matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,814 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class ChildMonitoringConfig(BaseConfig):
25
+ """Configuration for child detection use case in child monitoring."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ #confidence thresholds
34
+ confidence_threshold: float = 0.3
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: ['baby']
38
+ )
39
+
40
+ target_categories: List[str] = field(
41
+ default_factory=lambda: ['baby']
42
+ )
43
+
44
+ alert_config: Optional[AlertConfig] = None
45
+
46
+ index_to_category: Optional[Dict[int, str]] = field(
47
+ default_factory=lambda: {
48
+ 0: "baby",
49
+ }
50
+ )
51
+
52
+
53
+ class ChildMonitoringUseCase(BaseProcessor):
54
+ # Human-friendly display names for categories
55
+ CATEGORY_DISPLAY = {
56
+ "baby": "Baby",
57
+ }
58
+
59
+ def __init__(self):
60
+ super().__init__("child_monitoring")
61
+ self.category = "security"
62
+
63
+ self.CASE_TYPE: Optional[str] = 'child_monitoring'
64
+ self.CASE_VERSION: Optional[str] = '1.3'
65
+
66
+ # List of categories to track
67
+ self.target_categories = ['baby']
68
+
69
+ # Initialize smoothing tracker
70
+ self.smoothing_tracker = None
71
+
72
+ # Initialize advanced tracker (will be created on first use)
73
+ self.tracker = None
74
+
75
+ # Initialize tracking state variables
76
+ self._total_frame_counter = 0
77
+ self._global_frame_offset = 0
78
+
79
+ # Track start time for "TOTAL SINCE" calculation
80
+ self._tracking_start_time = None
81
+
82
+ self._track_aliases: Dict[Any, Any] = {}
83
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
84
+ # Tunable parameters – adjust if necessary for specific scenarios
85
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
86
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
87
+
88
+ self._ascending_alert_list: List[int] = []
89
+ self.current_incident_end_timestamp: str = "N/A"
90
+
91
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
92
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
93
+ """
94
+ Main entry point for post-processing.
95
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
96
+ Returns a ProcessingResult with all relevant outputs.
97
+ """
98
+ start_time = time.time()
99
+ # Ensure config is correct type
100
+ if not isinstance(config, ChildMonitoringConfig):
101
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
102
+ context=context)
103
+ if context is None:
104
+ context = ProcessingContext()
105
+
106
+ # Detect input format and store in context
107
+ input_format = match_results_structure(data)
108
+ context.input_format = input_format
109
+ context.confidence_threshold = config.confidence_threshold
110
+
111
+
112
+
113
+ if config.confidence_threshold is not None:
114
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
115
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
116
+ else:
117
+ processed_data = data
118
+
119
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
120
+ print(processed_data)
121
+ # Step 2: Apply category mapping if provided
122
+ if config.index_to_category:
123
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
124
+ self.logger.debug("Applied category mapping")
125
+ print(processed_data)
126
+ if config.target_categories:
127
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
128
+ self.logger.debug(f"Applied category filtering")
129
+
130
+ print(processed_data)
131
+
132
+ # Apply bbox smoothing if enabled
133
+ if config.enable_smoothing:
134
+ if self.smoothing_tracker is None:
135
+ smoothing_config = BBoxSmoothingConfig(
136
+ smoothing_algorithm=config.smoothing_algorithm,
137
+ window_size=config.smoothing_window_size,
138
+ cooldown_frames=config.smoothing_cooldown_frames,
139
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
140
+ confidence_range_factor=config.smoothing_confidence_range_factor,
141
+ enable_smoothing=True
142
+ )
143
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
144
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
145
+
146
+ # Advanced tracking (BYTETracker-like)
147
+ try:
148
+ from ..advanced_tracker import AdvancedTracker
149
+ from ..advanced_tracker.config import TrackerConfig
150
+
151
+ # Create tracker instance if it doesn't exist (preserves state across frames)
152
+ if self.tracker is None:
153
+ tracker_config = TrackerConfig()
154
+ self.tracker = AdvancedTracker(tracker_config)
155
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
156
+
157
+ # The tracker expects the data in the same format as input
158
+ # It will add track_id and frame_id to each detection
159
+ processed_data = self.tracker.update(processed_data)
160
+
161
+ except Exception as e:
162
+ # If advanced tracker fails, fallback to unsmoothed detections
163
+ self.logger.warning(f"AdvancedTracker failed: {e}")
164
+
165
+ # Update tracking state for total count per label
166
+ self._update_tracking_state(processed_data)
167
+
168
+ # Update frame counter
169
+ self._total_frame_counter += 1
170
+
171
+ # Extract frame information from stream_info
172
+ frame_number = None
173
+ if stream_info:
174
+ input_settings = stream_info.get("input_settings", {})
175
+ start_frame = input_settings.get("start_frame")
176
+ end_frame = input_settings.get("end_frame")
177
+ # If start and end frame are the same, it's a single frame
178
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
179
+ frame_number = start_frame
180
+
181
+ # Compute summaries and alerts
182
+ general_counting_summary = calculate_counting_summary(data)
183
+ counting_summary = self._count_categories(processed_data, config)
184
+ # Add total unique counts after tracking using only local state
185
+ total_counts = self.get_total_counts()
186
+ counting_summary['total_counts'] = total_counts
187
+
188
+ alerts = self._check_alerts(counting_summary, frame_number, config)
189
+ predictions = self._extract_predictions(processed_data)
190
+
191
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
192
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
193
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
194
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=True)
195
+ business_analytics_list = []
196
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
197
+
198
+ # Extract frame-based dictionaries from the lists
199
+ incidents = incidents_list[0] if incidents_list else {}
200
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
201
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
202
+ summary = summary_list[0] if summary_list else {}
203
+ agg_summary = {str(frame_number): {
204
+ "incidents": incidents,
205
+ "tracking_stats": tracking_stats,
206
+ "business_analytics": business_analytics,
207
+ "alerts": alerts,
208
+ "human_text": summary}
209
+ }
210
+
211
+
212
+ context.mark_completed()
213
+
214
+ # Build result object following the new pattern
215
+
216
+ result = self.create_result(
217
+ data={"agg_summary": agg_summary},
218
+ usecase=self.name,
219
+ category=self.category,
220
+ context=context
221
+ )
222
+
223
+ return result
224
+
225
+ def _check_alerts(self, summary: dict, frame_number:Any, config: ChildMonitoringConfig) -> List[Dict]:
226
+ """
227
+ Check if any alert thresholds are exceeded and return alert dicts.
228
+ """
229
+ def get_trend(data, lookback=900, threshold=0.6):
230
+ '''
231
+ Determine if the trend is ascending or descending based on actual value progression.
232
+ Now works with values 0,1,2,3 (not just binary).
233
+ '''
234
+ window = data[-lookback:] if len(data) >= lookback else data
235
+ if len(window) < 2:
236
+ return True # not enough data to determine trend
237
+ increasing = 0
238
+ total = 0
239
+ for i in range(1, len(window)):
240
+ if window[i] >= window[i - 1]:
241
+ increasing += 1
242
+ total += 1
243
+ ratio = increasing / total
244
+ if ratio >= threshold:
245
+ return True
246
+ elif ratio <= (1 - threshold):
247
+ return False
248
+
249
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
250
+ alerts = []
251
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
252
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
253
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
254
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
255
+
256
+ if not config.alert_config:
257
+ return alerts
258
+
259
+ total = summary.get("total_count", 0)
260
+ #self._ascending_alert_list
261
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
262
+
263
+ for category, threshold in config.alert_config.count_thresholds.items():
264
+ if category == "all" and total > threshold:
265
+
266
+ alerts.append({
267
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
268
+ "alert_id": "alert_"+category+'_'+frame_key,
269
+ "incident_category": self.CASE_TYPE,
270
+ "threshold_level": threshold,
271
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
272
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
273
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
274
+ }
275
+ })
276
+ elif category in summary.get("per_category_count", {}):
277
+ count = summary.get("per_category_count", {})[category]
278
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
279
+ alerts.append({
280
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
281
+ "alert_id": "alert_"+category+'_'+frame_key,
282
+ "incident_category": self.CASE_TYPE,
283
+ "threshold_level": threshold,
284
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
285
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
286
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
287
+ }
288
+ })
289
+ else:
290
+ pass
291
+ return alerts
292
+
293
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: ChildMonitoringConfig,
294
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
295
+ Dict]:
296
+ """Generate structured incidents for the output format with frame-based keys."""
297
+
298
+ incidents = []
299
+ total_detections = counting_summary.get("total_count", 0)
300
+ current_timestamp = self._get_current_timestamp_str(stream_info)
301
+ camera_info = self.get_camera_info_from_stream(stream_info)
302
+
303
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
304
+
305
+ if total_detections > 0:
306
+ # Determine event level based on thresholds
307
+ level = "low"
308
+ intensity = 5.0
309
+ start_timestamp = self._get_start_timestamp_str(stream_info)
310
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
311
+ self.current_incident_end_timestamp = 'Incident still active'
312
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
313
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
314
+ self.current_incident_end_timestamp = current_timestamp
315
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
316
+ self.current_incident_end_timestamp = 'N/A'
317
+
318
+ if config.alert_config and config.alert_config.count_thresholds:
319
+ threshold = config.alert_config.count_thresholds.get("all", 15)
320
+ intensity = min(10.0, (total_detections / threshold) * 10)
321
+
322
+ if intensity >= 9:
323
+ level = "critical"
324
+ self._ascending_alert_list.append(3)
325
+ elif intensity >= 7:
326
+ level = "significant"
327
+ self._ascending_alert_list.append(2)
328
+ elif intensity >= 5:
329
+ level = "medium"
330
+ self._ascending_alert_list.append(1)
331
+ else:
332
+ level = "low"
333
+ self._ascending_alert_list.append(0)
334
+ else:
335
+ if total_detections > 30:
336
+ level = "critical"
337
+ intensity = 10.0
338
+ self._ascending_alert_list.append(3)
339
+ elif total_detections > 25:
340
+ level = "significant"
341
+ intensity = 9.0
342
+ self._ascending_alert_list.append(2)
343
+ elif total_detections > 15:
344
+ level = "medium"
345
+ intensity = 7.0
346
+ self._ascending_alert_list.append(1)
347
+ else:
348
+ level = "low"
349
+ intensity = min(10.0, total_detections / 3.0)
350
+ self._ascending_alert_list.append(0)
351
+
352
+ # Generate human text in new format
353
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
354
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
355
+ human_text = "\n".join(human_text_lines)
356
+
357
+ alert_settings = []
358
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
359
+ alert_settings.append({
360
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
361
+ "incident_category": self.CASE_TYPE,
362
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
363
+ "ascending": True,
364
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
365
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
366
+ }
367
+ })
368
+
369
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
370
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
371
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
372
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
373
+ incidents.append(event)
374
+
375
+ else:
376
+ self._ascending_alert_list.append(0)
377
+ incidents.append({})
378
+
379
+ return incidents
380
+
381
+ def _generate_tracking_stats(
382
+ self,
383
+ counting_summary: Dict,
384
+ alerts: List,
385
+ config: ChildMonitoringConfig,
386
+ frame_number: Optional[int] = None,
387
+ stream_info: Optional[Dict[str, Any]] = None
388
+ ) -> List[Dict]:
389
+ """Generate structured tracking stats matching eg.json format."""
390
+ camera_info = self.get_camera_info_from_stream(stream_info)
391
+
392
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
393
+ # tracking_stats = [{frame_key: []}]
394
+ # frame_tracking_stats = tracking_stats[0][frame_key]
395
+ tracking_stats = []
396
+
397
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
398
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
399
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
400
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
401
+
402
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
403
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
404
+
405
+ # Create high precision timestamps for input_timestamp and reset_timestamp
406
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
407
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
408
+
409
+
410
+ # Build total_counts array in expected format
411
+ total_counts = []
412
+ for cat, count in total_counts_dict.items():
413
+ if count > 0:
414
+ total_counts.append({
415
+ "category": cat,
416
+ "count": count
417
+ })
418
+
419
+ # Build current_counts array in expected format
420
+ current_counts = []
421
+ for cat, count in per_category_count.items():
422
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
423
+ current_counts.append({
424
+ "category": cat,
425
+ "count": count
426
+ })
427
+
428
+ # Prepare detections without confidence scores (as per eg.json)
429
+ detections = []
430
+ for detection in counting_summary.get("detections", []):
431
+ bbox = detection.get("bounding_box", {})
432
+ category = detection.get("category", "person")
433
+ # Include segmentation if available (like in eg.json)
434
+ if detection.get("masks"):
435
+ segmentation= detection.get("masks", [])
436
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
437
+ elif detection.get("segmentation"):
438
+ segmentation= detection.get("segmentation")
439
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
440
+ elif detection.get("mask"):
441
+ segmentation= detection.get("mask")
442
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
443
+ else:
444
+ detection_obj = self.create_detection_object(category, bbox)
445
+ detections.append(detection_obj)
446
+
447
+ # Build alert_settings array in expected format
448
+ alert_settings = []
449
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
450
+ alert_settings.append({
451
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
452
+ "incident_category": self.CASE_TYPE,
453
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
454
+ "ascending": True,
455
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
456
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
457
+ }
458
+ })
459
+
460
+ # Generate human_text in expected format
461
+ human_text_lines = [f"Tracking Statistics:"]
462
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
463
+
464
+ for cat, count in per_category_count.items():
465
+ human_text_lines.append(f"\t{cat}: {count}")
466
+
467
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
468
+ for cat, count in total_counts_dict.items():
469
+ if count > 0:
470
+ human_text_lines.append(f"\t{cat}: {count}")
471
+
472
+ if alerts:
473
+ for alert in alerts:
474
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
475
+ else:
476
+ human_text_lines.append("Alerts: None")
477
+
478
+ human_text = "\n".join(human_text_lines)
479
+ reset_settings = [
480
+ {
481
+ "interval_type": "daily",
482
+ "reset_time": {
483
+ "value": 9,
484
+ "time_unit": "hour"
485
+ }
486
+ }
487
+ ]
488
+
489
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
490
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
491
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
492
+ reset_time=high_precision_reset_timestamp)
493
+
494
+ tracking_stats.append(tracking_stat)
495
+ return tracking_stats
496
+
497
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: ChildMonitoringConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
498
+ """Generate standardized business analytics for the agg_summary structure."""
499
+ if is_empty:
500
+ return []
501
+
502
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
503
+ #camera_info = self.get_camera_info_from_stream(stream_info)
504
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
505
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
506
+ # reset_settings)
507
+ # return business_analytics
508
+
509
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
510
+ """
511
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
512
+ """
513
+ lines = {}
514
+ lines["Application Name"] = self.CASE_TYPE
515
+ lines["Application Version"] = self.CASE_VERSION
516
+ if len(incidents) > 0:
517
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
518
+ if len(tracking_stats) > 0:
519
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
520
+ if len(business_analytics) > 0:
521
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
522
+
523
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
524
+ lines["Summary"] = "No Summary Data"
525
+
526
+ return [lines]
527
+
528
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
529
+ """
530
+ Get detailed information about track IDs (per frame).
531
+ """
532
+ # Collect all track_ids in this frame
533
+ frame_track_ids = set()
534
+ for det in detections:
535
+ tid = det.get('track_id')
536
+ if tid is not None:
537
+ frame_track_ids.add(tid)
538
+ # Use persistent total set for unique counting
539
+ total_track_ids = set()
540
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
541
+ total_track_ids.update(s)
542
+ return {
543
+ "total_count": len(total_track_ids),
544
+ "current_frame_count": len(frame_track_ids),
545
+ "total_unique_track_ids": len(total_track_ids),
546
+ "current_frame_track_ids": list(frame_track_ids),
547
+ "last_update_time": time.time(),
548
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
549
+ }
550
+
551
+ def _update_tracking_state(self, detections: list):
552
+ """
553
+ Track unique categories track_ids per category for total count after tracking.
554
+ Applies canonical ID merging to avoid duplicate counting when the underlying
555
+ tracker loses an object temporarily and assigns a new ID.
556
+ """
557
+ # Lazily initialise storage dicts
558
+ if not hasattr(self, "_per_category_total_track_ids"):
559
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
560
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
561
+
562
+ for det in detections:
563
+ cat = det.get("category")
564
+ raw_track_id = det.get("track_id")
565
+ if cat not in self.target_categories or raw_track_id is None:
566
+ continue
567
+ bbox = det.get("bounding_box", det.get("bbox"))
568
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
569
+ # Propagate canonical ID back to detection so downstream logic uses it
570
+ det["track_id"] = canonical_id
571
+
572
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
573
+ self._current_frame_track_ids[cat].add(canonical_id)
574
+
575
+ def get_total_counts(self):
576
+ """
577
+ Return total unique track_id count for each category.
578
+ """
579
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
580
+
581
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
582
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
583
+ hours = int(timestamp // 3600)
584
+ minutes = int((timestamp % 3600) // 60)
585
+ seconds = round(float(timestamp % 60),2)
586
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
587
+
588
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
589
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
590
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
591
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
592
+
593
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
594
+ """Get formatted current timestamp based on stream type."""
595
+ if not stream_info:
596
+ return "00:00:00.00"
597
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
598
+ if precision:
599
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
600
+ if frame_id:
601
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
602
+ else:
603
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
604
+ stream_time_str = self._format_timestamp_for_video(start_time)
605
+ return stream_time_str
606
+ else:
607
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
608
+
609
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
610
+ if frame_id:
611
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
612
+ else:
613
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
614
+ stream_time_str = self._format_timestamp_for_video(start_time)
615
+ return stream_time_str
616
+ else:
617
+ # For streams, use stream_time from stream_info
618
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
619
+ if stream_time_str:
620
+ # Parse the high precision timestamp string to get timestamp
621
+ try:
622
+ # Remove " UTC" suffix and parse
623
+ timestamp_str = stream_time_str.replace(" UTC", "")
624
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
625
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
626
+ return self._format_timestamp_for_stream(timestamp)
627
+ except:
628
+ # Fallback to current time if parsing fails
629
+ return self._format_timestamp_for_stream(time.time())
630
+ else:
631
+ return self._format_timestamp_for_stream(time.time())
632
+
633
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
634
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
635
+ if not stream_info:
636
+ return "00:00:00"
637
+ if precision:
638
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
639
+ return "00:00:00"
640
+ else:
641
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
642
+
643
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
644
+ # If video format, start from 00:00:00
645
+ return "00:00:00"
646
+ else:
647
+ # For streams, use tracking start time or current time with minutes/seconds reset
648
+ if self._tracking_start_time is None:
649
+ # Try to extract timestamp from stream_time string
650
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
651
+ if stream_time_str:
652
+ try:
653
+ # Remove " UTC" suffix and parse
654
+ timestamp_str = stream_time_str.replace(" UTC", "")
655
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
656
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
657
+ except:
658
+ # Fallback to current time if parsing fails
659
+ self._tracking_start_time = time.time()
660
+ else:
661
+ self._tracking_start_time = time.time()
662
+
663
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
664
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
665
+ dt = dt.replace(minute=0, second=0, microsecond=0)
666
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
667
+
668
+ def _count_categories(self, detections: list, config: ChildMonitoringConfig) -> dict:
669
+ """
670
+ Count the number of detections per category and return a summary dict.
671
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
672
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
673
+ """
674
+ counts = {}
675
+ for det in detections:
676
+ cat = det.get('category', 'unknown')
677
+ counts[cat] = counts.get(cat, 0) + 1
678
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
679
+ return {
680
+ "total_count": sum(counts.values()),
681
+ "per_category_count": counts,
682
+ "detections": [
683
+ {
684
+ "bounding_box": det.get("bounding_box"),
685
+ "category": det.get("category"),
686
+ "confidence": det.get("confidence"),
687
+ "track_id": det.get("track_id"),
688
+ "frame_id": det.get("frame_id")
689
+ }
690
+ for det in detections
691
+ ]
692
+ }
693
+
694
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
695
+ """
696
+ Extract prediction details for output (category, confidence, bounding box).
697
+ """
698
+ return [
699
+ {
700
+ "category": det.get("category", "unknown"),
701
+ "confidence": det.get("confidence", 0.0),
702
+ "bounding_box": det.get("bounding_box", {})
703
+ }
704
+ for det in detections
705
+ ]
706
+
707
+ # ------------------------------------------------------------------ #
708
+ # Canonical ID helpers #
709
+ # ------------------------------------------------------------------ #
710
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
711
+ """Compute IoU between two bounding boxes which may be dicts or lists.
712
+ Falls back to 0 when insufficient data is available."""
713
+
714
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
715
+ def _bbox_to_list(bbox):
716
+ if bbox is None:
717
+ return []
718
+ if isinstance(bbox, list):
719
+ return bbox[:4] if len(bbox) >= 4 else []
720
+ if isinstance(bbox, dict):
721
+ if "xmin" in bbox:
722
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
723
+ if "x1" in bbox:
724
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
725
+ # Fallback: first four numeric values
726
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
727
+ return values[:4] if len(values) >= 4 else []
728
+ return []
729
+
730
+ l1 = _bbox_to_list(box1)
731
+ l2 = _bbox_to_list(box2)
732
+ if len(l1) < 4 or len(l2) < 4:
733
+ return 0.0
734
+ x1_min, y1_min, x1_max, y1_max = l1
735
+ x2_min, y2_min, x2_max, y2_max = l2
736
+
737
+ # Ensure correct order
738
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
739
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
740
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
741
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
742
+
743
+ inter_x_min = max(x1_min, x2_min)
744
+ inter_y_min = max(y1_min, y2_min)
745
+ inter_x_max = min(x1_max, x2_max)
746
+ inter_y_max = min(y1_max, y2_max)
747
+
748
+ inter_w = max(0.0, inter_x_max - inter_x_min)
749
+ inter_h = max(0.0, inter_y_max - inter_y_min)
750
+ inter_area = inter_w * inter_h
751
+
752
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
753
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
754
+ union_area = area1 + area2 - inter_area
755
+
756
+ return (inter_area / union_area) if union_area > 0 else 0.0
757
+
758
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
759
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
760
+ tracks when IoU and temporal constraints indicate they represent the
761
+ same physical."""
762
+ if raw_id is None or bbox is None:
763
+ # Nothing to merge
764
+ return raw_id
765
+
766
+ now = time.time()
767
+
768
+ # Fast path – raw_id already mapped
769
+ if raw_id in self._track_aliases:
770
+ canonical_id = self._track_aliases[raw_id]
771
+ track_info = self._canonical_tracks.get(canonical_id)
772
+ if track_info is not None:
773
+ track_info["last_bbox"] = bbox
774
+ track_info["last_update"] = now
775
+ track_info["raw_ids"].add(raw_id)
776
+ return canonical_id
777
+
778
+ # Attempt to merge with an existing canonical track
779
+ for canonical_id, info in self._canonical_tracks.items():
780
+ # Only consider recently updated tracks
781
+ if now - info["last_update"] > self._track_merge_time_window:
782
+ continue
783
+ iou = self._compute_iou(bbox, info["last_bbox"])
784
+ if iou >= self._track_merge_iou_threshold:
785
+ # Merge
786
+ self._track_aliases[raw_id] = canonical_id
787
+ info["last_bbox"] = bbox
788
+ info["last_update"] = now
789
+ info["raw_ids"].add(raw_id)
790
+ return canonical_id
791
+
792
+ # No match – register new canonical track
793
+ canonical_id = raw_id
794
+ self._track_aliases[raw_id] = canonical_id
795
+ self._canonical_tracks[canonical_id] = {
796
+ "last_bbox": bbox,
797
+ "last_update": now,
798
+ "raw_ids": {raw_id},
799
+ }
800
+ return canonical_id
801
+
802
+ def _format_timestamp(self, timestamp: float) -> str:
803
+ """Format a timestamp for human-readable output."""
804
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
805
+
806
+ def _get_tracking_start_time(self) -> str:
807
+ """Get the tracking start time, formatted as a string."""
808
+ if self._tracking_start_time is None:
809
+ return "N/A"
810
+ return self._format_timestamp(self._tracking_start_time)
811
+
812
+ def _set_tracking_start_time(self) -> None:
813
+ """Set the tracking start time to the current time."""
814
+ self._tracking_start_time = time.time()