matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,787 @@
1
+ """
2
+ Parking space Monitoring Use Case for Post-Processing
3
+
4
+ This module provides parking space monitoring functionality with congestion detection,
5
+ zone analysis, and alert generation.
6
+
7
+ """
8
+
9
+ from typing import Any, Dict, List, Optional
10
+ from dataclasses import asdict
11
+ import time
12
+ from datetime import datetime, timezone
13
+
14
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
15
+ from ..utils import (
16
+ filter_by_confidence,
17
+ filter_by_categories,
18
+ apply_category_mapping,
19
+ count_objects_by_category,
20
+ count_objects_in_zones,
21
+ calculate_counting_summary,
22
+ match_results_structure,
23
+ bbox_smoothing,
24
+ BBoxSmoothingConfig,
25
+ BBoxSmoothingTracker
26
+ )
27
+ from dataclasses import dataclass, field
28
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
29
+
30
+
31
+ @dataclass
32
+ class ParkingConfig(BaseConfig):
33
+ """Configuration for parking space detection use case in parking monitoring."""
34
+ # Smoothing configuration
35
+ enable_smoothing: bool = True
36
+ smoothing_algorithm: str = "observability" # "window" or "observability"
37
+ smoothing_window_size: int = 20
38
+ smoothing_cooldown_frames: int = 5
39
+ smoothing_confidence_range_factor: float = 0.5
40
+
41
+ #confidence thresholds
42
+ confidence_threshold: float = 0.6
43
+
44
+ usecase_categories: List[str] = field(
45
+ default_factory=lambda: ['occupied', 'empty']
46
+ )
47
+
48
+ target_categories: List[str] = field(
49
+ default_factory=lambda: ['occupied', 'empty']
50
+ )
51
+
52
+ alert_config: Optional[AlertConfig] = None
53
+
54
+ index_to_category: Optional[Dict[int, str]] = field(
55
+ default_factory=lambda: {
56
+ 0: "occupied",
57
+ 1: "empty"
58
+ }
59
+ )
60
+
61
+
62
+ class ParkingUseCase(BaseProcessor):
63
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
64
+ """
65
+ Get detailed information about track IDs (per frame).
66
+ """
67
+ # Collect all track_ids in this frame
68
+ frame_track_ids = set()
69
+ for det in detections:
70
+ tid = det.get('track_id')
71
+ if tid is not None:
72
+ frame_track_ids.add(tid)
73
+ # Use persistent total set for unique counting
74
+ total_track_ids = set()
75
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
76
+ total_track_ids.update(s)
77
+ return {
78
+ "total_count": len(total_track_ids),
79
+ "current_frame_count": len(frame_track_ids),
80
+ "total_unique_track_ids": len(total_track_ids),
81
+ "current_frame_track_ids": list(frame_track_ids),
82
+ "last_update_time": time.time(),
83
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
84
+ }
85
+
86
+
87
+
88
+
89
+
90
+ def _update_tracking_state(self, detections: list):
91
+ """
92
+ Track unique categories track_ids per category for total count after tracking.
93
+ Applies canonical ID merging to avoid duplicate counting when the underlying
94
+ tracker loses an object temporarily and assigns a new ID.
95
+ """
96
+ # Lazily initialise storage dicts
97
+ if not hasattr(self, "_per_category_total_track_ids"):
98
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
99
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
100
+
101
+ for det in detections:
102
+ cat = det.get("category")
103
+ raw_track_id = det.get("track_id")
104
+ if cat not in self.target_categories or raw_track_id is None:
105
+ continue
106
+ bbox = det.get("bounding_box", det.get("bbox"))
107
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
108
+ # Propagate canonical ID back to detection so downstream logic uses it
109
+ det["track_id"] = canonical_id
110
+
111
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
112
+ self._current_frame_track_ids[cat].add(canonical_id)
113
+
114
+ def get_total_counts(self):
115
+ """
116
+ Return total unique track_id count for each category.
117
+ """
118
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
119
+
120
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
121
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
122
+ hours = int(timestamp // 3600)
123
+ minutes = int((timestamp % 3600) // 60)
124
+ seconds = timestamp % 60
125
+ return f"{hours:02d}:{minutes:02d}:{seconds:06.2f}"
126
+
127
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
128
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
129
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
130
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
131
+
132
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
133
+ """Get formatted current timestamp based on stream type."""
134
+ if not stream_info:
135
+ return "00:00:00.00"
136
+
137
+ is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
138
+
139
+ # if is_video_chunk:
140
+ # # For video chunks, use video_timestamp from stream_info
141
+ # video_timestamp = stream_info.get("video_timestamp", 0.0)
142
+ # return self._format_timestamp_for_video(video_timestamp)
143
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
144
+ # If video format, return video timestamp
145
+ stream_time_str = stream_info.get("video_timestamp", "")
146
+ return stream_time_str[:8]
147
+ else:
148
+ # For streams, use stream_time from stream_info
149
+ stream_time_str = stream_info.get("stream_time", "")
150
+ if stream_time_str:
151
+ # Parse the high precision timestamp string to get timestamp
152
+ try:
153
+ # Remove " UTC" suffix and parse
154
+ timestamp_str = stream_time_str.replace(" UTC", "")
155
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
156
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
157
+ return self._format_timestamp_for_stream(timestamp)
158
+ except:
159
+ # Fallback to current time if parsing fails
160
+ return self._format_timestamp_for_stream(time.time())
161
+ else:
162
+ return self._format_timestamp_for_stream(time.time())
163
+
164
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
165
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
166
+ if not stream_info:
167
+ return "00:00:00"
168
+
169
+ is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
170
+
171
+ if is_video_chunk:
172
+ # For video chunks, start from 00:00:00
173
+ return "00:00:00"
174
+ elif stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
175
+ # If video format, start from 00:00:00
176
+ return "00:00:00"
177
+ else:
178
+ # For streams, use tracking start time or current time with minutes/seconds reset
179
+ if self._tracking_start_time is None:
180
+ # Try to extract timestamp from stream_time string
181
+ stream_time_str = stream_info.get("stream_time", "")
182
+ if stream_time_str:
183
+ try:
184
+ # Remove " UTC" suffix and parse
185
+ timestamp_str = stream_time_str.replace(" UTC", "")
186
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
187
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
188
+ except:
189
+ # Fallback to current time if parsing fails
190
+ self._tracking_start_time = time.time()
191
+ else:
192
+ self._tracking_start_time = time.time()
193
+
194
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
195
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
196
+ dt = dt.replace(minute=0, second=0, microsecond=0)
197
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
198
+
199
+ """ Monitoring use case with smoothing and alerting."""
200
+
201
+ def __init__(self):
202
+ super().__init__("parking_det")
203
+ self.category = "general"
204
+
205
+ # List of categories to track
206
+ self.target_categories = ["occupied", "empty"]
207
+
208
+
209
+
210
+ # Initialize smoothing tracker
211
+ self.smoothing_tracker = None
212
+
213
+ # Initialize advanced tracker (will be created on first use)
214
+ self.tracker = None
215
+
216
+ # Initialize tracking state variables
217
+ self._total_frame_counter = 0
218
+ self._global_frame_offset = 0
219
+
220
+ # Track start time for "TOTAL SINCE" calculation
221
+ self._tracking_start_time = None
222
+
223
+ # ------------------------------------------------------------------ #
224
+ # Canonical tracking aliasing to avoid duplicate counts #
225
+ # ------------------------------------------------------------------ #
226
+ # Maps raw tracker-generated IDs to stable canonical IDs that persist
227
+ # even if the underlying tracker re-assigns a new ID after a short
228
+ # interruption. This mirrors the logic used in people_counting to
229
+ # provide accurate unique counting.
230
+ self._track_aliases: Dict[Any, Any] = {}
231
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
232
+ # Tunable parameters – adjust if necessary for specific scenarios
233
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
234
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
235
+
236
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
237
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
238
+ """
239
+ Main entry point for post-processing.
240
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
241
+ Returns a ProcessingResult with all relevant outputs.
242
+ """
243
+ start_time = time.time()
244
+ # Ensure config is correct type
245
+ if not isinstance(config, ParkingConfig):
246
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
247
+ context=context)
248
+ if context is None:
249
+ context = ProcessingContext()
250
+
251
+ # Detect input format and store in context
252
+ input_format = match_results_structure(data)
253
+ context.input_format = input_format
254
+ context.confidence_threshold = config.confidence_threshold
255
+
256
+ if config.confidence_threshold is not None:
257
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
258
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
259
+ else:
260
+ processed_data = data
261
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
262
+
263
+ # Step 2: Apply category mapping if provided
264
+ if config.index_to_category:
265
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
266
+ self.logger.debug("Applied category mapping")
267
+
268
+ if config.target_categories:
269
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
270
+ self.logger.debug(f"Applied category filtering")
271
+
272
+ # Apply bbox smoothing if enabled
273
+ if config.enable_smoothing:
274
+ if self.smoothing_tracker is None:
275
+ smoothing_config = BBoxSmoothingConfig(
276
+ smoothing_algorithm=config.smoothing_algorithm,
277
+ window_size=config.smoothing_window_size,
278
+ cooldown_frames=config.smoothing_cooldown_frames,
279
+ confidence_threshold=config.confidence_threshold, # Use threshold as default
280
+ confidence_range_factor=config.smoothing_confidence_range_factor,
281
+ enable_smoothing=True
282
+ )
283
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
284
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
285
+
286
+
287
+ # Advanced tracking (BYTETracker-like)
288
+ try:
289
+ from ..advanced_tracker import AdvancedTracker
290
+ from ..advanced_tracker.config import TrackerConfig
291
+
292
+ # Create tracker instance if it doesn't exist (preserves state across frames)
293
+ if self.tracker is None:
294
+ tracker_config = TrackerConfig()
295
+ self.tracker = AdvancedTracker(tracker_config)
296
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
297
+
298
+ # The tracker expects the data in the same format as input
299
+ # It will add track_id and frame_id to each detection
300
+ processed_data = self.tracker.update(processed_data)
301
+
302
+ except Exception as e:
303
+ # If advanced tracker fails, fallback to unsmoothed detections
304
+ self.logger.warning(f"AdvancedTracker failed: {e}")
305
+
306
+
307
+
308
+
309
+ # Update tracking state for total count per label
310
+ self._update_tracking_state(processed_data)
311
+
312
+ # Update frame counter
313
+ self._total_frame_counter += 1
314
+
315
+ # Extract frame information from stream_info
316
+ frame_number = None
317
+ if stream_info:
318
+ input_settings = stream_info.get("input_settings", {})
319
+ start_frame = input_settings.get("start_frame")
320
+ end_frame = input_settings.get("end_frame")
321
+ # If start and end frame are the same, it's a single frame
322
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
323
+ frame_number = start_frame
324
+
325
+ # Compute summaries and alerts
326
+ general_counting_summary = calculate_counting_summary(data) #done
327
+ counting_summary = self._count_categories(processed_data, config) #done
328
+ # Add total unique counts after tracking using only local state
329
+ total_counts = self.get_total_counts() #done
330
+ counting_summary['total_counts'] = total_counts #done
331
+ insights = self._generate_insights(counting_summary, config)#done
332
+ alerts = self._check_alerts(counting_summary, config)#done
333
+ predictions = self._extract_predictions(processed_data)#done
334
+ summary = self._generate_summary(counting_summary, alerts)#done
335
+
336
+ # Step: Generate structured events and tracking stats with frame-based keys
337
+ events_list = self._generate_events(counting_summary, alerts, config, frame_number, stream_info)#done
338
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, insights, summary, config, frame_number,
339
+ stream_info)
340
+
341
+ # Extract frame-based dictionaries from the lists
342
+ events = events_list[0] if events_list else {}
343
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
344
+
345
+ context.mark_completed()
346
+
347
+ # Build result object
348
+ result = self.create_result(
349
+ data={
350
+ "counting_summary": counting_summary,
351
+ "general_counting_summary": general_counting_summary,
352
+ "alerts": alerts,
353
+ "total_detections": counting_summary.get("total_count", 0),
354
+ "events": events,
355
+ "tracking_stats": tracking_stats,
356
+ },
357
+ usecase=self.name,
358
+ category=self.category,
359
+ context=context
360
+ )
361
+ result.summary = summary
362
+ result.insights = insights
363
+ result.predictions = predictions
364
+ return result
365
+
366
+
367
+
368
+ def _generate_events(self, counting_summary: Dict, alerts: List, config: ParkingConfig,
369
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
370
+ Dict]:
371
+ """Generate structured events for the output format with frame-based keys."""
372
+ from datetime import datetime, timezone
373
+
374
+ # Use frame number as key, fallback to 'current_frame' if not available
375
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
376
+ events = [{frame_key: []}]
377
+ frame_events = events[0][frame_key]
378
+ total_detections = counting_summary.get("total_count", 0)
379
+
380
+ if total_detections > 0:
381
+ # Determine event level based on thresholds
382
+ level = "info"
383
+ intensity = 5.0
384
+ if config.alert_config and config.alert_config.count_thresholds:
385
+ threshold = config.alert_config.count_thresholds.get("all", 15)
386
+ intensity = min(10.0, (total_detections / threshold) * 10)
387
+
388
+ if intensity >= 7:
389
+ level = "critical"
390
+ elif intensity >= 5:
391
+ level = "warning"
392
+ else:
393
+ level = "info"
394
+ else:
395
+ if total_detections > 25:
396
+ level = "critical"
397
+ intensity = 9.0
398
+ elif total_detections > 15:
399
+ level = "warning"
400
+ intensity = 7.0
401
+ else:
402
+ level = "info"
403
+ intensity = min(10.0, total_detections / 3.0)
404
+
405
+ # Generate human text in new format
406
+ human_text_lines = ["EVENTS DETECTED:"]
407
+ human_text_lines.append(f" - {total_detections} detected [INFO]")
408
+ human_text = "\n".join(human_text_lines)
409
+
410
+ event = {
411
+ "type": "parking_det",
412
+ "stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
413
+ "level": level,
414
+ "intensity": round(intensity, 1),
415
+ "config": {
416
+ "min_value": 0,
417
+ "max_value": 10,
418
+ "level_settings": {"info": 2, "warning": 5, "critical": 7}
419
+ },
420
+ "application_name": "parking space detection System",
421
+ "application_version": "1.2",
422
+ "location_info": None,
423
+ "human_text": human_text
424
+ }
425
+ frame_events.append(event)
426
+
427
+ # Add alert events
428
+ for alert in alerts:
429
+ total_detections = counting_summary.get("total_count", 0)
430
+ intensity_message = "ALERT: Low congestion in the scene"
431
+ if config.alert_config and config.alert_config.count_thresholds:
432
+ threshold = config.alert_config.count_thresholds.get("all", 15)
433
+ percentage = (total_detections / threshold) * 100 if threshold > 0 else 0
434
+ if percentage < 20:
435
+ intensity_message = "ALERT: Low congestion in the scene"
436
+ elif percentage <= 50:
437
+ intensity_message = "ALERT: Moderate congestion in the scene"
438
+ elif percentage <= 70:
439
+ intensity_message = "ALERT: Heavy congestion in the scene"
440
+ else:
441
+ intensity_message = "ALERT: Severe congestion in the scene"
442
+ else:
443
+ if total_detections > 15:
444
+ intensity_message = "ALERT: Heavy congestion in the scene"
445
+ elif total_detections == 1:
446
+ intensity_message = "ALERT: Low congestion in the scene"
447
+ else:
448
+ intensity_message = "ALERT: Moderate congestion in the scene"
449
+
450
+ alert_event = {
451
+ "type": alert.get("type", "congestion_alert"),
452
+ "stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
453
+ "level": alert.get("severity", "warning"),
454
+ "intensity": 8.0,
455
+ "config": {
456
+ "min_value": 0,
457
+ "max_value": 10,
458
+ "level_settings": {"info": 2, "warning": 5, "critical": 7}
459
+ },
460
+ "application_name": "Congestion Alert System",
461
+ "application_version": "1.2",
462
+ "location_info": alert.get("zone"),
463
+ "human_text": f"{datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC')} : {intensity_message}"
464
+ }
465
+ frame_events.append(alert_event)
466
+
467
+ return events
468
+
469
+ def _generate_tracking_stats(
470
+ self,
471
+ counting_summary: Dict,
472
+ insights: List[str],
473
+ summary: str,
474
+ config: ParkingConfig,
475
+ frame_number: Optional[int] = None,
476
+ stream_info: Optional[Dict[str, Any]] = None
477
+ ) -> List[Dict]:
478
+ """Generate structured tracking stats for the output format with frame-based keys, including track_ids_info."""
479
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
480
+ tracking_stats = [{frame_key: []}]
481
+ frame_tracking_stats = tracking_stats[0][frame_key]
482
+
483
+ total_detections = counting_summary.get("total_count", 0)
484
+ total_counts = counting_summary.get("total_counts", {})
485
+ cumulative_total = sum(total_counts.values()) if total_counts else 0
486
+ per_category_count = counting_summary.get("per_category_count", {})
487
+
488
+ track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
489
+
490
+ current_timestamp = self._get_current_timestamp_str(stream_info)
491
+ start_timestamp = self._get_start_timestamp_str(stream_info)
492
+
493
+ human_text_lines = []
494
+
495
+ # CURRENT FRAME section
496
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
497
+ if total_detections > 0:
498
+ category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
499
+ if len(category_counts) == 1:
500
+ detection_text = category_counts[0] + " detected"
501
+ elif len(category_counts) == 2:
502
+ detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
503
+ else:
504
+ detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
505
+ human_text_lines.append(f"\t- {detection_text}")
506
+ else:
507
+ human_text_lines.append(f"\t- No detections")
508
+
509
+ human_text_lines.append("") # spacing
510
+
511
+ # TOTAL SINCE section
512
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
513
+ human_text_lines.append(f"\t- Total Detected: {cumulative_total}")
514
+ # Add category-wise counts
515
+ if total_counts:
516
+ for cat, count in total_counts.items():
517
+ if count > 0: # Only include categories with non-zero counts
518
+ human_text_lines.append(f"\t- {cat}: {count}")
519
+
520
+ human_text = "\n".join(human_text_lines)
521
+
522
+ tracking_stat = {
523
+ "type": "parking_det",
524
+ "category": "general",
525
+ "count": total_detections,
526
+ "insights": insights,
527
+ "summary": summary,
528
+ "timestamp": datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC'),
529
+ "human_text": human_text,
530
+ "track_ids_info": track_ids_info,
531
+ "global_frame_offset": getattr(self, '_global_frame_offset', 0),
532
+ "local_frame_id": frame_key,
533
+ "detections": counting_summary.get("detections", []) # Added line to include detections
534
+ }
535
+
536
+ frame_tracking_stats.append(tracking_stat)
537
+ return tracking_stats
538
+
539
+ def _count_categories(self, detections: list, config: ParkingConfig) -> dict:
540
+ """
541
+ Count the number of detections per category and return a summary dict.
542
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
543
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
544
+ """
545
+ counts = {}
546
+ for det in detections:
547
+ cat = det.get('category', 'unknown')
548
+ counts[cat] = counts.get(cat, 0) + 1
549
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
550
+ return {
551
+ "total_count": sum(counts.values()),
552
+ "per_category_count": counts,
553
+ "detections": [
554
+ {
555
+ "bounding_box": det.get("bounding_box"),
556
+ "category": det.get("category"),
557
+ "confidence": det.get("confidence"),
558
+ "track_id": det.get("track_id"),
559
+ "frame_id": det.get("frame_id")
560
+ }
561
+ for det in detections
562
+ ]
563
+ }
564
+
565
+ # Human-friendly display names for categories
566
+ CATEGORY_DISPLAY = {
567
+ "occupied": "occupied",
568
+ "empty": "empty"
569
+ }
570
+
571
+ def _generate_insights(self, summary: dict, config: ParkingConfig) -> List[str]:
572
+ """
573
+ Generate human-readable insights for each category.
574
+ """
575
+ insights = []
576
+ per_cat = summary.get("per_category_count", {})
577
+ total_detections = summary.get("total_count", 0)
578
+
579
+ if total_detections == 0:
580
+ insights.append("No detections in the scene")
581
+ return insights
582
+ insights.append(f"EVENT: Detected {total_detections} in the scene")
583
+ # Intensity calculation based on threshold percentage
584
+ intensity_threshold = None
585
+ if (config.alert_config and
586
+ config.alert_config.count_thresholds and
587
+ "all" in config.alert_config.count_thresholds):
588
+ intensity_threshold = config.alert_config.count_thresholds["all"]
589
+
590
+ if intensity_threshold is not None:
591
+ # Calculate percentage relative to threshold
592
+ percentage = (total_detections / intensity_threshold) * 100
593
+
594
+ if percentage < 20:
595
+ insights.append(f"INTENSITY: Low congestion in the scene ({percentage:.1f}% of capacity)")
596
+ elif percentage <= 50:
597
+ insights.append(f"INTENSITY: Moderate congestion in the scene ({percentage:.1f}% of capacity)")
598
+ elif percentage <= 70:
599
+ insights.append(f"INTENSITY: Heavy congestion in the scene ({percentage:.1f}% of capacity)")
600
+ else:
601
+ insights.append(f"INTENSITY: Severe congestion in the scene ({percentage:.1f}% of capacity)")
602
+
603
+
604
+ for cat, count in per_cat.items():
605
+ display = self.CATEGORY_DISPLAY.get(cat, cat)
606
+ insights.append(f"{display}:{count}")
607
+ return insights
608
+
609
+ def _check_alerts(self, summary: dict, config: ParkingConfig) -> List[Dict]:
610
+ """
611
+ Check if any alert thresholds are exceeded and return alert dicts.
612
+ """
613
+ alerts = []
614
+ if not config.alert_config:
615
+ return alerts
616
+ total = summary.get("total_count", 0)
617
+ if config.alert_config.count_thresholds:
618
+ for category, threshold in config.alert_config.count_thresholds.items():
619
+ if category == "all" and total >= threshold:
620
+ timestamp = datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC')
621
+ alert_description = f"detections count ({total}) exceeds threshold ({threshold})"
622
+ alerts.append({
623
+ "type": "count_threshold",
624
+ "severity": "warning",
625
+ "message": f"Total detections count ({total}) exceeds threshold ({threshold})",
626
+ "category": category,
627
+ "current_count": total,
628
+ "threshold": threshold
629
+ })
630
+ elif category in summary.get("per_category_count", {}):
631
+ count = summary.get("per_category_count", {})[category]
632
+ if count >= threshold:
633
+ alerts.append({
634
+ "type": "count_threshold",
635
+ "severity": "warning",
636
+ "message": f"{category} count ({count}) exceeds threshold ({threshold})",
637
+ "category": category,
638
+ "current_count": count,
639
+ "threshold": threshold
640
+ })
641
+ return alerts
642
+
643
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
644
+ """
645
+ Extract prediction details for output (category, confidence, bounding box).
646
+ """
647
+ return [
648
+ {
649
+ "category": det.get("category", "unknown"),
650
+ "confidence": det.get("confidence", 0.0),
651
+ "bounding_box": det.get("bounding_box", {})
652
+ }
653
+ for det in detections
654
+ ]
655
+
656
+ def _generate_summary(self, summary: dict, alerts: List) -> str:
657
+ """
658
+ Generate a human_text string for the result, including per-category insights if available.
659
+ Adds a tab before each label for better formatting.
660
+ Also always includes the cumulative count so far.
661
+ """
662
+ total = summary.get("total_count", 0)
663
+ per_cat = summary.get("per_category_count", {})
664
+ cumulative = summary.get("total_counts", {})
665
+ cumulative_total = sum(cumulative.values()) if cumulative else 0
666
+ lines = []
667
+ if total > 0:
668
+ lines.append(f"{total} detections")
669
+ if per_cat:
670
+ lines.append("detections:")
671
+ for cat, count in per_cat.items():
672
+ lines.append(f"\t{cat}:{count}")
673
+ else:
674
+ lines.append("No detections")
675
+ lines.append(f"Total detections: {cumulative_total}")
676
+ if alerts:
677
+ lines.append(f"{len(alerts)} alert(s)")
678
+ return "\n".join(lines)
679
+
680
+ # ------------------------------------------------------------------ #
681
+ # Canonical ID helpers #
682
+ # ------------------------------------------------------------------ #
683
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
684
+ """Compute IoU between two bounding boxes which may be dicts or lists.
685
+ Falls back to 0 when insufficient data is available."""
686
+
687
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
688
+ def _bbox_to_list(bbox):
689
+ if bbox is None:
690
+ return []
691
+ if isinstance(bbox, list):
692
+ return bbox[:4] if len(bbox) >= 4 else []
693
+ if isinstance(bbox, dict):
694
+ if "xmin" in bbox:
695
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
696
+ if "x1" in bbox:
697
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
698
+ # Fallback: first four numeric values
699
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
700
+ return values[:4] if len(values) >= 4 else []
701
+ return []
702
+
703
+ l1 = _bbox_to_list(box1)
704
+ l2 = _bbox_to_list(box2)
705
+ if len(l1) < 4 or len(l2) < 4:
706
+ return 0.0
707
+ x1_min, y1_min, x1_max, y1_max = l1
708
+ x2_min, y2_min, x2_max, y2_max = l2
709
+
710
+ # Ensure correct order
711
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
712
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
713
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
714
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
715
+
716
+ inter_x_min = max(x1_min, x2_min)
717
+ inter_y_min = max(y1_min, y2_min)
718
+ inter_x_max = min(x1_max, x2_max)
719
+ inter_y_max = min(y1_max, y2_max)
720
+
721
+ inter_w = max(0.0, inter_x_max - inter_x_min)
722
+ inter_h = max(0.0, inter_y_max - inter_y_min)
723
+ inter_area = inter_w * inter_h
724
+
725
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
726
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
727
+ union_area = area1 + area2 - inter_area
728
+
729
+ return (inter_area / union_area) if union_area > 0 else 0.0
730
+
731
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
732
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
733
+ tracks when IoU and temporal constraints indicate they represent the
734
+ same physical."""
735
+ if raw_id is None or bbox is None:
736
+ # Nothing to merge
737
+ return raw_id
738
+
739
+ now = time.time()
740
+
741
+ # Fast path – raw_id already mapped
742
+ if raw_id in self._track_aliases:
743
+ canonical_id = self._track_aliases[raw_id]
744
+ track_info = self._canonical_tracks.get(canonical_id)
745
+ if track_info is not None:
746
+ track_info["last_bbox"] = bbox
747
+ track_info["last_update"] = now
748
+ track_info["raw_ids"].add(raw_id)
749
+ return canonical_id
750
+
751
+ # Attempt to merge with an existing canonical track
752
+ for canonical_id, info in self._canonical_tracks.items():
753
+ # Only consider recently updated tracks
754
+ if now - info["last_update"] > self._track_merge_time_window:
755
+ continue
756
+ iou = self._compute_iou(bbox, info["last_bbox"])
757
+ if iou >= self._track_merge_iou_threshold:
758
+ # Merge
759
+ self._track_aliases[raw_id] = canonical_id
760
+ info["last_bbox"] = bbox
761
+ info["last_update"] = now
762
+ info["raw_ids"].add(raw_id)
763
+ return canonical_id
764
+
765
+ # No match – register new canonical track
766
+ canonical_id = raw_id
767
+ self._track_aliases[raw_id] = canonical_id
768
+ self._canonical_tracks[canonical_id] = {
769
+ "last_bbox": bbox,
770
+ "last_update": now,
771
+ "raw_ids": {raw_id},
772
+ }
773
+ return canonical_id
774
+
775
+ def _format_timestamp(self, timestamp: float) -> str:
776
+ """Format a timestamp for human-readable output."""
777
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
778
+
779
+ def _get_tracking_start_time(self) -> str:
780
+ """Get the tracking start time, formatted as a string."""
781
+ if self._tracking_start_time is None:
782
+ return "N/A"
783
+ return self._format_timestamp(self._tracking_start_time)
784
+
785
+ def _set_tracking_start_time(self) -> None:
786
+ """Set the tracking start time to the current time."""
787
+ self._tracking_start_time = time.time()