matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,656 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class AntiSpoofingDetectionConfig(BaseConfig):
25
+ """Configuration for anti-spoofing detection use case."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ # Confidence thresholds
34
+ confidence_threshold: float = 0.6
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: [
38
+ 'Zac Efron', 'Natalie Portman', 'Courtney Cox', 'Henry Cavill', 'Lisa Kudrow',
39
+ 'Alia Bhatt', 'Roger Federer', 'Charlize Theron', 'Anushka Sharma', 'Billie Eilish',
40
+ 'Vijay Deverakonda', 'Camila Cabello', 'Ellen Degeneres', 'Priyanka Chopra', 'Tom Cruise',
41
+ 'Margot Robbie', 'Claire Holt', 'Hugh Jackman', 'Jessica Alba', 'Elizabeth Olsen',
42
+ 'Akshay Kumar', 'Amitabh Bachchan', 'Virat Kohli', 'Andy Samberg', 'Brad Pitt',
43
+ 'Dwayne Johnson', 'Alexandra Daddario', 'Hrithik Roshan', 'Robert Downey Jr'
44
+ ]
45
+ )
46
+
47
+ target_categories: List[str] = field(
48
+ default_factory=lambda: [
49
+ 'Zac Efron', 'Natalie Portman', 'Courtney Cox', 'Henry Cavill', 'Lisa Kudrow',
50
+ 'Alia Bhatt', 'Roger Federer', 'Charlize Theron', 'Anushka Sharma', 'Billie Eilish',
51
+ 'Vijay Deverakonda', 'Camila Cabello', 'Ellen Degeneres', 'Priyanka Chopra', 'Tom Cruise',
52
+ 'Margot Robbie', 'Claire Holt', 'Hugh Jackman', 'Jessica Alba', 'Elizabeth Olsen',
53
+ 'Akshay Kumar', 'Amitabh Bachchan', 'Virat Kohli', 'Andy Samberg', 'Brad Pitt',
54
+ 'Dwayne Johnson', 'Alexandra Daddario', 'Hrithik Roshan', 'Robert Downey Jr'
55
+ ]
56
+ )
57
+
58
+ alert_config: Optional[AlertConfig] = None
59
+
60
+ index_to_category: Optional[Dict[int, str]] = field(
61
+ default_factory=lambda: {
62
+ i: cat for i, cat in enumerate([
63
+ 'Zac Efron', 'Natalie Portman', 'Courtney Cox', 'Henry Cavill', 'Lisa Kudrow',
64
+ 'Alia Bhatt', 'Roger Federer', 'Charlize Theron', 'Anushka Sharma', 'Billie Eilish',
65
+ 'Vijay Deverakonda', 'Camila Cabello', 'Ellen Degeneres', 'Priyanka Chopra', 'Tom Cruise',
66
+ 'Margot Robbie', 'Claire Holt', 'Hugh Jackman', 'Jessica Alba', 'Elizabeth Olsen',
67
+ 'Akshay Kumar', 'Amitabh Bachchan', 'Virat Kohli', 'Andy Samberg', 'Brad Pitt',
68
+ 'Dwayne Johnson', 'Alexandra Daddario', 'Hrithik Roshan', 'Robert Downey Jr'
69
+ ])
70
+ }
71
+ )
72
+
73
+
74
+ class AntiSpoofingDetectionUseCase(BaseProcessor):
75
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
76
+ """
77
+ Get detailed information about track IDs (per frame).
78
+ """
79
+ frame_track_ids = set()
80
+ for det in detections:
81
+ tid = det.get('track_id')
82
+ if tid is not None:
83
+ frame_track_ids.add(tid)
84
+ total_track_ids = set()
85
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
86
+ total_track_ids.update(s)
87
+ return {
88
+ "total_count": len(total_track_ids),
89
+ "current_frame_count": len(frame_track_ids),
90
+ "total_unique_track_ids": len(total_track_ids),
91
+ "current_frame_track_ids": list(frame_track_ids),
92
+ "last_update_time": time.time(),
93
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
94
+ }
95
+
96
+ def _update_tracking_state(self, detections: list):
97
+ """
98
+ Track unique categories track_ids per category for total count after tracking.
99
+ """
100
+ if not hasattr(self, "_per_category_total_track_ids"):
101
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
102
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
103
+
104
+ for det in detections:
105
+ cat = det.get("category")
106
+ raw_track_id = det.get("track_id")
107
+ if cat not in self.target_categories or raw_track_id is None:
108
+ continue
109
+ bbox = det.get("bounding_box", det.get("bbox"))
110
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
111
+ det["track_id"] = canonical_id
112
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
113
+ self._current_frame_track_ids[cat].add(canonical_id)
114
+
115
+ def get_total_counts(self):
116
+ """
117
+ Return total unique track_id count for each category.
118
+ """
119
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
120
+
121
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
122
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
123
+ hours = int(timestamp // 3600)
124
+ minutes = int((timestamp % 3600) // 60)
125
+ seconds = timestamp % 60
126
+ return f"{hours:02d}:{minutes:02d}:{seconds:06.2f}"
127
+
128
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
129
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
130
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
131
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
132
+
133
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
134
+ """Get formatted current timestamp based on stream type."""
135
+ if not stream_info:
136
+ return "00:00:00.00"
137
+ if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
138
+ stream_time_str = stream_info.get("video_timestamp", "")
139
+ return stream_time_str[:8]
140
+ else:
141
+ stream_time_str = stream_info.get("stream_time", "")
142
+ if stream_time_str:
143
+ try:
144
+ timestamp_str = stream_time_str.replace(" UTC", "")
145
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
146
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
147
+ return self._format_timestamp_for_stream(timestamp)
148
+ except:
149
+ return self._format_timestamp_for_stream(time.time())
150
+ else:
151
+ return self._format_timestamp_for_stream(time.time())
152
+
153
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
154
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
155
+ if not stream_info:
156
+ return "00:00:00"
157
+ is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
158
+ if is_video_chunk or stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
159
+ return "00:00:00"
160
+ else:
161
+ if self._tracking_start_time is None:
162
+ stream_time_str = stream_info.get("stream_time", "")
163
+ if stream_time_str:
164
+ try:
165
+ timestamp_str = stream_time_str.replace(" UTC", "")
166
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
167
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
168
+ except:
169
+ self._tracking_start_time = time.time()
170
+ else:
171
+ self._tracking_start_time = time.time()
172
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
173
+ dt = dt.replace(minute=0, second=0, microsecond=0)
174
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
175
+
176
+ def __init__(self):
177
+ super().__init__("anti_spoofing_detection")
178
+ self.category = "security"
179
+ self.target_categories = [
180
+ 'Zac Efron', 'Natalie Portman', 'Courtney Cox', 'Henry Cavill', 'Lisa Kudrow',
181
+ 'Alia Bhatt', 'Roger Federer', 'Charlize Theron', 'Anushka Sharma', 'Billie Eilish',
182
+ 'Vijay Deverakonda', 'Camila Cabello', 'Ellen Degeneres', 'Priyanka Chopra', 'Tom Cruise',
183
+ 'Margot Robbie', 'Claire Holt', 'Hugh Jackman', 'Jessica Alba', 'Elizabeth Olsen',
184
+ 'Akshay Kumar', 'Amitabh Bachchan', 'Virat Kohli', 'Andy Samberg', 'Brad Pitt',
185
+ 'Dwayne Johnson', 'Alexandra Daddario', 'Hrithik Roshan', 'Robert Downey Jr'
186
+ ]
187
+ self.smoothing_tracker = None
188
+ self.tracker = None
189
+ self._total_frame_counter = 0
190
+ self._global_frame_offset = 0
191
+ self._tracking_start_time = None
192
+ self._track_aliases: Dict[Any, Any] = {}
193
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
194
+ self._track_merge_iou_threshold: float = 0.05
195
+ self._track_merge_time_window: float = 7.0
196
+
197
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
198
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
199
+ start_time = time.time()
200
+ if not isinstance(config, AntiSpoofingDetectionConfig):
201
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category, context=context)
202
+ if context is None:
203
+ context = ProcessingContext()
204
+ input_format = match_results_structure(data)
205
+ context.input_format = input_format
206
+ context.confidence_threshold = config.confidence_threshold
207
+
208
+ if config.confidence_threshold is not None:
209
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
210
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
211
+ else:
212
+ processed_data = data
213
+ self.logger.debug("Did not apply confidence filtering with threshold since nothing was provided")
214
+
215
+ if config.index_to_category:
216
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
217
+ self.logger.debug("Applied category mapping")
218
+
219
+ if config.target_categories:
220
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
221
+ self.logger.debug("Applied category filtering")
222
+
223
+ if config.enable_smoothing:
224
+ if self.smoothing_tracker is None:
225
+ smoothing_config = BBoxSmoothingConfig(
226
+ smoothing_algorithm=config.smoothing_algorithm,
227
+ window_size=config.smoothing_window_size,
228
+ cooldown_frames=config.smoothing_cooldown_frames,
229
+ confidence_threshold=config.confidence_threshold,
230
+ confidence_range_factor=config.smoothing_confidence_range_factor,
231
+ enable_smoothing=True
232
+ )
233
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
234
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
235
+
236
+ try:
237
+ from ..advanced_tracker import AdvancedTracker
238
+ from ..advanced_tracker.config import TrackerConfig
239
+ if self.tracker is None:
240
+ tracker_config = TrackerConfig()
241
+ self.tracker = AdvancedTracker(tracker_config)
242
+ self.logger.info("Initialized AdvancedTracker for Anti-Spoofing Detection")
243
+ processed_data = self.tracker.update(processed_data)
244
+ except Exception as e:
245
+ self.logger.warning(f"AdvancedTracker failed: {e}")
246
+
247
+ self._update_tracking_state(processed_data)
248
+ self._total_frame_counter += 1
249
+
250
+ frame_number = None
251
+ if stream_info:
252
+ input_settings = stream_info.get("input_settings", {})
253
+ start_frame = input_settings.get("start_frame")
254
+ end_frame = input_settings.get("end_frame")
255
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
256
+ frame_number = start_frame
257
+
258
+ general_counting_summary = calculate_counting_summary(data)
259
+ counting_summary = self._count_categories(processed_data, config)
260
+ total_counts = self.get_total_counts()
261
+ counting_summary['total_counts'] = total_counts
262
+ insights = self._generate_insights(counting_summary, config)
263
+ alerts = self._check_alerts(counting_summary, config)
264
+ predictions = self._extract_predictions(processed_data)
265
+ summary = self._generate_summary(counting_summary, alerts)
266
+
267
+ events_list = self._generate_events(counting_summary, alerts, config, frame_number, stream_info)
268
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, insights, summary, config, frame_number, stream_info)
269
+
270
+ events = events_list[0] if events_list else {}
271
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
272
+ context.mark_completed()
273
+
274
+ result = self.create_result(
275
+ data={
276
+ "counting_summary": counting_summary,
277
+ "general_counting_summary": general_counting_summary,
278
+ "alerts": alerts,
279
+ "total_detections": counting_summary.get("total_count", 0),
280
+ "events": events,
281
+ "tracking_stats": tracking_stats,
282
+ },
283
+ usecase=self.name,
284
+ category=self.category,
285
+ context=context
286
+ )
287
+ result.summary = summary
288
+ result.insights = insights
289
+ result.predictions = predictions
290
+ return result
291
+
292
+ def _generate_events(self, counting_summary: Dict, alerts: List, config: AntiSpoofingDetectionConfig,
293
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
294
+ """Generate structured events for the output format with frame-based keys."""
295
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
296
+ events = [{frame_key: []}]
297
+ frame_events = events[0][frame_key]
298
+ total_detections = counting_summary.get("total_count", 0)
299
+
300
+ if total_detections > 0:
301
+ level = "info"
302
+ intensity = 5.0
303
+ if config.alert_config and config.alert_config.count_thresholds:
304
+ threshold = config.alert_config.count_thresholds.get("all", 15)
305
+ intensity = min(10.0, (total_detections / threshold) * 10)
306
+ if intensity >= 7:
307
+ level = "critical"
308
+ elif intensity >= 5:
309
+ level = "warning"
310
+ else:
311
+ level = "info"
312
+ else:
313
+ if total_detections > 25:
314
+ level = "critical"
315
+ intensity = 9.0
316
+ elif total_detections > 15:
317
+ level = "warning"
318
+ intensity = 7.0
319
+ else:
320
+ level = "info"
321
+ intensity = min(10.0, total_detections / 3.0)
322
+
323
+ human_text_lines = ["EVENTS DETECTED:"]
324
+ human_text_lines.append(f" - {total_detections} identities detected [INFO]")
325
+ human_text = "\n".join(human_text_lines)
326
+
327
+ event = {
328
+ "type": "anti_spoofing_detection",
329
+ "stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
330
+ "level": level,
331
+ "intensity": round(intensity, 1),
332
+ "config": {
333
+ "min_value": 0,
334
+ "max_value": 10,
335
+ "level_settings": {"info": 2, "warning": 5, "critical": 7}
336
+ },
337
+ "application_name": "Anti-Spoofing Detection System",
338
+ "application_version": "1.2",
339
+ "location_info": None,
340
+ "human_text": human_text
341
+ }
342
+ frame_events.append(event)
343
+
344
+ for alert in alerts:
345
+ total_detections = counting_summary.get("total_count", 0)
346
+ intensity_message = "ALERT: Low identity detection in the scene"
347
+ if config.alert_config and config.alert_config.count_thresholds:
348
+ threshold = config.alert_config.count_thresholds.get("all", 15)
349
+ percentage = (total_detections / threshold) * 100 if threshold > 0 else 0
350
+ if percentage < 20:
351
+ intensity_message = "ALERT: Low identity detection in the scene"
352
+ elif percentage <= 50:
353
+ intensity_message = "ALERT: Moderate identity detection in the scene"
354
+ elif percentage <= 70:
355
+ intensity_message = "ALERT: High identity detection in the scene"
356
+ else:
357
+ intensity_message = "ALERT: Severe identity detection in the scene"
358
+ else:
359
+ if total_detections > 15:
360
+ intensity_message = "ALERT: High identity detection in the scene"
361
+ elif total_detections == 1:
362
+ intensity_message = "ALERT: Low identity detection in the scene"
363
+ else:
364
+ intensity_message = "ALERT: Moderate identity detection in the scene"
365
+
366
+ alert_event = {
367
+ "type": alert.get("type", "identity_alert"),
368
+ "stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
369
+ "level": alert.get("severity", "warning"),
370
+ "intensity": 8.0,
371
+ "config": {
372
+ "min_value": 0,
373
+ "max_value": 10,
374
+ "level_settings": {"info": 2, "warning": 5, "critical": 7}
375
+ },
376
+ "application_name": "Identity Alert System",
377
+ "application_version": "1.2",
378
+ "location_info": alert.get("zone"),
379
+ "human_text": f"{datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC')} : {intensity_message}"
380
+ }
381
+ frame_events.append(alert_event)
382
+
383
+ return events
384
+
385
+ def _generate_tracking_stats(self, counting_summary: Dict, insights: List[str], summary: str,
386
+ config: AntiSpoofingDetectionConfig, frame_number: Optional[int] = None,
387
+ stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
388
+ """Generate structured tracking stats for the output format with frame-based keys."""
389
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
390
+ tracking_stats = [{frame_key: []}]
391
+ frame_tracking_stats = tracking_stats[0][frame_key]
392
+
393
+ total_detections = counting_summary.get("total_count", 0)
394
+ total_counts = counting_summary.get("total_counts", {})
395
+ cumulative_total = sum(total_counts.values()) if total_counts else 0
396
+ per_category_count = counting_summary.get("per_category_count", {})
397
+
398
+ track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
399
+
400
+ current_timestamp = self._get_current_timestamp_str(stream_info)
401
+ start_timestamp = self._get_start_timestamp_str(stream_info)
402
+
403
+ human_text_lines = []
404
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
405
+ if total_detections > 0:
406
+ category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
407
+ if len(category_counts) == 1:
408
+ detection_text = category_counts[0] + " detected"
409
+ elif len(category_counts) == 2:
410
+ detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
411
+ else:
412
+ detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
413
+ human_text_lines.append(f"\t- {detection_text}")
414
+ else:
415
+ human_text_lines.append(f"\t- No detections")
416
+
417
+ human_text_lines.append("")
418
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
419
+ human_text_lines.append(f"\t- Total Detection: {cumulative_total}")
420
+ if total_counts:
421
+ for cat, count in total_counts.items():
422
+ if count > 0:
423
+ human_text_lines.append(f"\t- {cat} detected")
424
+
425
+ human_text = "\n".join(human_text_lines)
426
+
427
+ tracking_stat = {
428
+ "type": "anti_spoofing_detection",
429
+ "category": "security",
430
+ "count": total_detections,
431
+ "insights": insights,
432
+ "summary": summary,
433
+ "timestamp": datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC'),
434
+ "human_text": human_text,
435
+ "track_ids_info": track_ids_info,
436
+ "global_frame_offset": getattr(self, '_global_frame_offset', 0),
437
+ "local_frame_id": frame_key,
438
+ "detections": counting_summary.get("detections", [])
439
+ }
440
+
441
+ frame_tracking_stats.append(tracking_stat)
442
+ return tracking_stats
443
+
444
+ def _count_categories(self, detections: list, config: AntiSpoofingDetectionConfig) -> dict:
445
+ """
446
+ Count the number of detections per category and return a summary dict.
447
+ """
448
+ counts = {}
449
+ for det in detections:
450
+ cat = det.get('category', 'unknown')
451
+ counts[cat] = counts.get(cat, 0) + 1
452
+ return {
453
+ "total_count": sum(counts.values()),
454
+ "per_category_count": counts,
455
+ "detections": [
456
+ {
457
+ "bounding_box": det.get("bounding_box"),
458
+ "category": det.get("category"),
459
+ "confidence": det.get("confidence"),
460
+ "track_id": det.get("track_id"),
461
+ "frame_id": det.get("frame_id")
462
+ }
463
+ for det in detections
464
+ ]
465
+ }
466
+
467
+ CATEGORY_DISPLAY = {
468
+ cat: cat.replace(' ', '_').lower() for cat in [
469
+ 'Zac Efron', 'Natalie Portman', 'Courtney Cox', 'Henry Cavill', 'Lisa Kudrow',
470
+ 'Alia Bhatt', 'Roger Federer', 'Charlize Theron', 'Anushka Sharma', 'Billie Eilish',
471
+ 'Vijay Deverakonda', 'Camila Cabello', 'Ellen Degeneres', 'Priyanka Chopra', 'Tom Cruise',
472
+ 'Margot Robbie', 'Claire Holt', 'Hugh Jackman', 'Jessica Alba', 'Elizabeth Olsen',
473
+ 'Akshay Kumar', 'Amitabh Bachchan', 'Virat Kohli', 'Andy Samberg', 'Brad Pitt',
474
+ 'Dwayne Johnson', 'Alexandra Daddario', 'Hrithik Roshan', 'Robert Downey Jr'
475
+ ]
476
+ }
477
+
478
+ def _generate_insights(self, summary: dict, config: AntiSpoofingDetectionConfig) -> List[str]:
479
+ """Generate human-readable insights for each category."""
480
+
481
+ insights = []
482
+ per_cat = summary.get("per_category_count", {})
483
+ total_detections = summary.get("total_count", 0)
484
+
485
+ if total_detections == 0:
486
+ insights.append("No identities detected in the scene")
487
+ return insights
488
+ insights.append(f"EVENT: Detected {total_detections} identities in the scene")
489
+ intensity_threshold = None
490
+ if config.alert_config and config.alert_config.count_thresholds and "all" in config.alert_config.count_thresholds:
491
+ intensity_threshold = config.alert_config.count_thresholds["all"]
492
+ if intensity_threshold is not None:
493
+ percentage = (total_detections / intensity_threshold) * 100
494
+ if percentage < 20:
495
+ insights.append(f"INTENSITY: Low identity detection in the scene ({percentage:.1f}% of capacity)")
496
+ elif percentage <= 50:
497
+ insights.append(f"INTENSITY: Moderate identity detection in the scene ({percentage:.1f}% of capacity)")
498
+ elif percentage <= 70:
499
+ insights.append(f"INTENSITY: High identity detection in the scene ({percentage:.1f}% of capacity)")
500
+ else:
501
+ insights.append(f"INTENSITY: Severe identity detection in the scene ({percentage:.1f}% of capacity)")
502
+ for cat, count in per_cat.items():
503
+ display = self.CATEGORY_DISPLAY.get(cat, cat)
504
+ insights.append(f"{display}:{count}")
505
+ return insights
506
+
507
+ def _check_alerts(self, summary: dict, config: AntiSpoofingDetectionConfig) -> List[Dict]:
508
+ """
509
+ Check if any alert thresholds are exceeded and return alert dicts.
510
+ """
511
+ alerts = []
512
+ if not config.alert_config:
513
+ return alerts
514
+ total = summary.get("total_count", 0)
515
+ if config.alert_config.count_thresholds:
516
+ for category, threshold in config.alert_config.count_thresholds.items():
517
+ if category == "all" and total >= threshold:
518
+ alerts.append({
519
+ "type": "count_threshold",
520
+ "severity": "warning",
521
+ "message": f"Total identity count ({total}) exceeds threshold ({threshold})",
522
+ "category": category,
523
+ "current_count": total,
524
+ "threshold": threshold
525
+ })
526
+ elif category in summary.get("per_category_count", {}):
527
+ count = summary.get("per_category_count", {})[category]
528
+ if count >= threshold:
529
+ alerts.append({
530
+ "type": "count_threshold",
531
+ "severity": "warning",
532
+ "message": f"{category} count ({count}) exceeds threshold ({threshold})",
533
+ "category": category,
534
+ "current_count": count,
535
+ "threshold": threshold
536
+ })
537
+ return alerts
538
+
539
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
540
+ """
541
+ Extract prediction details for output (category, confidence, bounding box).
542
+ """
543
+ return [
544
+ {
545
+ "category": det.get("category", "unknown"),
546
+ "confidence": det.get("confidence", 0.0),
547
+ "bounding_box": det.get("bounding_box", {})
548
+ }
549
+ for det in detections
550
+ ]
551
+
552
+ def _generate_summary(self, summary: dict, alerts: List) -> str:
553
+ """
554
+ Generate a human_text string for the result, including per-category insights.
555
+ """
556
+ total = summary.get("total_count", 0)
557
+ per_cat = summary.get("per_category_count", {})
558
+ cumulative = summary.get("total_counts", {})
559
+ cumulative_total = sum(cumulative.values()) if cumulative else 0
560
+ lines = []
561
+ if total > 0:
562
+ lines.append(f"{total} identity detections")
563
+ if per_cat:
564
+ lines.append("detections:")
565
+ for cat, count in per_cat.items():
566
+ lines.append(f"\t{cat}:{count}")
567
+ else:
568
+ lines.append("No identity detections")
569
+ lines.append(f"Total identity detections: {cumulative_total}")
570
+ if alerts:
571
+ lines.append(f"{len(alerts)} alert(s)")
572
+ return "\n".join(lines)
573
+
574
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
575
+ """Compute IoU between two bounding boxes which may be dicts or lists."""
576
+ def _bbox_to_list(bbox):
577
+ if bbox is None:
578
+ return []
579
+ if isinstance(bbox, list):
580
+ return bbox[:4] if len(bbox) >= 4 else []
581
+ if isinstance(bbox, dict):
582
+ if "xmin" in bbox:
583
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
584
+ if "x1" in bbox:
585
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
586
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
587
+ return values[:4] if len(values) >= 4 else []
588
+ return []
589
+
590
+ l1 = _bbox_to_list(box1)
591
+ l2 = _bbox_to_list(box2)
592
+ if len(l1) < 4 or len(l2) < 4:
593
+ return 0.0
594
+ x1_min, y1_min, x1_max, y1_max = l1
595
+ x2_min, y2_min, x2_max, y2_max = l2
596
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
597
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
598
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
599
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
600
+ inter_x_min = max(x1_min, x2_min)
601
+ inter_y_min = max(y1_min, y2_min)
602
+ inter_x_max = min(x1_max, x2_max)
603
+ inter_y_max = min(y1_max, y2_max)
604
+ inter_w = max(0.0, inter_x_max - inter_x_min)
605
+ inter_h = max(0.0, inter_y_max - inter_y_min)
606
+ inter_area = inter_w * inter_h
607
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
608
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
609
+ union_area = area1 + area2 - inter_area
610
+ return (inter_area / union_area) if union_area > 0 else 0.0
611
+
612
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
613
+ """Return a stable canonical ID for a raw tracker ID."""
614
+ if raw_id is None or bbox is None:
615
+ return raw_id
616
+ now = time.time()
617
+ if raw_id in self._track_aliases:
618
+ canonical_id = self._track_aliases[raw_id]
619
+ track_info = self._canonical_tracks.get(canonical_id)
620
+ if track_info is not None:
621
+ track_info["last_bbox"] = bbox
622
+ track_info["last_update"] = now
623
+ track_info["raw_ids"].add(raw_id)
624
+ return canonical_id
625
+ for canonical_id, info in self._canonical_tracks.items():
626
+ if now - info["last_update"] > self._track_merge_time_window:
627
+ continue
628
+ iou = self._compute_iou(bbox, info["last_bbox"])
629
+ if iou >= self._track_merge_iou_threshold:
630
+ self._track_aliases[raw_id] = canonical_id
631
+ info["last_bbox"] = bbox
632
+ info["last_update"] = now
633
+ info["raw_ids"].add(raw_id)
634
+ return canonical_id
635
+ canonical_id = raw_id
636
+ self._track_aliases[raw_id] = canonical_id
637
+ self._canonical_tracks[canonical_id] = {
638
+ "last_bbox": bbox,
639
+ "last_update": now,
640
+ "raw_ids": {raw_id},
641
+ }
642
+ return canonical_id
643
+
644
+ def _format_timestamp(self, timestamp: float) -> str:
645
+ """Format a timestamp for human-readable output."""
646
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
647
+
648
+ def _get_tracking_start_time(self) -> str:
649
+ """Get the tracking start time, formatted as a string."""
650
+ if self._tracking_start_time is None:
651
+ return "N/A"
652
+ return self._format_timestamp(self._tracking_start_time)
653
+
654
+ def _set_tracking_start_time(self) -> None:
655
+ """Set the tracking start time to the current time."""
656
+ self._tracking_start_time = time.time()