matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,832 @@
1
+ """
2
+ Gender detection use case Post-Processing module.
3
+ This module implements gender detection functionality with advanced tracking,
4
+ smoothing.
5
+
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+ from dataclasses import asdict
10
+ import time
11
+ from datetime import datetime, timezone
12
+
13
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
14
+ from ..utils import (
15
+ filter_by_confidence,
16
+ filter_by_categories,
17
+ apply_category_mapping,
18
+ count_objects_by_category,
19
+ count_objects_in_zones,
20
+ calculate_counting_summary,
21
+ match_results_structure,
22
+ bbox_smoothing,
23
+ BBoxSmoothingConfig,
24
+ BBoxSmoothingTracker
25
+ )
26
+ from dataclasses import dataclass, field
27
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
28
+
29
+
30
+ @dataclass
31
+ class GenderDetectionConfig(BaseConfig):
32
+ """Configuration for gender detection use case in gender detection."""
33
+ # Smoothing configuration
34
+ enable_smoothing: bool = True
35
+ smoothing_algorithm: str = "observability" # "window" or "observability"
36
+ smoothing_window_size: int = 20
37
+ smoothing_cooldown_frames: int = 5
38
+ smoothing_confidence_range_factor: float = 0.5
39
+
40
+ #confidence thresholds
41
+ confidence_threshold: float = 0.6
42
+
43
+ usecase_categories: List[str] = field(
44
+ default_factory=lambda: ['Female', 'Male']
45
+ )
46
+
47
+ target_categories: List[str] = field(
48
+ default_factory=lambda: ['Female', 'Male']
49
+ )
50
+
51
+ alert_config: Optional[AlertConfig] = None
52
+
53
+ index_to_category: Optional[Dict[int, str]] = field(
54
+ default_factory=lambda: {
55
+ 0: "Male",
56
+ 1: "Female"
57
+ }
58
+ )
59
+
60
+
61
+ class GenderDetectionUseCase(BaseProcessor):
62
+ # Human-friendly display names for categories
63
+ CATEGORY_DISPLAY = {
64
+ "Female": "Female",
65
+ "Male": "Male"
66
+ }
67
+ def __init__(self):
68
+ super().__init__("gender_detection")
69
+ self.category = "general"
70
+
71
+ self.CASE_TYPE: Optional[str] = 'gender_detection'
72
+ self.CASE_VERSION: Optional[str] = '1.2'
73
+
74
+ # List of categories to track
75
+ self.target_categories = ["Female", "Male"]
76
+
77
+ # Initialize smoothing tracker
78
+ self.smoothing_tracker = None
79
+
80
+ # Initialize advanced tracker (will be created on first use)
81
+ self.tracker = None
82
+
83
+ # Initialize tracking state variables
84
+ self._total_frame_counter = 0
85
+ self._global_frame_offset = 0
86
+
87
+ # Track start time for "TOTAL SINCE" calculation
88
+ self._tracking_start_time = None
89
+
90
+ self._track_aliases: Dict[Any, Any] = {}
91
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
92
+ # Tunable parameters – adjust if necessary for specific scenarios
93
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
94
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
95
+
96
+ self._ascending_alert_list: List[int] = []
97
+ self.current_incident_end_timestamp: str = "N/A"
98
+
99
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
100
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
101
+ """
102
+ Main entry point for post-processing.
103
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
104
+ Returns a ProcessingResult with all relevant outputs.
105
+ """
106
+ start_time = time.time()
107
+ # Ensure config is correct type
108
+ if not isinstance(config, GenderDetectionConfig):
109
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
110
+ context=context)
111
+ if context is None:
112
+ context = ProcessingContext()
113
+
114
+ # Detect input format and store in context
115
+ input_format = match_results_structure(data)
116
+ context.input_format = input_format
117
+ context.confidence_threshold = config.confidence_threshold
118
+
119
+ if config.confidence_threshold is not None:
120
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
121
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
122
+ else:
123
+ processed_data = data
124
+
125
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
126
+
127
+ # Step 2: Apply category mapping if provided
128
+ if config.index_to_category:
129
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
130
+ self.logger.debug("Applied category mapping")
131
+
132
+ if config.target_categories:
133
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
134
+ self.logger.debug(f"Applied category filtering")
135
+
136
+ # Apply bbox smoothing if enabled
137
+ if config.enable_smoothing:
138
+ if self.smoothing_tracker is None:
139
+ smoothing_config = BBoxSmoothingConfig(
140
+ smoothing_algorithm=config.smoothing_algorithm,
141
+ window_size=config.smoothing_window_size,
142
+ cooldown_frames=config.smoothing_cooldown_frames,
143
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
144
+ confidence_range_factor=config.smoothing_confidence_range_factor,
145
+ enable_smoothing=True
146
+ )
147
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
148
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
149
+
150
+ # Advanced tracking (BYTETracker-like)
151
+ try:
152
+ from ..advanced_tracker import AdvancedTracker
153
+ from ..advanced_tracker.config import TrackerConfig
154
+
155
+
156
+ if self.tracker is None:
157
+ if config.confidence_threshold is not None:
158
+ tracker_config = TrackerConfig(
159
+ track_high_thresh=float(config.confidence_threshold),
160
+ # Allow even lower detections to participate in secondary association
161
+ track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
162
+ new_track_thresh=float(config.confidence_threshold)
163
+ )
164
+ else:
165
+ tracker_config = TrackerConfig()
166
+ self.tracker = AdvancedTracker(tracker_config)
167
+ self.logger.info(
168
+ "Initialized AdvancedTracker for Monitoring and tracking with thresholds: "
169
+ f"high={tracker_config.track_high_thresh}, "
170
+ f"low={tracker_config.track_low_thresh}, "
171
+ f"new={tracker_config.new_track_thresh}"
172
+ )
173
+
174
+ # The tracker expects the data in the same format as input
175
+ # It will add track_id and frame_id to each detection
176
+ processed_data = self.tracker.update(processed_data)
177
+
178
+ except Exception as e:
179
+ # If advanced tracker fails, fallback to unsmoothed detections
180
+ self.logger.warning(f"AdvancedTracker failed: {e}")
181
+
182
+ # Update tracking state for total count per label
183
+ self._update_tracking_state(processed_data)
184
+
185
+ # Update frame counter
186
+ self._total_frame_counter += 1
187
+
188
+ # Extract frame information from stream_info
189
+ frame_number = None
190
+ if stream_info:
191
+ input_settings = stream_info.get("input_settings", {})
192
+ start_frame = input_settings.get("start_frame")
193
+ end_frame = input_settings.get("end_frame")
194
+ # If start and end frame are the same, it's a single frame
195
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
196
+ frame_number = start_frame
197
+
198
+ # Compute summaries and alerts
199
+ general_counting_summary = calculate_counting_summary(data)
200
+ counting_summary = self._count_categories(processed_data, config)
201
+ # Add total unique counts after tracking using only local state
202
+ total_counts = self.get_total_counts()
203
+ counting_summary['total_counts'] = total_counts
204
+
205
+ alerts = self._check_alerts(counting_summary, frame_number, config)
206
+ predictions = self._extract_predictions(processed_data)
207
+
208
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
209
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
210
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
211
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
212
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
213
+
214
+ # Extract frame-based dictionaries from the lists
215
+ incidents = incidents_list[0] if incidents_list else {}
216
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
217
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
218
+ summary = summary_list[0] if summary_list else {}
219
+ agg_summary = {str(frame_number): {
220
+ "incidents": incidents,
221
+ "tracking_stats": tracking_stats,
222
+ "business_analytics": business_analytics,
223
+ "alerts": alerts,
224
+ "human_text": summary}
225
+ }
226
+
227
+
228
+ context.mark_completed()
229
+
230
+ # Build result object following the new pattern
231
+
232
+ result = self.create_result(
233
+ data={"agg_summary": agg_summary},
234
+ usecase=self.name,
235
+ category=self.category,
236
+ context=context
237
+ )
238
+
239
+ return result
240
+
241
+ def _check_alerts(self, summary: dict, frame_number:Any, config: GenderDetectionConfig) -> List[Dict]:
242
+ """
243
+ Check if any alert thresholds are exceeded and return alert dicts.
244
+ """
245
+ def get_trend(data, lookback=900, threshold=0.6):
246
+ '''
247
+ Determine if the trend is ascending or descending based on actual value progression.
248
+ Now works with values 0,1,2,3 (not just binary).
249
+ '''
250
+ window = data[-lookback:] if len(data) >= lookback else data
251
+ if len(window) < 2:
252
+ return True # not enough data to determine trend
253
+ increasing = 0
254
+ total = 0
255
+ for i in range(1, len(window)):
256
+ if window[i] >= window[i - 1]:
257
+ increasing += 1
258
+ total += 1
259
+ ratio = increasing / total
260
+ if ratio >= threshold:
261
+ return True
262
+ elif ratio <= (1 - threshold):
263
+ return False
264
+
265
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
266
+ alerts = []
267
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
268
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
269
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
270
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
271
+
272
+ if not config.alert_config:
273
+ return alerts
274
+
275
+ total = summary.get("total_count", 0)
276
+ #self._ascending_alert_list
277
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
278
+
279
+ for category, threshold in config.alert_config.count_thresholds.items():
280
+ if category == "all" and total > threshold:
281
+
282
+ alerts.append({
283
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
284
+ "alert_id": "alert_"+category+'_'+frame_key,
285
+ "incident_category": self.CASE_TYPE,
286
+ "threshold_level": threshold,
287
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
288
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
289
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
290
+ }
291
+ })
292
+ elif category in summary.get("per_category_count", {}):
293
+ count = summary.get("per_category_count", {})[category]
294
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
295
+ alerts.append({
296
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
297
+ "alert_id": "alert_"+category+'_'+frame_key,
298
+ "incident_category": self.CASE_TYPE,
299
+ "threshold_level": threshold,
300
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
301
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
302
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
303
+ }
304
+ })
305
+ else:
306
+ pass
307
+ return alerts
308
+
309
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: GenderDetectionConfig,
310
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
311
+ Dict]:
312
+ """Generate structured incidents for the output format with frame-based keys."""
313
+
314
+ incidents = []
315
+ total_detections = counting_summary.get("total_count", 0)
316
+ current_timestamp = self._get_current_timestamp_str(stream_info)
317
+ camera_info = self.get_camera_info_from_stream(stream_info)
318
+
319
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
320
+
321
+ if total_detections > 0:
322
+ # Determine event level based on thresholds
323
+ level = "low"
324
+ intensity = 5.0
325
+ start_timestamp = self._get_start_timestamp_str(stream_info)
326
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
327
+ self.current_incident_end_timestamp = 'Incident still active'
328
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
329
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
330
+ self.current_incident_end_timestamp = current_timestamp
331
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
332
+ self.current_incident_end_timestamp = 'N/A'
333
+
334
+ if config.alert_config and config.alert_config.count_thresholds:
335
+ threshold = config.alert_config.count_thresholds.get("all", 15)
336
+ intensity = min(10.0, (total_detections / threshold) * 10)
337
+
338
+ if intensity >= 9:
339
+ level = "critical"
340
+ self._ascending_alert_list.append(3)
341
+ elif intensity >= 7:
342
+ level = "significant"
343
+ self._ascending_alert_list.append(2)
344
+ elif intensity >= 5:
345
+ level = "medium"
346
+ self._ascending_alert_list.append(1)
347
+ else:
348
+ level = "low"
349
+ self._ascending_alert_list.append(0)
350
+ else:
351
+ if total_detections > 30:
352
+ level = "critical"
353
+ intensity = 10.0
354
+ self._ascending_alert_list.append(3)
355
+ elif total_detections > 25:
356
+ level = "significant"
357
+ intensity = 9.0
358
+ self._ascending_alert_list.append(2)
359
+ elif total_detections > 15:
360
+ level = "medium"
361
+ intensity = 7.0
362
+ self._ascending_alert_list.append(1)
363
+ else:
364
+ level = "low"
365
+ intensity = min(10.0, total_detections / 3.0)
366
+ self._ascending_alert_list.append(0)
367
+
368
+ # Generate human text in new format
369
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
370
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
371
+ human_text = "\n".join(human_text_lines)
372
+
373
+ alert_settings=[]
374
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
375
+ alert_settings.append({
376
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
377
+ "incident_category": self.CASE_TYPE,
378
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
379
+ "ascending": True,
380
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
381
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
382
+ }
383
+ })
384
+
385
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
386
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
387
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
388
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
389
+ incidents.append(event)
390
+
391
+ else:
392
+ self._ascending_alert_list.append(0)
393
+ incidents.append({})
394
+
395
+ return incidents
396
+
397
+ def _generate_tracking_stats(
398
+ self,
399
+ counting_summary: Dict,
400
+ alerts: List,
401
+ config: GenderDetectionConfig,
402
+ frame_number: Optional[int] = None,
403
+ stream_info: Optional[Dict[str, Any]] = None
404
+ ) -> List[Dict]:
405
+ """Generate structured tracking stats matching eg.json format."""
406
+ camera_info = self.get_camera_info_from_stream(stream_info)
407
+
408
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
409
+ # tracking_stats = [{frame_key: []}]
410
+ # frame_tracking_stats = tracking_stats[0][frame_key]
411
+ tracking_stats = []
412
+
413
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
414
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
415
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
416
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
417
+
418
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
419
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
420
+
421
+ # Create high precision timestamps for input_timestamp and reset_timestamp
422
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
423
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
424
+
425
+
426
+ # Build total_counts array in expected format
427
+ total_counts = []
428
+ for cat, count in total_counts_dict.items():
429
+ if count > 0:
430
+ total_counts.append({
431
+ "category": cat,
432
+ "count": count
433
+ })
434
+
435
+ # Build current_counts array in expected format
436
+ current_counts = []
437
+ for cat, count in per_category_count.items():
438
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
439
+ current_counts.append({
440
+ "category": cat,
441
+ "count": count
442
+ })
443
+
444
+ # Prepare detections without confidence scores (as per eg.json)
445
+ detections = []
446
+ for detection in counting_summary.get("detections", []):
447
+ bbox = detection.get("bounding_box", {})
448
+ category = detection.get("category", "person")
449
+ # Include segmentation if available (like in eg.json)
450
+ if detection.get("masks"):
451
+ segmentation= detection.get("masks", [])
452
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
453
+ elif detection.get("segmentation"):
454
+ segmentation= detection.get("segmentation")
455
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
456
+ elif detection.get("mask"):
457
+ segmentation= detection.get("mask")
458
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
459
+ else:
460
+ detection_obj = self.create_detection_object(category, bbox)
461
+ detections.append(detection_obj)
462
+
463
+ # Build alert_settings array in expected format
464
+ alert_settings = []
465
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
466
+ alert_settings.append({
467
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
468
+ "incident_category": self.CASE_TYPE,
469
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
470
+ "ascending": True,
471
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
472
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
473
+ }
474
+ })
475
+
476
+ # Generate human_text in expected format
477
+ human_text_lines = [f"Tracking Statistics:"]
478
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
479
+
480
+ for cat, count in per_category_count.items():
481
+ human_text_lines.append(f"\t{cat}: {count}")
482
+
483
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
484
+ for cat, count in total_counts_dict.items():
485
+ if count > 0:
486
+ human_text_lines.append(f"\t{cat}: {count}")
487
+
488
+ if alerts:
489
+ for alert in alerts:
490
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
491
+ else:
492
+ human_text_lines.append("Alerts: None")
493
+
494
+ human_text = "\n".join(human_text_lines)
495
+ reset_settings=[
496
+ {
497
+ "interval_type": "daily",
498
+ "reset_time": {
499
+ "value": 9,
500
+ "time_unit": "hour"
501
+ }
502
+ }
503
+ ]
504
+
505
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
506
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
507
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
508
+ reset_time=high_precision_reset_timestamp)
509
+
510
+ tracking_stats.append(tracking_stat)
511
+ return tracking_stats
512
+
513
+ def _generate_business_analytics(self, counting_summary: Dict, alerts:Any, config: GenderDetectionConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
514
+ """Generate standardized business analytics for the agg_summary structure."""
515
+ if is_empty:
516
+ return []
517
+
518
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
519
+ #camera_info = self.get_camera_info_from_stream(stream_info)
520
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
521
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
522
+ # reset_settings)
523
+ # return business_analytics
524
+
525
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
526
+ """
527
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
528
+ """
529
+ lines = {}
530
+ lines["Application Name"] = self.CASE_TYPE
531
+ lines["Application Version"] = self.CASE_VERSION
532
+ if len(incidents) > 0:
533
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
534
+ if len(tracking_stats) > 0:
535
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
536
+ if len(business_analytics) > 0:
537
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
538
+
539
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
540
+ lines["Summary"] = "No Summary Data"
541
+
542
+ return [lines]
543
+
544
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
545
+ """
546
+ Get detailed information about track IDs (per frame).
547
+ """
548
+ # Collect all track_ids in this frame
549
+ frame_track_ids = set()
550
+ for det in detections:
551
+ tid = det.get('track_id')
552
+ if tid is not None:
553
+ frame_track_ids.add(tid)
554
+ # Use persistent total set for unique counting
555
+ total_track_ids = set()
556
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
557
+ total_track_ids.update(s)
558
+ return {
559
+ "total_count": len(total_track_ids),
560
+ "current_frame_count": len(frame_track_ids),
561
+ "total_unique_track_ids": len(total_track_ids),
562
+ "current_frame_track_ids": list(frame_track_ids),
563
+ "last_update_time": time.time(),
564
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
565
+ }
566
+
567
+ def _update_tracking_state(self, detections: list):
568
+ """
569
+ Track unique categories track_ids per category for total count after tracking.
570
+ Applies canonical ID merging to avoid duplicate counting when the underlying
571
+ tracker loses an object temporarily and assigns a new ID.
572
+ """
573
+ # Lazily initialise storage dicts
574
+ if not hasattr(self, "_per_category_total_track_ids"):
575
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
576
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
577
+
578
+ for det in detections:
579
+ cat = det.get("category")
580
+ raw_track_id = det.get("track_id")
581
+ if cat not in self.target_categories or raw_track_id is None:
582
+ continue
583
+ bbox = det.get("bounding_box", det.get("bbox"))
584
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
585
+ # Propagate canonical ID back to detection so downstream logic uses it
586
+ det["track_id"] = canonical_id
587
+
588
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
589
+ self._current_frame_track_ids[cat].add(canonical_id)
590
+
591
+ def get_total_counts(self):
592
+ """
593
+ Return total unique track_id count for each category.
594
+ """
595
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
596
+
597
+
598
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
599
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
600
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
601
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
602
+
603
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
604
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
605
+ hours = int(timestamp // 3600)
606
+ minutes = int((timestamp % 3600) // 60)
607
+ seconds = round(float(timestamp % 60),2)
608
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
609
+
610
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
611
+ """Get formatted current timestamp based on stream type."""
612
+ if not stream_info:
613
+ return "00:00:00.00"
614
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
615
+ if precision:
616
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
617
+ if frame_id:
618
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
619
+ else:
620
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
621
+ stream_time_str = self._format_timestamp_for_video(start_time)
622
+ return stream_time_str
623
+ else:
624
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
625
+
626
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
627
+ if frame_id:
628
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
629
+ else:
630
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
631
+ stream_time_str = self._format_timestamp_for_video(start_time)
632
+ return stream_time_str
633
+ else:
634
+ # For streams, use stream_time from stream_info
635
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
636
+ if stream_time_str:
637
+ # Parse the high precision timestamp string to get timestamp
638
+ try:
639
+ # Remove " UTC" suffix and parse
640
+ timestamp_str = stream_time_str.replace(" UTC", "")
641
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
642
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
643
+ return self._format_timestamp_for_stream(timestamp)
644
+ except:
645
+ # Fallback to current time if parsing fails
646
+ return self._format_timestamp_for_stream(time.time())
647
+ else:
648
+ return self._format_timestamp_for_stream(time.time())
649
+
650
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
651
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
652
+ if not stream_info:
653
+ return "00:00:00"
654
+ if precision:
655
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
656
+ return "00:00:00"
657
+ else:
658
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
659
+
660
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
661
+ # If video format, start from 00:00:00
662
+ return "00:00:00"
663
+ else:
664
+ # For streams, use tracking start time or current time with minutes/seconds reset
665
+ if self._tracking_start_time is None:
666
+ # Try to extract timestamp from stream_time string
667
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
668
+ if stream_time_str:
669
+ try:
670
+ # Remove " UTC" suffix and parse
671
+ timestamp_str = stream_time_str.replace(" UTC", "")
672
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
673
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
674
+ except:
675
+ # Fallback to current time if parsing fails
676
+ self._tracking_start_time = time.time()
677
+ else:
678
+ self._tracking_start_time = time.time()
679
+
680
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
681
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
682
+ dt = dt.replace(minute=0, second=0, microsecond=0)
683
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
684
+
685
+
686
+ def _count_categories(self, detections: list, config: GenderDetectionConfig) -> dict:
687
+ """
688
+ Count the number of detections per category and return a summary dict.
689
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
690
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
691
+ """
692
+ counts = {}
693
+ for det in detections:
694
+ cat = det.get('category', 'unknown')
695
+ counts[cat] = counts.get(cat, 0) + 1
696
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
697
+ return {
698
+ "total_count": sum(counts.values()),
699
+ "per_category_count": counts,
700
+ "detections": [
701
+ {
702
+ "bounding_box": det.get("bounding_box"),
703
+ "category": det.get("category"),
704
+ "confidence": det.get("confidence"),
705
+ "track_id": det.get("track_id"),
706
+ "frame_id": det.get("frame_id")
707
+ }
708
+ for det in detections
709
+ ]
710
+ }
711
+
712
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
713
+ """
714
+ Extract prediction details for output (category, confidence, bounding box).
715
+ """
716
+ return [
717
+ {
718
+ "category": det.get("category", "unknown"),
719
+ "confidence": det.get("confidence", 0.0),
720
+ "bounding_box": det.get("bounding_box", {})
721
+ }
722
+ for det in detections
723
+ ]
724
+
725
+ # ------------------------------------------------------------------ #
726
+ # Canonical ID helpers #
727
+ # ------------------------------------------------------------------ #
728
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
729
+ """Compute IoU between two bounding boxes which may be dicts or lists.
730
+ Falls back to 0 when insufficient data is available."""
731
+
732
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
733
+ def _bbox_to_list(bbox):
734
+ if bbox is None:
735
+ return []
736
+ if isinstance(bbox, list):
737
+ return bbox[:4] if len(bbox) >= 4 else []
738
+ if isinstance(bbox, dict):
739
+ if "xmin" in bbox:
740
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
741
+ if "x1" in bbox:
742
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
743
+ # Fallback: first four numeric values
744
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
745
+ return values[:4] if len(values) >= 4 else []
746
+ return []
747
+
748
+ l1 = _bbox_to_list(box1)
749
+ l2 = _bbox_to_list(box2)
750
+ if len(l1) < 4 or len(l2) < 4:
751
+ return 0.0
752
+ x1_min, y1_min, x1_max, y1_max = l1
753
+ x2_min, y2_min, x2_max, y2_max = l2
754
+
755
+ # Ensure correct order
756
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
757
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
758
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
759
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
760
+
761
+ inter_x_min = max(x1_min, x2_min)
762
+ inter_y_min = max(y1_min, y2_min)
763
+ inter_x_max = min(x1_max, x2_max)
764
+ inter_y_max = min(y1_max, y2_max)
765
+
766
+ inter_w = max(0.0, inter_x_max - inter_x_min)
767
+ inter_h = max(0.0, inter_y_max - inter_y_min)
768
+ inter_area = inter_w * inter_h
769
+
770
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
771
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
772
+ union_area = area1 + area2 - inter_area
773
+
774
+ return (inter_area / union_area) if union_area > 0 else 0.0
775
+
776
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
777
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
778
+ tracks when IoU and temporal constraints indicate they represent the
779
+ same physical."""
780
+ if raw_id is None or bbox is None:
781
+ # Nothing to merge
782
+ return raw_id
783
+
784
+ now = time.time()
785
+
786
+ # Fast path – raw_id already mapped
787
+ if raw_id in self._track_aliases:
788
+ canonical_id = self._track_aliases[raw_id]
789
+ track_info = self._canonical_tracks.get(canonical_id)
790
+ if track_info is not None:
791
+ track_info["last_bbox"] = bbox
792
+ track_info["last_update"] = now
793
+ track_info["raw_ids"].add(raw_id)
794
+ return canonical_id
795
+
796
+ # Attempt to merge with an existing canonical track
797
+ for canonical_id, info in self._canonical_tracks.items():
798
+ # Only consider recently updated tracks
799
+ if now - info["last_update"] > self._track_merge_time_window:
800
+ continue
801
+ iou = self._compute_iou(bbox, info["last_bbox"])
802
+ if iou >= self._track_merge_iou_threshold:
803
+ # Merge
804
+ self._track_aliases[raw_id] = canonical_id
805
+ info["last_bbox"] = bbox
806
+ info["last_update"] = now
807
+ info["raw_ids"].add(raw_id)
808
+ return canonical_id
809
+
810
+ # No match – register new canonical track
811
+ canonical_id = raw_id
812
+ self._track_aliases[raw_id] = canonical_id
813
+ self._canonical_tracks[canonical_id] = {
814
+ "last_bbox": bbox,
815
+ "last_update": now,
816
+ "raw_ids": {raw_id},
817
+ }
818
+ return canonical_id
819
+
820
+ def _format_timestamp(self, timestamp: float) -> str:
821
+ """Format a timestamp for human-readable output."""
822
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
823
+
824
+ def _get_tracking_start_time(self) -> str:
825
+ """Get the tracking start time, formatted as a string."""
826
+ if self._tracking_start_time is None:
827
+ return "N/A"
828
+ return self._format_timestamp(self._tracking_start_time)
829
+
830
+ def _set_tracking_start_time(self) -> None:
831
+ """Set the tracking start time to the current time."""
832
+ self._tracking_start_time = time.time()