matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,899 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+ import copy # Added for deep copying detections to preserve original masks
6
+
7
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
8
+ from ..utils import (
9
+ filter_by_confidence,
10
+ filter_by_categories,
11
+ apply_category_mapping,
12
+ count_objects_by_category,
13
+ count_objects_in_zones,
14
+ calculate_counting_summary,
15
+ match_results_structure,
16
+ bbox_smoothing,
17
+ BBoxSmoothingConfig,
18
+ BBoxSmoothingTracker
19
+ )
20
+ from dataclasses import dataclass, field
21
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
22
+
23
+
24
+ @dataclass
25
+ class ShoppingCartConfig(BaseConfig):
26
+ """Configuration for Shopping cart detection use case in shopping cart monitoring."""
27
+ # Smoothing configuration
28
+ enable_smoothing: bool = True
29
+ smoothing_algorithm: str = "observability" # "window" or "observability"
30
+ smoothing_window_size: int = 20
31
+ smoothing_cooldown_frames: int = 5
32
+ smoothing_confidence_range_factor: float = 0.5
33
+
34
+ #confidence thresholds
35
+ confidence_threshold: float = 0.6
36
+
37
+ usecase_categories: List[str] = field(
38
+ default_factory=lambda: ['Shelf','Shopping-trolley']
39
+ )
40
+
41
+ target_categories: List[str] = field(
42
+ default_factory=lambda: ['Shelf','Shopping-trolley']
43
+ )
44
+
45
+ alert_config: Optional[AlertConfig] = None
46
+
47
+ index_to_category: Optional[Dict[int, str]] = field(
48
+ default_factory=lambda: {
49
+ 0: 'Shopping-trolley',
50
+ 1: 'Shelf'
51
+ }
52
+ )
53
+
54
+
55
+ class ShoppingCartUseCase(BaseProcessor):
56
+
57
+ # Human-friendly display names for categories
58
+ CATEGORY_DISPLAY = {
59
+ "Shelf": "Shelf",
60
+ "Shopping-trolley": "Shopping-trolley",
61
+ }
62
+
63
+ def __init__(self):
64
+ super().__init__("shopping_cart_analysis")
65
+ self.category = "retail"
66
+
67
+ # List of categories to track
68
+ self.target_categories = ['Shelf','Shopping-trolley']
69
+
70
+ self.CASE_TYPE: Optional[str] = 'shopping_cart_analysis'
71
+ self.CASE_VERSION: Optional[str] = '1.3'
72
+
73
+ # Initialize smoothing tracker
74
+ self.smoothing_tracker = None
75
+
76
+ # Initialize advanced tracker (will be created on first use)
77
+ self.tracker = None
78
+
79
+ # Initialize tracking state variables
80
+ self._total_frame_counter = 0
81
+ self._global_frame_offset = 0
82
+
83
+ # Track start time for "TOTAL SINCE" calculation
84
+ self._tracking_start_time = None
85
+
86
+ # ------------------------------------------------------------------ #
87
+ # Canonical tracking aliasing to avoid duplicate counts #
88
+ # ------------------------------------------------------------------ #
89
+ # Maps raw tracker-generated IDs to stable canonical IDs that persist
90
+ # even if the underlying tracker re-assigns a new ID after a short
91
+ # interruption. This mirrors the logic used in people_counting to
92
+ # provide accurate unique counting.
93
+ self._track_aliases: Dict[Any, Any] = {}
94
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
95
+ # Tunable parameters – adjust if necessary for specific scenarios
96
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
97
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
98
+
99
+ self._ascending_alert_list: List[int] = []
100
+ self.current_incident_end_timestamp: str = "N/A"
101
+
102
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
103
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
104
+ """
105
+ Main entry point for post-processing.
106
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
107
+ Returns a ProcessingResult with all relevant outputs.
108
+ """
109
+ start_time = time.time()
110
+ # Ensure config is correct type
111
+ if not isinstance(config, ShoppingCartConfig):
112
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
113
+ context=context)
114
+ if context is None:
115
+ context = ProcessingContext()
116
+
117
+ # Detect input format and store in context
118
+ input_format = match_results_structure(data)
119
+ context.input_format = input_format
120
+ context.confidence_threshold = config.confidence_threshold
121
+
122
+ # Step 1: Confidence filtering
123
+ if config.confidence_threshold is not None:
124
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
125
+ else:
126
+ processed_data = data
127
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
128
+
129
+ # Step 2: Apply category mapping if provided
130
+ if config.index_to_category:
131
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
132
+
133
+ # Step 3: Category filtering
134
+ if config.target_categories:
135
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
136
+
137
+ # Step 4: Apply bbox smoothing if enabled
138
+ # Deep-copy detections so that we preserve the original masks before any
139
+ # smoothing/tracking logic potentially removes them.
140
+ raw_processed_data = [copy.deepcopy(det) for det in processed_data]
141
+ if config.enable_smoothing:
142
+ if self.smoothing_tracker is None:
143
+ smoothing_config = BBoxSmoothingConfig(
144
+ smoothing_algorithm=config.smoothing_algorithm,
145
+ window_size=config.smoothing_window_size,
146
+ cooldown_frames=config.smoothing_cooldown_frames,
147
+ confidence_threshold=config.confidence_threshold,
148
+ confidence_range_factor=config.smoothing_confidence_range_factor,
149
+ enable_smoothing=True
150
+ )
151
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
152
+
153
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
154
+ # Restore masks after smoothing
155
+
156
+ # Step 5: Advanced tracking (BYTETracker-like)
157
+ try:
158
+ from ..advanced_tracker import AdvancedTracker
159
+ from ..advanced_tracker.config import TrackerConfig
160
+
161
+ # Create tracker instance if it doesn't exist (preserves state across frames)
162
+ if self.tracker is None:
163
+ tracker_config = TrackerConfig()
164
+ self.tracker = AdvancedTracker(tracker_config)
165
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
166
+
167
+ processed_data = self.tracker.update(processed_data)
168
+ except Exception as e:
169
+ # If advanced tracker fails, fallback to unsmoothed detections
170
+ self.logger.warning(f"AdvancedTracker failed: {e}")
171
+
172
+ # Update tracking state for total count per label
173
+ self._update_tracking_state(processed_data)
174
+
175
+ # ------------------------------------------------------------------ #
176
+ # Re-attach segmentation masks that were present in the original input
177
+ # but may have been stripped during smoothing/tracking. We match each
178
+ # processed detection back to the raw detection with the highest IoU
179
+ # and copy over its "masks" field (if available).
180
+ # ------------------------------------------------------------------ #
181
+ processed_data = self._attach_masks_to_detections(processed_data, raw_processed_data)
182
+
183
+ # Update frame counter
184
+ self._total_frame_counter += 1
185
+
186
+ # Extract frame information from stream_info
187
+ frame_number = None
188
+ if stream_info:
189
+ input_settings = stream_info.get("input_settings", {})
190
+ start_frame = input_settings.get("start_frame")
191
+ end_frame = input_settings.get("end_frame")
192
+ # If start and end frame are the same, it's a single frame
193
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
194
+ frame_number = start_frame
195
+
196
+ # Compute summaries and alerts
197
+ general_counting_summary = calculate_counting_summary(data)
198
+ counting_summary = self._count_categories(processed_data, config)
199
+ # Add total unique counts after tracking using only local state
200
+ total_counts = self.get_total_counts()
201
+ counting_summary['total_counts'] = total_counts
202
+
203
+ alerts = self._check_alerts(counting_summary, frame_number, config)
204
+ predictions = self._extract_predictions(processed_data)
205
+
206
+ # Step: Generate structured events and tracking stats with frame-based keys
207
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
208
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number,stream_info)
209
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info, is_empty=False)
210
+ business_analytics_list = []
211
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
212
+
213
+ # Extract frame-based dictionaries from the lists
214
+ incidents = incidents_list[0] if incidents_list else {}
215
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
216
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
217
+ summary = summary_list[0] if summary_list else {}
218
+ agg_summary = {str(frame_number): {
219
+ "incidents": incidents,
220
+ "tracking_stats": tracking_stats,
221
+ "business_analytics": business_analytics,
222
+ "alerts": alerts,
223
+ "human_text": summary}
224
+ }
225
+
226
+ context.mark_completed()
227
+
228
+ # Build result object following the new pattern
229
+
230
+ result = self.create_result(
231
+ data={"agg_summary": agg_summary},
232
+ usecase=self.name,
233
+ category=self.category,
234
+ context=context
235
+ )
236
+
237
+ return result
238
+
239
+ def _check_alerts(self, summary: dict, frame_number:Any, config: ShoppingCartConfig) -> List[Dict]:
240
+ """
241
+ Check if any alert thresholds are exceeded and return alert dicts.
242
+ """
243
+ def get_trend(data, lookback=900, threshold=0.6):
244
+ '''
245
+ Determine if the trend is ascending or descending based on actual value progression.
246
+ Now works with values 0,1,2,3 (not just binary).
247
+ '''
248
+ window = data[-lookback:] if len(data) >= lookback else data
249
+ if len(window) < 2:
250
+ return True # not enough data to determine trend
251
+ increasing = 0
252
+ total = 0
253
+ for i in range(1, len(window)):
254
+ if window[i] >= window[i - 1]:
255
+ increasing += 1
256
+ total += 1
257
+ ratio = increasing / total
258
+ if ratio >= threshold:
259
+ return True
260
+ elif ratio <= (1 - threshold):
261
+ return False
262
+
263
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
264
+ alerts = []
265
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
266
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
267
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
268
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
269
+
270
+ if not config.alert_config:
271
+ return alerts
272
+
273
+ total = summary.get("total_count", 0)
274
+ #self._ascending_alert_list
275
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
276
+
277
+ for category, threshold in config.alert_config.count_thresholds.items():
278
+ if category == "all" and total > threshold:
279
+
280
+ alerts.append({
281
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
282
+ "alert_id": "alert_"+category+'_'+frame_key,
283
+ "incident_category": self.CASE_TYPE,
284
+ "threshold_level": threshold,
285
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
286
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
287
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
288
+ }
289
+ })
290
+ elif category in summary.get("per_category_count", {}):
291
+ count = summary.get("per_category_count", {})[category]
292
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
293
+ alerts.append({
294
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
295
+ "alert_id": "alert_"+category+'_'+frame_key,
296
+ "incident_category": self.CASE_TYPE,
297
+ "threshold_level": threshold,
298
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
299
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
300
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
301
+ }
302
+ })
303
+ else:
304
+ pass
305
+ return alerts
306
+
307
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: ShoppingCartConfig,
308
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
309
+ Dict]:
310
+ """Generate structured events for the output format with frame-based keys."""
311
+
312
+ # Use frame number as key, fallback to 'current_frame' if not available
313
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
314
+ incidents=[]
315
+ total_detections = counting_summary.get("total_count", 0)
316
+ current_timestamp = self._get_current_timestamp_str(stream_info)
317
+ camera_info = self.get_camera_info_from_stream(stream_info)
318
+
319
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
320
+
321
+ if total_detections > 0:
322
+ # Determine event level based on thresholds
323
+ level = "low"
324
+ intensity = 5.0
325
+ start_timestamp = self._get_start_timestamp_str(stream_info)
326
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
327
+ self.current_incident_end_timestamp = 'Incident still active'
328
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
329
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
330
+ self.current_incident_end_timestamp = current_timestamp
331
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
332
+ self.current_incident_end_timestamp = 'N/A'
333
+
334
+ if config.alert_config and config.alert_config.count_thresholds:
335
+ threshold = config.alert_config.count_thresholds.get("all", 15)
336
+ intensity = min(10.0, (total_detections / threshold) * 10)
337
+
338
+ if intensity >= 9:
339
+ level = "critical"
340
+ self._ascending_alert_list.append(3)
341
+ elif intensity >= 7:
342
+ level = "significant"
343
+ self._ascending_alert_list.append(2)
344
+ elif intensity >= 5:
345
+ level = "medium"
346
+ self._ascending_alert_list.append(1)
347
+ else:
348
+ level = "low"
349
+ self._ascending_alert_list.append(0)
350
+ else:
351
+ if total_detections > 30:
352
+ level = "critical"
353
+ intensity = 10.0
354
+ self._ascending_alert_list.append(3)
355
+ elif total_detections > 25:
356
+ level = "significant"
357
+ intensity = 9.0
358
+ self._ascending_alert_list.append(2)
359
+ elif total_detections > 15:
360
+ level = "medium"
361
+ intensity = 7.0
362
+ self._ascending_alert_list.append(1)
363
+ else:
364
+ level = "low"
365
+ intensity = min(10.0, total_detections / 3.0)
366
+ self._ascending_alert_list.append(0)
367
+
368
+ # Generate human text in new format
369
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
370
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
371
+ human_text = "\n".join(human_text_lines)
372
+
373
+ alert_settings=[]
374
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
375
+ alert_settings.append({
376
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
377
+ "incident_category": self.CASE_TYPE,
378
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
379
+ "ascending": True,
380
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
381
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
382
+ }
383
+ })
384
+
385
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
386
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
387
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
388
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
389
+ incidents.append(event)
390
+
391
+ else:
392
+ self._ascending_alert_list.append(0)
393
+ incidents.append({})
394
+
395
+ return incidents
396
+
397
+ def _generate_tracking_stats(
398
+ self,
399
+ counting_summary: Dict,
400
+ alerts: Any,
401
+ config: ShoppingCartConfig,
402
+ frame_number: Optional[int] = None,
403
+ stream_info: Optional[Dict[str, Any]] = None
404
+ ) -> List[Dict]:
405
+ """Generate structured tracking stats for the output format with frame-based keys, including track_ids_info and detections with masks."""
406
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
407
+ # tracking_stats = [{frame_key: []}]
408
+ # frame_tracking_stats = tracking_stats[0][frame_key]
409
+ tracking_stats = []
410
+
411
+ total_detections = counting_summary.get("total_count", 0)
412
+ total_counts = counting_summary.get("total_counts", {})
413
+ cumulative_total = sum(total_counts.values()) if total_counts else 0
414
+ per_category_count = counting_summary.get("per_category_count", {})
415
+
416
+ track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
417
+
418
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
419
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
420
+
421
+ # Create high precision timestamps for input_timestamp and reset_timestamp
422
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
423
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
424
+
425
+ camera_info = self.get_camera_info_from_stream(stream_info)
426
+ human_text_lines = []
427
+
428
+ # CURRENT FRAME section
429
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
430
+ if total_detections > 0:
431
+ category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
432
+ if len(category_counts) == 1:
433
+ detection_text = category_counts[0] + " detected"
434
+ elif len(category_counts) == 2:
435
+ detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
436
+ else:
437
+ detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
438
+ human_text_lines.append(f"\t- {detection_text}")
439
+ else:
440
+ human_text_lines.append(f"\t- No detections")
441
+
442
+ human_text_lines.append("") # spacing
443
+
444
+ # TOTAL SINCE section
445
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
446
+ human_text_lines.append(f"\t- Total Detected: {cumulative_total}")
447
+ # Add category-wise counts
448
+ if total_counts:
449
+ for cat, count in total_counts.items():
450
+ if count > 0: # Only include categories with non-zero counts
451
+ human_text_lines.append(f"\t- {cat}: {count}")
452
+ # Build current_counts array in expected format
453
+ current_counts = []
454
+ for cat, count in per_category_count.items():
455
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
456
+ current_counts.append({
457
+ "category": cat,
458
+ "count": count
459
+ })
460
+
461
+ human_text = "\n".join(human_text_lines)
462
+
463
+ # Include detections with masks from counting_summary
464
+ # Prepare detections without confidence scores (as per eg.json)
465
+ detections = []
466
+ for detection in counting_summary.get("detections", []):
467
+ bbox = detection.get("bounding_box", {})
468
+ category = detection.get("category", "person")
469
+ # Include segmentation if available (like in eg.json)
470
+ if detection.get("masks"):
471
+ segmentation= detection.get("masks", [])
472
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
473
+ elif detection.get("segmentation"):
474
+ segmentation= detection.get("segmentation")
475
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
476
+ elif detection.get("mask"):
477
+ segmentation= detection.get("mask")
478
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
479
+ else:
480
+ detection_obj = self.create_detection_object(category, bbox)
481
+ detections.append(detection_obj)
482
+
483
+ # Build alert_settings array in expected format
484
+ alert_settings = []
485
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
486
+ alert_settings.append({
487
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
488
+ "incident_category": self.CASE_TYPE,
489
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
490
+ "ascending": True,
491
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
492
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
493
+ }
494
+ })
495
+
496
+ if alerts:
497
+ for alert in alerts:
498
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
499
+ else:
500
+ human_text_lines.append("Alerts: None")
501
+
502
+ human_text = "\n".join(human_text_lines)
503
+ reset_settings = [
504
+ {
505
+ "interval_type": "daily",
506
+ "reset_time": {
507
+ "value": 9,
508
+ "time_unit": "hour"
509
+ }
510
+ }
511
+ ]
512
+
513
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
514
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
515
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
516
+ reset_time=high_precision_reset_timestamp)
517
+
518
+ tracking_stats.append(tracking_stat)
519
+ return tracking_stats
520
+
521
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: ShoppingCartConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
522
+ """Generate standardized business analytics for the agg_summary structure."""
523
+ if is_empty:
524
+ return []
525
+
526
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
527
+ #camera_info = self.get_camera_info_from_stream(stream_info)
528
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
529
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
530
+ # reset_settings)
531
+ # return business_analytics
532
+
533
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
534
+ """
535
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
536
+ """
537
+ lines = {}
538
+ lines["Application Name"] = self.CASE_TYPE
539
+ lines["Application Version"] = self.CASE_VERSION
540
+ if len(incidents) > 0:
541
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
542
+ if len(tracking_stats) > 0:
543
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
544
+ if len(business_analytics) > 0:
545
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
546
+
547
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
548
+ lines["Summary"] = "No Summary Data"
549
+
550
+ return [lines]
551
+
552
+
553
+ def _count_categories(self, detections: list, config: ShoppingCartConfig) -> dict:
554
+ """
555
+ Count the number of detections per category and return a summary dict.
556
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', 'masks', etc.
557
+ Output structure will include 'track_id' and 'masks' for each detection as per AdvancedTracker output.
558
+ """
559
+ counts = {}
560
+ valid_detections = []
561
+ for det in detections:
562
+ cat = det.get('category', 'unknown')
563
+ if not all(k in det for k in ['category', 'confidence', 'bounding_box']): # Validate required fields
564
+ self.logger.warning(f"Skipping invalid detection: {det}")
565
+ continue
566
+ counts[cat] = counts.get(cat, 0) + 1
567
+ valid_detections.append({
568
+ "bounding_box": det.get("bounding_box"),
569
+ "category": det.get("category"),
570
+ "confidence": det.get("confidence"),
571
+ "track_id": det.get("track_id"),
572
+ "frame_id": det.get("frame_id"),
573
+ "masks": det.get("masks", det.get("mask", [])) # Include masks, fallback to empty list
574
+ })
575
+ self.logger.debug(f"Valid detections after filtering: {len(valid_detections)}")
576
+ return {
577
+ "total_count": sum(counts.values()),
578
+ "per_category_count": counts,
579
+ "detections": valid_detections
580
+ }
581
+
582
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
583
+ """
584
+ Get detailed information about track IDs (per frame).
585
+ """
586
+ # Collect all track_ids in this frame
587
+ frame_track_ids = set()
588
+ for det in detections:
589
+ tid = det.get('track_id')
590
+ if tid is not None:
591
+ frame_track_ids.add(tid)
592
+ # Use persistent total set for unique counting
593
+ total_track_ids = set()
594
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
595
+ total_track_ids.update(s)
596
+ return {
597
+ "total_count": len(total_track_ids),
598
+ "current_frame_count": len(frame_track_ids),
599
+ "total_unique_track_ids": len(total_track_ids),
600
+ "current_frame_track_ids": list(frame_track_ids),
601
+ "last_update_time": time.time(),
602
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
603
+ }
604
+
605
+ def _update_tracking_state(self, detections: list):
606
+ """
607
+ Track unique categories track_ids per category for total count after tracking.
608
+ Applies canonical ID merging to avoid duplicate counting when the underlying
609
+ tracker loses an object temporarily and assigns a new ID.
610
+ """
611
+ # Lazily initialise storage dicts
612
+ if not hasattr(self, "_per_category_total_track_ids"):
613
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
614
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
615
+
616
+ for det in detections:
617
+ cat = det.get("category")
618
+ raw_track_id = det.get("track_id")
619
+ if cat not in self.target_categories or raw_track_id is None:
620
+ continue
621
+ bbox = det.get("bounding_box", det.get("bbox"))
622
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
623
+ # Propagate canonical ID back to detection so downstream logic uses it
624
+ det["track_id"] = canonical_id
625
+
626
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
627
+ self._current_frame_track_ids[cat].add(canonical_id)
628
+
629
+ def get_total_counts(self):
630
+ """
631
+ Return total unique track_id count for each category.
632
+ """
633
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
634
+
635
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
636
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
637
+ hours = int(timestamp // 3600)
638
+ minutes = int((timestamp % 3600) // 60)
639
+ seconds = round(float(timestamp % 60),2)
640
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
641
+
642
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
643
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
644
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
645
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
646
+
647
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
648
+ """Get formatted current timestamp based on stream type."""
649
+ if not stream_info:
650
+ return "00:00:00.00"
651
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
652
+ if precision:
653
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
654
+ if frame_id:
655
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
656
+ else:
657
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
658
+ stream_time_str = self._format_timestamp_for_video(start_time)
659
+ return stream_time_str
660
+ else:
661
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
662
+
663
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
664
+ if frame_id:
665
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
666
+ else:
667
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
668
+ stream_time_str = self._format_timestamp_for_video(start_time)
669
+ return stream_time_str
670
+ else:
671
+ # For streams, use stream_time from stream_info
672
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
673
+ if stream_time_str:
674
+ # Parse the high precision timestamp string to get timestamp
675
+ try:
676
+ # Remove " UTC" suffix and parse
677
+ timestamp_str = stream_time_str.replace(" UTC", "")
678
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
679
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
680
+ return self._format_timestamp_for_stream(timestamp)
681
+ except:
682
+ # Fallback to current time if parsing fails
683
+ return self._format_timestamp_for_stream(time.time())
684
+ else:
685
+ return self._format_timestamp_for_stream(time.time())
686
+
687
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
688
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
689
+ if not stream_info:
690
+ return "00:00:00"
691
+ if precision:
692
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
693
+ return "00:00:00"
694
+ else:
695
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
696
+
697
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
698
+ # If video format, start from 00:00:00
699
+ return "00:00:00"
700
+ else:
701
+ # For streams, use tracking start time or current time with minutes/seconds reset
702
+ if self._tracking_start_time is None:
703
+ # Try to extract timestamp from stream_time string
704
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
705
+ if stream_time_str:
706
+ try:
707
+ # Remove " UTC" suffix and parse
708
+ timestamp_str = stream_time_str.replace(" UTC", "")
709
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
710
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
711
+ except:
712
+ # Fallback to current time if parsing fails
713
+ self._tracking_start_time = time.time()
714
+ else:
715
+ self._tracking_start_time = time.time()
716
+
717
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
718
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
719
+ dt = dt.replace(minute=0, second=0, microsecond=0)
720
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
721
+
722
+ # ------------------------------------------------------------------ #
723
+ # Helper to merge masks back into detections #
724
+ # ------------------------------------------------------------------ #
725
+ def _attach_masks_to_detections(
726
+ self,
727
+ processed_detections: List[Dict[str, Any]],
728
+ raw_detections: List[Dict[str, Any]],
729
+ iou_threshold: float = 0.5,
730
+ ) -> List[Dict[str, Any]]:
731
+ """
732
+ Attach segmentation masks from the original `raw_detections` list to the
733
+ `processed_detections` list returned after smoothing/tracking.
734
+
735
+ Matching between detections is performed using Intersection-over-Union
736
+ (IoU) of the bounding boxes. For each processed detection we select the
737
+ raw detection with the highest IoU above `iou_threshold` and copy its
738
+ `masks` (or `mask`) field. If no suitable match is found, the detection
739
+ keeps an empty list for `masks` to maintain a consistent schema.
740
+ """
741
+
742
+ if not processed_detections or not raw_detections:
743
+ # Nothing to do – ensure masks key exists for downstream logic.
744
+ for det in processed_detections:
745
+ det.setdefault("masks", [])
746
+ return processed_detections
747
+
748
+ # Track which raw detections have already been matched to avoid
749
+ # assigning the same mask to multiple processed detections.
750
+ used_raw_indices = set()
751
+
752
+ for det in processed_detections:
753
+ best_iou = 0.0
754
+ best_idx = None
755
+
756
+ for idx, raw_det in enumerate(raw_detections):
757
+ if idx in used_raw_indices:
758
+ continue
759
+
760
+ iou = self._compute_iou(det.get("bounding_box"), raw_det.get("bounding_box"))
761
+ if iou > best_iou:
762
+ best_iou = iou
763
+ best_idx = idx
764
+
765
+ if best_idx is not None and best_iou >= iou_threshold:
766
+ raw_det = raw_detections[best_idx]
767
+ masks = raw_det.get("masks", raw_det.get("mask"))
768
+ if masks is not None:
769
+ det["masks"] = masks
770
+ used_raw_indices.add(best_idx)
771
+ else:
772
+ # No adequate match – default to empty list to keep schema consistent.
773
+ det.setdefault("masks", ["EMPTY"])
774
+
775
+ return processed_detections
776
+
777
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
778
+ """
779
+ Extract prediction details for output (category, confidence, bounding box).
780
+ """
781
+ return [
782
+ {
783
+ "category": det.get("category", "unknown"),
784
+ "confidence": det.get("confidence", 0.0),
785
+ "bounding_box": det.get("bounding_box", {}),
786
+ "mask": det.get("mask", det.get("masks", None)) # Accept either key
787
+ }
788
+ for det in detections
789
+ ]
790
+
791
+
792
+ # ------------------------------------------------------------------ #
793
+ # Canonical ID helpers #
794
+ # ------------------------------------------------------------------ #
795
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
796
+ """Compute IoU between two bounding boxes which may be dicts or lists.
797
+ Falls back to 0 when insufficient data is available."""
798
+
799
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
800
+ def _bbox_to_list(bbox):
801
+ if bbox is None:
802
+ return []
803
+ if isinstance(bbox, list):
804
+ return bbox[:4] if len(bbox) >= 4 else []
805
+ if isinstance(bbox, dict):
806
+ if "xmin" in bbox:
807
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
808
+ if "x1" in bbox:
809
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
810
+ # Fallback: first four numeric values
811
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
812
+ return values[:4] if len(values) >= 4 else []
813
+ return []
814
+
815
+ l1 = _bbox_to_list(box1)
816
+ l2 = _bbox_to_list(box2)
817
+ if len(l1) < 4 or len(l2) < 4:
818
+ return 0.0
819
+ x1_min, y1_min, x1_max, y1_max = l1
820
+ x2_min, y2_min, x2_max, y2_max = l2
821
+
822
+ # Ensure correct order
823
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
824
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
825
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
826
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
827
+
828
+ inter_x_min = max(x1_min, x2_min)
829
+ inter_y_min = max(y1_min, y2_min)
830
+ inter_x_max = min(x1_max, x2_max)
831
+ inter_y_max = min(y1_max, y2_max)
832
+
833
+ inter_w = max(0.0, inter_x_max - inter_x_min)
834
+ inter_h = max(0.0, inter_y_max - inter_y_min)
835
+ inter_area = inter_w * inter_h
836
+
837
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
838
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
839
+ union_area = area1 + area2 - inter_area
840
+
841
+ return (inter_area / union_area) if union_area > 0 else 0.0
842
+
843
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
844
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
845
+ tracks when IoU and temporal constraints indicate they represent the
846
+ same physical."""
847
+ if raw_id is None or bbox is None:
848
+ # Nothing to merge
849
+ return raw_id
850
+
851
+ now = time.time()
852
+
853
+ # Fast path – raw_id already mapped
854
+ if raw_id in self._track_aliases:
855
+ canonical_id = self._track_aliases[raw_id]
856
+ track_info = self._canonical_tracks.get(canonical_id)
857
+ if track_info is not None:
858
+ track_info["last_bbox"] = bbox
859
+ track_info["last_update"] = now
860
+ track_info["raw_ids"].add(raw_id)
861
+ return canonical_id
862
+
863
+ # Attempt to merge with an existing canonical track
864
+ for canonical_id, info in self._canonical_tracks.items():
865
+ # Only consider recently updated tracks
866
+ if now - info["last_update"] > self._track_merge_time_window:
867
+ continue
868
+ iou = self._compute_iou(bbox, info["last_bbox"])
869
+ if iou >= self._track_merge_iou_threshold:
870
+ # Merge
871
+ self._track_aliases[raw_id] = canonical_id
872
+ info["last_bbox"] = bbox
873
+ info["last_update"] = now
874
+ info["raw_ids"].add(raw_id)
875
+ return canonical_id
876
+
877
+ # No match – register new canonical track
878
+ canonical_id = raw_id
879
+ self._track_aliases[raw_id] = canonical_id
880
+ self._canonical_tracks[canonical_id] = {
881
+ "last_bbox": bbox,
882
+ "last_update": now,
883
+ "raw_ids": {raw_id},
884
+ }
885
+ return canonical_id
886
+
887
+ def _format_timestamp(self, timestamp: float) -> str:
888
+ """Format a timestamp for human-readable output."""
889
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
890
+
891
+ def _get_tracking_start_time(self) -> str:
892
+ """Get the tracking start time, formatted as a string."""
893
+ if self._tracking_start_time is None:
894
+ return "N/A"
895
+ return self._format_timestamp(self._tracking_start_time)
896
+
897
+ def _set_tracking_start_time(self) -> None:
898
+ """Set the tracking start time to the current time."""
899
+ self._tracking_start_time = time.time()