
744
+ return processed_detections
745
+
746
+ # Track which raw detections have already been matched to avoid
747
+ # assigning the same mask to multiple processed detections.
748
+ used_raw_indices = set()
749
+
750
+ for det in processed_detections:
751
+ best_iou = 0.0
752
+ best_idx = None
753
+
754
+ for idx, raw_det in enumerate(raw_detections):
755
+ if idx in used_raw_indices:
756
+ continue
757
+
758
+ iou = self._compute_iou(det.get("bounding_box"), raw_det.get("bounding_box"))
759
+ if iou > best_iou:
760
+ best_iou = iou
761
+ best_idx = idx
762
+
763
+ if best_idx is not None and best_iou >= iou_threshold:
764
+ raw_det = raw_detections[best_idx]
765
+ masks = raw_det.get("masks", raw_det.get("mask"))
766
+ if masks is not None:
767
+ det["masks"] = masks
768
+ used_raw_indices.add(best_idx)
769
+ else:
770
+ # No adequate match – default to empty list to keep schema consistent.
771
+ det.setdefault("masks", ["EMPTY"])
772
+
773
+ return processed_detections
774
+
775
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
776
+ """
777
+ Extract prediction details for output (category, confidence, bounding box).
778
+ """
779
+ return [
780
+ {
781
+ "category": det.get("category", "unknown"),
782
+ "confidence": det.get("confidence", 0.0),
783
+ "bounding_box": det.get("bounding_box", {}),
784
+ "mask": det.get("mask", det.get("masks", None)) # Accept either key
785
+ }
786
+ for det in detections
787
+ ]
788
+
789
+
790
+ # ------------------------------------------------------------------ #
791
+ # Canonical ID helpers #
792
+ # ------------------------------------------------------------------ #
793
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
794
+ """Compute IoU between two bounding boxes which may be dicts or lists.
795
+ Falls back to 0 when insufficient data is available."""
796
+
797
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
798
+ def _bbox_to_list(bbox):
799
+ if bbox is None:
800
+ return []
801
+ if isinstance(bbox, list):
802
+ return bbox[:4] if len(bbox) >= 4 else []
803
+ if isinstance(bbox, dict):
804
+ if "xmin" in bbox:
805
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
806
+ if "x1" in bbox:
807
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
808
+ # Fallback: first four numeric values
809
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
810
+ return values[:4] if len(values) >= 4 else []
811
+ return []
812
+
813
+ l1 = _bbox_to_list(box1)
814
+ l2 = _bbox_to_list(box2)
815
+ if len(l1) < 4 or len(l2) < 4:
816
+ return 0.0
817
+ x1_min, y1_min, x1_max, y1_max = l1
818
+ x2_min, y2_min, x2_max, y2_max = l2
819
+
820
+ # Ensure correct order
821
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
822
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
823
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
824
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
825
+
826
+ inter_x_min = max(x1_min, x2_min)
827
+ inter_y_min = max(y1_min, y2_min)
828
+ inter_x_max = min(x1_max, x2_max)
829
+ inter_y_max = min(y1_max, y2_max)
830
+
831
+ inter_w = max(0.0, inter_x_max - inter_x_min)
832
+ inter_h = max(0.0, inter_y_max - inter_y_min)
833
+ inter_area = inter_w * inter_h
834
+
835
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
836
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
837
+ union_area = area1 + area2 - inter_area
838
+
839
+ return (inter_area / union_area) if union_area > 0 else 0.0
840
+
841
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
842
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
843
+ tracks when IoU and temporal constraints indicate they represent the
844
+ same physical."""
845
+ if raw_id is None or bbox is None:
846
+ # Nothing to merge
847
+ return raw_id
848
+
849
+ now = time.time()
850
+
851
+ # Fast path – raw_id already mapped
852
+ if raw_id in self._track_aliases:
853
+ canonical_id = self._track_aliases[raw_id]
854
+ track_info = self._canonical_tracks.get(canonical_id)
855
+ if track_info is not None:
856
+ track_info["last_bbox"] = bbox
857
+ track_info["last_update"] = now
858
+ track_info["raw_ids"].add(raw_id)
859
+ return canonical_id
860
+
861
+ # Attempt to merge with an existing canonical track
862
+ for canonical_id, info in self._canonical_tracks.items():
863
+ # Only consider recently updated tracks
864
+ if now - info["last_update"] > self._track_merge_time_window:
865
+ continue
866
+ iou = self._compute_iou(bbox, info["last_bbox"])
867
+ if iou >= self._track_merge_iou_threshold:
868
+ # Merge
869
+ self._track_aliases[raw_id] = canonical_id
870
+ info["last_bbox"] = bbox
871
+ info["last_update"] = now
872
+ info["raw_ids"].add(raw_id)
873
+ return canonical_id
874
+
875
+ # No match – register new canonical track
876
+ canonical_id = raw_id
877
+ self._track_aliases[raw_id] = canonical_id
878
+ self._canonical_tracks[canonical_id] = {
879
+ "last_bbox": bbox,
880
+ "last_update": now,
881
+ "raw_ids": {raw_id},
882
+ }
883
+ return canonical_id
884
+
885
+ def _format_timestamp(self, timestamp: float) -> str:
886
+ """Format a timestamp for human-readable output."""
887
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
888
+
889
+ def _get_tracking_start_time(self) -> str:
890
+ """Get the tracking start time, formatted as a string."""
891
+ if self._tracking_start_time is None:
892
+ return "N/A"
893
+ return self._format_timestamp(self._tracking_start_time)
894
+
895
+ def _set_tracking_start_time(self) -> None:
896
+ """Set the tracking start time to the current time."""
897
+ self._tracking_start_time = time.time()