matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,834 @@
1
+ """
2
+ Windmill Maintenance Detection Use Case for Post-Processing
3
+
4
+ """
5
+
6
+ from typing import Any, Dict, List, Optional
7
+ from dataclasses import asdict
8
+ import time
9
+ from datetime import datetime, timezone
10
+
11
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
12
+ from ..utils import (
13
+ filter_by_confidence,
14
+ filter_by_categories,
15
+ apply_category_mapping,
16
+ count_objects_by_category,
17
+ count_objects_in_zones,
18
+ calculate_counting_summary,
19
+ match_results_structure,
20
+ bbox_smoothing,
21
+ BBoxSmoothingConfig,
22
+ BBoxSmoothingTracker
23
+ )
24
+ from dataclasses import dataclass, field
25
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
26
+
27
+
28
+ @dataclass
29
+ class WindmillMaintenanceConfig(BaseConfig):
30
+ """Configuration for windmill maintenance detection use case."""
31
+ # Smoothing configuration
32
+ enable_smoothing: bool = True
33
+ smoothing_algorithm: str = "observability" # "window" or "observability"
34
+ smoothing_window_size: int = 20
35
+ smoothing_cooldown_frames: int = 5
36
+ smoothing_confidence_range_factor: float = 0.5
37
+
38
+ #confidence thresholds
39
+ confidence_threshold: float = 0.6
40
+
41
+ usecase_categories: List[str] = field(
42
+ default_factory=lambda: ['cable tower', 'turbine']
43
+ )
44
+
45
+ target_categories: List[str] = field(
46
+ default_factory=lambda: ['cable tower', 'turbine']
47
+ )
48
+
49
+ alert_config: Optional[AlertConfig] = None
50
+
51
+ index_to_category: Optional[Dict[int, str]] = field(
52
+ default_factory=lambda: {
53
+ 0: "cable tower",
54
+ 1: "turbine"
55
+ }
56
+ )
57
+
58
+
59
+ class WindmillMaintenanceUseCase(BaseProcessor):
60
+ # Human-friendly display names for categories
61
+ CATEGORY_DISPLAY = {
62
+ "cable tower": "cable tower",
63
+ "turbine": "turbine"
64
+ }
65
+
66
+
67
+ def __init__(self):
68
+ super().__init__("windmill_maintenance")
69
+ self.category = "windmill_maintenance"
70
+
71
+ self.CASE_TYPE: Optional[str] = 'windmill_maintenance'
72
+ self.CASE_VERSION: Optional[str] = '1.2'
73
+ # List of categories to track
74
+ self.target_categories = ['cable tower', 'turbine']
75
+
76
+
77
+ # Initialize smoothing tracker
78
+ self.smoothing_tracker = None
79
+
80
+ # Initialize advanced tracker (will be created on first use)
81
+ self.tracker = None
82
+ # Initialize tracking state variables
83
+ self._total_frame_counter = 0
84
+ self._global_frame_offset = 0
85
+
86
+ # Track start time for "TOTAL SINCE" calculation
87
+ self._tracking_start_time = None
88
+
89
+ self._track_aliases: Dict[Any, Any] = {}
90
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
91
+ # Tunable parameters – adjust if necessary for specific scenarios
92
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
93
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
94
+
95
+ self._ascending_alert_list: List[int] = []
96
+ self.current_incident_end_timestamp: str = "N/A"
97
+
98
+
99
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
100
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
101
+ """
102
+ Main entry point for post-processing.
103
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
104
+ Returns a ProcessingResult with all relevant outputs.
105
+ """
106
+ start_time = time.time()
107
+ # Ensure config is correct type
108
+ if not isinstance(config, WindmillMaintenanceConfig):
109
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
110
+ context=context)
111
+ if context is None:
112
+ context = ProcessingContext()
113
+
114
+ # Detect input format and store in context
115
+ input_format = match_results_structure(data)
116
+ context.input_format = input_format
117
+ context.confidence_threshold = config.confidence_threshold
118
+
119
+ if config.confidence_threshold is not None:
120
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
121
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
122
+ else:
123
+ processed_data = data
124
+
125
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
126
+
127
+ # Step 2: Apply category mapping if provided
128
+ if config.index_to_category:
129
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
130
+ self.logger.debug("Applied category mapping")
131
+
132
+ if config.target_categories:
133
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
134
+ self.logger.debug(f"Applied category filtering")
135
+
136
+ # Apply bbox smoothing if enabled
137
+ if config.enable_smoothing:
138
+ if self.smoothing_tracker is None:
139
+ smoothing_config = BBoxSmoothingConfig(
140
+ smoothing_algorithm=config.smoothing_algorithm,
141
+ window_size=config.smoothing_window_size,
142
+ cooldown_frames=config.smoothing_cooldown_frames,
143
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
144
+ confidence_range_factor=config.smoothing_confidence_range_factor,
145
+ enable_smoothing=True
146
+ )
147
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
148
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
149
+
150
+ # Advanced tracking (BYTETracker-like)
151
+ try:
152
+ from ..advanced_tracker import AdvancedTracker
153
+ from ..advanced_tracker.config import TrackerConfig
154
+
155
+ # Create tracker instance if it doesn't exist (preserves state across frames)
156
+ if self.tracker is None:
157
+ # Configure tracker thresholds based on the use-case confidence threshold so that
158
+ # low-confidence detections (e.g. < 0.7) can still be initialised as tracks when
159
+ # the user passes a lower `confidence_threshold` in the post-processing config.
160
+ if config.confidence_threshold is not None:
161
+ tracker_config = TrackerConfig(
162
+ track_high_thresh=float(config.confidence_threshold),
163
+ # Allow even lower detections to participate in secondary association
164
+ track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
165
+ new_track_thresh=float(config.confidence_threshold)
166
+ )
167
+ else:
168
+ tracker_config = TrackerConfig()
169
+ self.tracker = AdvancedTracker(tracker_config)
170
+ self.logger.info(
171
+ "Initialized AdvancedTracker for Monitoring and tracking with thresholds: "
172
+ f"high={tracker_config.track_high_thresh}, "
173
+ f"low={tracker_config.track_low_thresh}, "
174
+ f"new={tracker_config.new_track_thresh}"
175
+ )
176
+
177
+ # The tracker expects the data in the same format as input
178
+ # It will add track_id and frame_id to each detection
179
+ processed_data = self.tracker.update(processed_data)
180
+
181
+ except Exception as e:
182
+ # If advanced tracker fails, fallback to unsmoothed detections
183
+ self.logger.warning(f"AdvancedTracker failed: {e}")
184
+
185
+ # Update tracking state for total count per label
186
+ self._update_tracking_state(processed_data)
187
+
188
+ # Update frame counter
189
+ self._total_frame_counter += 1
190
+
191
+ # Extract frame information from stream_info
192
+ frame_number = None
193
+ if stream_info:
194
+ input_settings = stream_info.get("input_settings", {})
195
+ start_frame = input_settings.get("start_frame")
196
+ end_frame = input_settings.get("end_frame")
197
+ # If start and end frame are the same, it's a single frame
198
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
199
+ frame_number = start_frame
200
+
201
+ # Compute summaries and alerts
202
+ general_counting_summary = calculate_counting_summary(data)
203
+ counting_summary = self._count_categories(processed_data, config)
204
+ # Add total unique counts after tracking using only local state
205
+ total_counts = self.get_total_counts()
206
+ counting_summary['total_counts'] = total_counts
207
+
208
+ alerts = self._check_alerts(counting_summary, frame_number, config)
209
+ predictions = self._extract_predictions(processed_data)
210
+
211
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
212
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
213
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
214
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
215
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
216
+
217
+ # Extract frame-based dictionaries from the lists
218
+ incidents = incidents_list[0] if incidents_list else {}
219
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
220
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
221
+ summary = summary_list[0] if summary_list else {}
222
+ agg_summary = {str(frame_number): {
223
+ "incidents": incidents,
224
+ "tracking_stats": tracking_stats,
225
+ "business_analytics": business_analytics,
226
+ "alerts": alerts,
227
+ "human_text": summary}
228
+ }
229
+
230
+
231
+ context.mark_completed()
232
+
233
+ # Build result object following the new pattern
234
+
235
+ result = self.create_result(
236
+ data={"agg_summary": agg_summary},
237
+ usecase=self.name,
238
+ category=self.category,
239
+ context=context
240
+ )
241
+
242
+ return result
243
+
244
+ def _check_alerts(self, summary: dict, frame_number:Any, config: WindmillMaintenanceConfig) -> List[Dict]:
245
+ """
246
+ Check if any alert thresholds are exceeded and return alert dicts.
247
+ """
248
+ def get_trend(data, lookback=900, threshold=0.6):
249
+ '''
250
+ Determine if the trend is ascending or descending based on actual value progression.
251
+ Now works with values 0,1,2,3 (not just binary).
252
+ '''
253
+ window = data[-lookback:] if len(data) >= lookback else data
254
+ if len(window) < 2:
255
+ return True # not enough data to determine trend
256
+ increasing = 0
257
+ total = 0
258
+ for i in range(1, len(window)):
259
+ if window[i] >= window[i - 1]:
260
+ increasing += 1
261
+ total += 1
262
+ ratio = increasing / total
263
+ if ratio >= threshold:
264
+ return True
265
+ elif ratio <= (1 - threshold):
266
+ return False
267
+
268
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
269
+ alerts = []
270
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
271
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
272
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
273
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
274
+
275
+ if not config.alert_config:
276
+ return alerts
277
+
278
+ total = summary.get("total_count", 0)
279
+ #self._ascending_alert_list
280
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
281
+
282
+ for category, threshold in config.alert_config.count_thresholds.items():
283
+ if category == "all" and total > threshold:
284
+
285
+ alerts.append({
286
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
287
+ "alert_id": "alert_"+category+'_'+frame_key,
288
+ "incident_category": self.CASE_TYPE,
289
+ "threshold_level": threshold,
290
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
291
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
292
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
293
+ }
294
+ })
295
+ elif category in summary.get("per_category_count", {}):
296
+ count = summary.get("per_category_count", {})[category]
297
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
298
+ alerts.append({
299
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
300
+ "alert_id": "alert_"+category+'_'+frame_key,
301
+ "incident_category": self.CASE_TYPE,
302
+ "threshold_level": threshold,
303
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
304
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
305
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
306
+ }
307
+ })
308
+ else:
309
+ pass
310
+ return alerts
311
+
312
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: WindmillMaintenanceConfig,
313
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
314
+ Dict]:
315
+ """Generate structured incidents for the output format with frame-based keys."""
316
+
317
+ incidents = []
318
+ total_detections = counting_summary.get("total_count", 0)
319
+ current_timestamp = self._get_current_timestamp_str(stream_info)
320
+ camera_info = self.get_camera_info_from_stream(stream_info)
321
+
322
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
323
+
324
+ if total_detections > 0:
325
+ # Determine event level based on thresholds
326
+ level = "low"
327
+ intensity = 5.0
328
+ start_timestamp = self._get_start_timestamp_str(stream_info)
329
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
330
+ self.current_incident_end_timestamp = 'Incident still active'
331
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
332
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
333
+ self.current_incident_end_timestamp = current_timestamp
334
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
335
+ self.current_incident_end_timestamp = 'N/A'
336
+
337
+ if config.alert_config and config.alert_config.count_thresholds:
338
+ threshold = config.alert_config.count_thresholds.get("all", 15)
339
+ intensity = min(10.0, (total_detections / threshold) * 10)
340
+
341
+ if intensity >= 9:
342
+ level = "critical"
343
+ self._ascending_alert_list.append(3)
344
+ elif intensity >= 7:
345
+ level = "significant"
346
+ self._ascending_alert_list.append(2)
347
+ elif intensity >= 5:
348
+ level = "medium"
349
+ self._ascending_alert_list.append(1)
350
+ else:
351
+ level = "low"
352
+ self._ascending_alert_list.append(0)
353
+ else:
354
+ if total_detections > 30:
355
+ level = "critical"
356
+ intensity = 10.0
357
+ self._ascending_alert_list.append(3)
358
+ elif total_detections > 25:
359
+ level = "significant"
360
+ intensity = 9.0
361
+ self._ascending_alert_list.append(2)
362
+ elif total_detections > 15:
363
+ level = "medium"
364
+ intensity = 7.0
365
+ self._ascending_alert_list.append(1)
366
+ else:
367
+ level = "low"
368
+ intensity = min(10.0, total_detections / 3.0)
369
+ self._ascending_alert_list.append(0)
370
+
371
+ # Generate human text in new format
372
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
373
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
374
+ human_text = "\n".join(human_text_lines)
375
+
376
+ alert_settings=[]
377
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
378
+ alert_settings.append({
379
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
380
+ "incident_category": self.CASE_TYPE,
381
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
382
+ "ascending": True,
383
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
384
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
385
+ }
386
+ })
387
+
388
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
389
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
390
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
391
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
392
+ incidents.append(event)
393
+
394
+ else:
395
+ self._ascending_alert_list.append(0)
396
+ incidents.append({})
397
+
398
+ return incidents
399
+ def _generate_tracking_stats(
400
+ self,
401
+ counting_summary: Dict,
402
+ alerts: List,
403
+ config: WindmillMaintenanceConfig,
404
+ frame_number: Optional[int] = None,
405
+ stream_info: Optional[Dict[str, Any]] = None
406
+ ) -> List[Dict]:
407
+ """Generate structured tracking stats matching eg.json format."""
408
+ camera_info = self.get_camera_info_from_stream(stream_info)
409
+
410
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
411
+ # tracking_stats = [{frame_key: []}]
412
+ # frame_tracking_stats = tracking_stats[0][frame_key]
413
+ tracking_stats = []
414
+
415
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
416
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
417
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
418
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
419
+
420
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
421
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
422
+
423
+ # Create high precision timestamps for input_timestamp and reset_timestamp
424
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
425
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
426
+
427
+
428
+ # Build total_counts array in expected format
429
+ total_counts = []
430
+ for cat, count in total_counts_dict.items():
431
+ if count > 0:
432
+ total_counts.append({
433
+ "category": cat,
434
+ "count": count
435
+ })
436
+
437
+ # Build current_counts array in expected format
438
+ current_counts = []
439
+ for cat, count in per_category_count.items():
440
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
441
+ current_counts.append({
442
+ "category": cat,
443
+ "count": count
444
+ })
445
+
446
+ # Prepare detections without confidence scores (as per eg.json)
447
+ detections = []
448
+ for detection in counting_summary.get("detections", []):
449
+ bbox = detection.get("bounding_box", {})
450
+ category = detection.get("category", "person")
451
+ # Include segmentation if available (like in eg.json)
452
+ if detection.get("masks"):
453
+ segmentation= detection.get("masks", [])
454
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
455
+ elif detection.get("segmentation"):
456
+ segmentation= detection.get("segmentation")
457
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
458
+ elif detection.get("mask"):
459
+ segmentation= detection.get("mask")
460
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
461
+ else:
462
+ detection_obj = self.create_detection_object(category, bbox)
463
+ detections.append(detection_obj)
464
+
465
+ # Build alert_settings array in expected format
466
+ alert_settings = []
467
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
468
+ alert_settings.append({
469
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
470
+ "incident_category": self.CASE_TYPE,
471
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
472
+ "ascending": True,
473
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
474
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
475
+ }
476
+ })
477
+
478
+ # Generate human_text in expected format
479
+ human_text_lines = [f"Tracking Statistics:"]
480
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
481
+
482
+ for cat, count in per_category_count.items():
483
+ human_text_lines.append(f"\t{cat}: {count}")
484
+
485
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
486
+ for cat, count in total_counts_dict.items():
487
+ if count > 0:
488
+ human_text_lines.append(f"\t{cat}: {count}")
489
+
490
+ if alerts:
491
+ for alert in alerts:
492
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
493
+ else:
494
+ human_text_lines.append("Alerts: None")
495
+
496
+ human_text = "\n".join(human_text_lines)
497
+ reset_settings=[
498
+ {
499
+ "interval_type": "daily",
500
+ "reset_time": {
501
+ "value": 9,
502
+ "time_unit": "hour"
503
+ }
504
+ }
505
+ ]
506
+
507
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
508
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
509
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
510
+ reset_time=high_precision_reset_timestamp)
511
+
512
+ tracking_stats.append(tracking_stat)
513
+ return tracking_stats
514
+
515
+ def _generate_business_analytics(self, counting_summary: Dict, alerts:Any, config: WindmillMaintenanceConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
516
+ """Generate standardized business analytics for the agg_summary structure."""
517
+ if is_empty:
518
+ return []
519
+
520
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
521
+ #camera_info = self.get_camera_info_from_stream(stream_info)
522
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
523
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
524
+ # reset_settings)
525
+ # return business_analytics
526
+
527
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
528
+ """
529
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
530
+ """
531
+ lines = {}
532
+ lines["Application Name"] = self.CASE_TYPE
533
+ lines["Application Version"] = self.CASE_VERSION
534
+ if len(incidents) > 0:
535
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
536
+ if len(tracking_stats) > 0:
537
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
538
+ if len(business_analytics) > 0:
539
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
540
+
541
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
542
+ lines["Summary"] = "No Summary Data"
543
+
544
+ return [lines]
545
+
546
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
547
+ """
548
+ Get detailed information about track IDs (per frame).
549
+ """
550
+ # Collect all track_ids in this frame
551
+ frame_track_ids = set()
552
+ for det in detections:
553
+ tid = det.get('track_id')
554
+ if tid is not None:
555
+ frame_track_ids.add(tid)
556
+ # Use persistent total set for unique counting
557
+ total_track_ids = set()
558
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
559
+ total_track_ids.update(s)
560
+ return {
561
+ "total_count": len(total_track_ids),
562
+ "current_frame_count": len(frame_track_ids),
563
+ "total_unique_track_ids": len(total_track_ids),
564
+ "current_frame_track_ids": list(frame_track_ids),
565
+ "last_update_time": time.time(),
566
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
567
+ }
568
+
569
+ def _update_tracking_state(self, detections: list):
570
+ """
571
+ Track unique categories track_ids per category for total count after tracking.
572
+ Applies canonical ID merging to avoid duplicate counting when the underlying
573
+ tracker loses an object temporarily and assigns a new ID.
574
+ """
575
+ # Lazily initialise storage dicts
576
+ if not hasattr(self, "_per_category_total_track_ids"):
577
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
578
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
579
+
580
+ for det in detections:
581
+ cat = det.get("category")
582
+ raw_track_id = det.get("track_id")
583
+ if cat not in self.target_categories or raw_track_id is None:
584
+ continue
585
+ bbox = det.get("bounding_box", det.get("bbox"))
586
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
587
+ # Propagate canonical ID back to detection so downstream logic uses it
588
+ det["track_id"] = canonical_id
589
+
590
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
591
+ self._current_frame_track_ids[cat].add(canonical_id)
592
+
593
+ def get_total_counts(self):
594
+ """
595
+ Return total unique track_id count for each category.
596
+ """
597
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
598
+
599
+
600
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
601
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
602
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
603
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
604
+
605
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
606
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
607
+ hours = int(timestamp // 3600)
608
+ minutes = int((timestamp % 3600) // 60)
609
+ seconds = round(float(timestamp % 60),2)
610
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
611
+
612
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
613
+ """Get formatted current timestamp based on stream type."""
614
+ if not stream_info:
615
+ return "00:00:00.00"
616
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
617
+ if precision:
618
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
619
+ if frame_id:
620
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
621
+ else:
622
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
623
+ stream_time_str = self._format_timestamp_for_video(start_time)
624
+ return stream_time_str
625
+ else:
626
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
627
+
628
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
629
+ if frame_id:
630
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
631
+ else:
632
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
633
+ stream_time_str = self._format_timestamp_for_video(start_time)
634
+ return stream_time_str
635
+ else:
636
+ # For streams, use stream_time from stream_info
637
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
638
+ if stream_time_str:
639
+ # Parse the high precision timestamp string to get timestamp
640
+ try:
641
+ # Remove " UTC" suffix and parse
642
+ timestamp_str = stream_time_str.replace(" UTC", "")
643
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
644
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
645
+ return self._format_timestamp_for_stream(timestamp)
646
+ except:
647
+ # Fallback to current time if parsing fails
648
+ return self._format_timestamp_for_stream(time.time())
649
+ else:
650
+ return self._format_timestamp_for_stream(time.time())
651
+
652
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
653
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
654
+ if not stream_info:
655
+ return "00:00:00"
656
+ if precision:
657
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
658
+ return "00:00:00"
659
+ else:
660
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
661
+
662
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
663
+ # If video format, start from 00:00:00
664
+ return "00:00:00"
665
+ else:
666
+ # For streams, use tracking start time or current time with minutes/seconds reset
667
+ if self._tracking_start_time is None:
668
+ # Try to extract timestamp from stream_time string
669
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
670
+ if stream_time_str:
671
+ try:
672
+ # Remove " UTC" suffix and parse
673
+ timestamp_str = stream_time_str.replace(" UTC", "")
674
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
675
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
676
+ except:
677
+ # Fallback to current time if parsing fails
678
+ self._tracking_start_time = time.time()
679
+ else:
680
+ self._tracking_start_time = time.time()
681
+
682
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
683
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
684
+ dt = dt.replace(minute=0, second=0, microsecond=0)
685
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
686
+
687
+
688
+ def _count_categories(self, detections: list, config: WindmillMaintenanceConfig) -> dict:
689
+ """
690
+ Count the number of detections per category and return a summary dict.
691
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
692
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
693
+ """
694
+ counts = {}
695
+ for det in detections:
696
+ cat = det.get('category', 'unknown')
697
+ counts[cat] = counts.get(cat, 0) + 1
698
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
699
+ return {
700
+ "total_count": sum(counts.values()),
701
+ "per_category_count": counts,
702
+ "detections": [
703
+ {
704
+ "bounding_box": det.get("bounding_box"),
705
+ "category": det.get("category"),
706
+ "confidence": det.get("confidence"),
707
+ "track_id": det.get("track_id"),
708
+ "frame_id": det.get("frame_id")
709
+ }
710
+ for det in detections
711
+ ]
712
+ }
713
+
714
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
715
+ """
716
+ Extract prediction details for output (category, confidence, bounding box).
717
+ """
718
+ return [
719
+ {
720
+ "category": det.get("category", "unknown"),
721
+ "confidence": det.get("confidence", 0.0),
722
+ "bounding_box": det.get("bounding_box", {})
723
+ }
724
+ for det in detections
725
+ ]
726
+
727
+ # ------------------------------------------------------------------ #
728
+ # Canonical ID helpers #
729
+ # ------------------------------------------------------------------ #
730
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
731
+ """Compute IoU between two bounding boxes which may be dicts or lists.
732
+ Falls back to 0 when insufficient data is available."""
733
+
734
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
735
+ def _bbox_to_list(bbox):
736
+ if bbox is None:
737
+ return []
738
+ if isinstance(bbox, list):
739
+ return bbox[:4] if len(bbox) >= 4 else []
740
+ if isinstance(bbox, dict):
741
+ if "xmin" in bbox:
742
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
743
+ if "x1" in bbox:
744
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
745
+ # Fallback: first four numeric values
746
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
747
+ return values[:4] if len(values) >= 4 else []
748
+ return []
749
+
750
+ l1 = _bbox_to_list(box1)
751
+ l2 = _bbox_to_list(box2)
752
+ if len(l1) < 4 or len(l2) < 4:
753
+ return 0.0
754
+ x1_min, y1_min, x1_max, y1_max = l1
755
+ x2_min, y2_min, x2_max, y2_max = l2
756
+
757
+ # Ensure correct order
758
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
759
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
760
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
761
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
762
+
763
+ inter_x_min = max(x1_min, x2_min)
764
+ inter_y_min = max(y1_min, y2_min)
765
+ inter_x_max = min(x1_max, x2_max)
766
+ inter_y_max = min(y1_max, y2_max)
767
+
768
+ inter_w = max(0.0, inter_x_max - inter_x_min)
769
+ inter_h = max(0.0, inter_y_max - inter_y_min)
770
+ inter_area = inter_w * inter_h
771
+
772
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
773
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
774
+ union_area = area1 + area2 - inter_area
775
+
776
+ return (inter_area / union_area) if union_area > 0 else 0.0
777
+
778
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
779
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
780
+ tracks when IoU and temporal constraints indicate they represent the
781
+ same physical."""
782
+ if raw_id is None or bbox is None:
783
+ # Nothing to merge
784
+ return raw_id
785
+
786
+ now = time.time()
787
+
788
+ # Fast path – raw_id already mapped
789
+ if raw_id in self._track_aliases:
790
+ canonical_id = self._track_aliases[raw_id]
791
+ track_info = self._canonical_tracks.get(canonical_id)
792
+ if track_info is not None:
793
+ track_info["last_bbox"] = bbox
794
+ track_info["last_update"] = now
795
+ track_info["raw_ids"].add(raw_id)
796
+ return canonical_id
797
+
798
+ # Attempt to merge with an existing canonical track
799
+ for canonical_id, info in self._canonical_tracks.items():
800
+ # Only consider recently updated tracks
801
+ if now - info["last_update"] > self._track_merge_time_window:
802
+ continue
803
+ iou = self._compute_iou(bbox, info["last_bbox"])
804
+ if iou >= self._track_merge_iou_threshold:
805
+ # Merge
806
+ self._track_aliases[raw_id] = canonical_id
807
+ info["last_bbox"] = bbox
808
+ info["last_update"] = now
809
+ info["raw_ids"].add(raw_id)
810
+ return canonical_id
811
+
812
+ # No match – register new canonical track
813
+ canonical_id = raw_id
814
+ self._track_aliases[raw_id] = canonical_id
815
+ self._canonical_tracks[canonical_id] = {
816
+ "last_bbox": bbox,
817
+ "last_update": now,
818
+ "raw_ids": {raw_id},
819
+ }
820
+ return canonical_id
821
+
822
+ def _format_timestamp(self, timestamp: float) -> str:
823
+ """Format a timestamp for human-readable output."""
824
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
825
+
826
+ def _get_tracking_start_time(self) -> str:
827
+ """Get the tracking start time, formatted as a string."""
828
+ if self._tracking_start_time is None:
829
+ return "N/A"
830
+ return self._format_timestamp(self._tracking_start_time)
831
+
832
+ def _set_tracking_start_time(self) -> None:
833
+ """Set the tracking start time to the current time."""
834
+ self._tracking_start_time = time.time()