matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,869 @@
1
+ """
2
+ Mask Monitoring Use Case for Post-Processing
3
+
4
+ This module provides Mask monitoring functionality with congestion detection,
5
+ zone analysis, and alert generation.
6
+
7
+ """
8
+
9
+ from typing import Any, Dict, List, Optional
10
+ from dataclasses import asdict
11
+ import time
12
+ from datetime import datetime, timezone
13
+
14
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
15
+ from ..utils import (
16
+ filter_by_confidence,
17
+ filter_by_categories,
18
+ apply_category_mapping,
19
+ count_objects_by_category,
20
+ count_objects_in_zones,
21
+ calculate_counting_summary,
22
+ match_results_structure,
23
+ bbox_smoothing,
24
+ BBoxSmoothingConfig,
25
+ BBoxSmoothingTracker
26
+ )
27
+ from dataclasses import dataclass, field
28
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
29
+
30
+
31
+ @dataclass
32
+ class MaskDetectionConfig(BaseConfig):
33
+ """Configuration for mask detection use case in mask monitoring."""
34
+ # Smoothing configuration
35
+ enable_smoothing: bool = True
36
+ smoothing_algorithm: str = "observability" # "window" or "observability"
37
+ smoothing_window_size: int = 20
38
+ smoothing_cooldown_frames: int = 5
39
+ smoothing_confidence_range_factor: float = 0.5
40
+
41
+ #confidence thresholds
42
+ confidence_threshold: float = 0.6
43
+
44
+ usecase_categories: List[str] = field(
45
+ default_factory=lambda: ["Mask","NO-Mask"]
46
+ )
47
+
48
+ target_categories: List[str] = field(
49
+ default_factory=lambda: ["Mask","NO-Mask"]
50
+ )
51
+
52
+ alert_config: Optional[AlertConfig] = None
53
+
54
+ index_to_category: Optional[Dict[int, str]] = field(
55
+ default_factory=lambda: {
56
+ 0: "NO-Mask",
57
+ 1: "Mask",
58
+ }
59
+ )
60
+
61
+
62
+ class MaskDetectionUseCase(BaseProcessor):
63
+
64
+ def __init__(self):
65
+ super().__init__("mask_detection")
66
+ self.category = "mask_detection"
67
+
68
+ self.CASE_TYPE: Optional[str] = 'mask_detection'
69
+ self.CASE_VERSION: Optional[str] = '1.3'
70
+
71
+ # List of categories to track
72
+ self.target_categories = ["Mask","NO-Mask"]
73
+
74
+ # Initialize smoothing tracker
75
+ self.smoothing_tracker = None
76
+
77
+ # Initialize advanced tracker (will be created on first use)
78
+ self.tracker = None
79
+
80
+ # Initialize tracking state variables
81
+ self._total_frame_counter = 0
82
+ self._global_frame_offset = 0
83
+ self.start_timer = None
84
+
85
+ # Track start time for "TOTAL SINCE" calculation
86
+ self._tracking_start_time = None
87
+
88
+ self._track_aliases: Dict[Any, Any] = {}
89
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
90
+ # Tunable parameters – adjust if necessary for specific scenarios
91
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
92
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
93
+
94
+ self._ascending_alert_list: List[int] = []
95
+ self.current_incident_end_timestamp: str = "N/A"
96
+
97
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
98
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
99
+ """
100
+ Main entry point for post-processing.
101
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
102
+ Returns a ProcessingResult with all relevant outputs.
103
+ """
104
+ start_time = time.time()
105
+ # Ensure config is correct type
106
+ if not isinstance(config, MaskDetectionConfig):
107
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
108
+ context=context)
109
+ if context is None:
110
+ context = ProcessingContext()
111
+
112
+ # Detect input format and store in context
113
+ input_format = match_results_structure(data)
114
+ context.input_format = input_format
115
+ context.confidence_threshold = config.confidence_threshold
116
+
117
+ if config.confidence_threshold is not None:
118
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
119
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
120
+ else:
121
+ processed_data = data
122
+
123
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
124
+
125
+ # Step 2: Apply category mapping if provided
126
+ if config.index_to_category:
127
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
128
+ self.logger.debug("Applied category mapping")
129
+
130
+ if config.target_categories:
131
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
132
+ self.logger.debug(f"Applied category filtering")
133
+
134
+ # Apply bbox smoothing if enabled
135
+ if config.enable_smoothing:
136
+ if self.smoothing_tracker is None:
137
+ smoothing_config = BBoxSmoothingConfig(
138
+ smoothing_algorithm=config.smoothing_algorithm,
139
+ window_size=config.smoothing_window_size,
140
+ cooldown_frames=config.smoothing_cooldown_frames,
141
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
142
+ confidence_range_factor=config.smoothing_confidence_range_factor,
143
+ enable_smoothing=True
144
+ )
145
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
146
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
147
+
148
+ # Advanced tracking (BYTETracker-like)
149
+ try:
150
+ from ..advanced_tracker import AdvancedTracker
151
+ from ..advanced_tracker.config import TrackerConfig
152
+
153
+ # Create tracker instance if it doesn't exist (preserves state across frames)
154
+ if self.tracker is None:
155
+ tracker_config = TrackerConfig()
156
+ self.tracker = AdvancedTracker(tracker_config)
157
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
158
+
159
+ # The tracker expects the data in the same format as input
160
+ # It will add track_id and frame_id to each detection
161
+ processed_data = self.tracker.update(processed_data)
162
+
163
+ except Exception as e:
164
+ # If advanced tracker fails, fallback to unsmoothed detections
165
+ self.logger.warning(f"AdvancedTracker failed: {e}")
166
+
167
+ # Update tracking state for total count per label
168
+ self._update_tracking_state(processed_data)
169
+
170
+ # Update frame counter
171
+ self._total_frame_counter += 1
172
+
173
+ # Extract frame information from stream_info
174
+ frame_number = None
175
+ if stream_info:
176
+ input_settings = stream_info.get("input_settings", {})
177
+ start_frame = input_settings.get("start_frame")
178
+ end_frame = input_settings.get("end_frame")
179
+ # If start and end frame are the same, it's a single frame
180
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
181
+ frame_number = start_frame
182
+
183
+ # Compute summaries and alerts
184
+ general_counting_summary = calculate_counting_summary(data)
185
+ counting_summary = self._count_categories(processed_data, config)
186
+ # Add total unique counts after tracking using only local state
187
+ total_counts = self.get_total_counts()
188
+ counting_summary['total_counts'] = total_counts
189
+
190
+ alerts = self._check_alerts(counting_summary, frame_number, config)
191
+ predictions = self._extract_predictions(processed_data)
192
+
193
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
194
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
195
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
196
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
197
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
198
+
199
+ # Extract frame-based dictionaries from the lists
200
+ incidents = incidents_list[0] if incidents_list else {}
201
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
202
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
203
+ summary = summary_list[0] if summary_list else {}
204
+ agg_summary = {str(frame_number): {
205
+ "incidents": incidents,
206
+ "tracking_stats": tracking_stats,
207
+ "business_analytics": business_analytics,
208
+ "alerts": alerts,
209
+ "human_text": summary}
210
+ }
211
+
212
+
213
+ context.mark_completed()
214
+
215
+ # Build result object following the new pattern
216
+
217
+ result = self.create_result(
218
+ data={"agg_summary": agg_summary},
219
+ usecase=self.name,
220
+ category=self.category,
221
+ context=context
222
+ )
223
+
224
+ return result
225
+
226
+ def _check_alerts(self, summary: dict, frame_number:Any, config: MaskDetectionConfig) -> List[Dict]:
227
+ """
228
+ Check if any alert thresholds are exceeded and return alert dicts.
229
+ """
230
+ def get_trend(data, lookback=900, threshold=0.6):
231
+ '''
232
+ Determine if the trend is ascending or descending based on actual value progression.
233
+ Now works with values 0,1,2,3 (not just binary).
234
+ '''
235
+ window = data[-lookback:] if len(data) >= lookback else data
236
+ if len(window) < 2:
237
+ return True # not enough data to determine trend
238
+ increasing = 0
239
+ total = 0
240
+ for i in range(1, len(window)):
241
+ if window[i] >= window[i - 1]:
242
+ increasing += 1
243
+ total += 1
244
+ ratio = increasing / total
245
+ if ratio >= threshold:
246
+ return True
247
+ elif ratio <= (1 - threshold):
248
+ return False
249
+
250
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
251
+ alerts = []
252
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
253
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
254
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
255
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
256
+
257
+ if not config.alert_config:
258
+ return alerts
259
+
260
+ total = summary.get("total_count", 0)
261
+ #self._ascending_alert_list
262
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
263
+
264
+ for category, threshold in config.alert_config.count_thresholds.items():
265
+ if category == "all" and total > threshold:
266
+
267
+ alerts.append({
268
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
269
+ "alert_id": "alert_"+category+'_'+frame_key,
270
+ "incident_category": self.CASE_TYPE,
271
+ "threshold_level": threshold,
272
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
273
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
274
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
275
+ }
276
+ })
277
+ elif category in summary.get("per_category_count", {}):
278
+ count = summary.get("per_category_count", {})[category]
279
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
280
+ alerts.append({
281
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
282
+ "alert_id": "alert_"+category+'_'+frame_key,
283
+ "incident_category": self.CASE_TYPE,
284
+ "threshold_level": threshold,
285
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
286
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
287
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
288
+ }
289
+ })
290
+ else:
291
+ pass
292
+ return alerts
293
+
294
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: MaskDetectionConfig,
295
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
296
+ Dict]:
297
+ """Generate structured incidents for the output format with frame-based keys."""
298
+
299
+ incidents = []
300
+ total_detections = counting_summary.get("total_count", 0)
301
+ current_timestamp = self._get_current_timestamp_str(stream_info)
302
+ camera_info = self.get_camera_info_from_stream(stream_info)
303
+
304
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
305
+
306
+ if total_detections > 0:
307
+ # Determine event level based on thresholds
308
+ level = "low"
309
+ intensity = 5.0
310
+ start_timestamp = self._get_start_timestamp_str(stream_info)
311
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
312
+ self.current_incident_end_timestamp = 'Incident still active'
313
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
314
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
315
+ self.current_incident_end_timestamp = current_timestamp
316
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
317
+ self.current_incident_end_timestamp = 'N/A'
318
+
319
+ if config.alert_config and config.alert_config.count_thresholds:
320
+ threshold = config.alert_config.count_thresholds.get("all", 15)
321
+ intensity = min(10.0, (total_detections / threshold) * 10)
322
+
323
+ if intensity >= 9:
324
+ level = "critical"
325
+ self._ascending_alert_list.append(3)
326
+ elif intensity >= 7:
327
+ level = "significant"
328
+ self._ascending_alert_list.append(2)
329
+ elif intensity >= 5:
330
+ level = "medium"
331
+ self._ascending_alert_list.append(1)
332
+ else:
333
+ level = "low"
334
+ self._ascending_alert_list.append(0)
335
+ else:
336
+ if total_detections > 30:
337
+ level = "critical"
338
+ intensity = 10.0
339
+ self._ascending_alert_list.append(3)
340
+ elif total_detections > 25:
341
+ level = "significant"
342
+ intensity = 9.0
343
+ self._ascending_alert_list.append(2)
344
+ elif total_detections > 15:
345
+ level = "medium"
346
+ intensity = 7.0
347
+ self._ascending_alert_list.append(1)
348
+ else:
349
+ level = "low"
350
+ intensity = min(10.0, total_detections / 3.0)
351
+ self._ascending_alert_list.append(0)
352
+
353
+ # Generate human text in new format
354
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
355
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
356
+ human_text = "\n".join(human_text_lines)
357
+
358
+ alert_settings=[]
359
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
360
+ alert_settings.append({
361
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
362
+ "incident_category": self.CASE_TYPE,
363
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
364
+ "ascending": True,
365
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
366
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
367
+ }
368
+ })
369
+
370
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
371
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
372
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
373
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
374
+ incidents.append(event)
375
+
376
+ else:
377
+ self._ascending_alert_list.append(0)
378
+ incidents.append({})
379
+
380
+ return incidents
381
+
382
+ def _generate_tracking_stats(
383
+ self,
384
+ counting_summary: Dict,
385
+ alerts: List,
386
+ config: MaskDetectionConfig,
387
+ frame_number: Optional[int] = None,
388
+ stream_info: Optional[Dict[str, Any]] = None
389
+ ) -> List[Dict]:
390
+ """Generate structured tracking stats matching eg.json format."""
391
+ camera_info = self.get_camera_info_from_stream(stream_info)
392
+
393
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
394
+ # tracking_stats = [{frame_key: []}]
395
+ # frame_tracking_stats = tracking_stats[0][frame_key]
396
+ tracking_stats = []
397
+
398
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
399
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
400
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
401
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
402
+
403
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
404
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
405
+
406
+ # Create high precision timestamps for input_timestamp and reset_timestamp
407
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
408
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
409
+
410
+
411
+ # Build total_counts array in expected format
412
+ total_counts = []
413
+ for cat, count in total_counts_dict.items():
414
+ if count > 0:
415
+ total_counts.append({
416
+ "category": cat,
417
+ "count": count
418
+ })
419
+
420
+ # Build current_counts array in expected format
421
+ current_counts = []
422
+ for cat, count in per_category_count.items():
423
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
424
+ current_counts.append({
425
+ "category": cat,
426
+ "count": count
427
+ })
428
+
429
+ # Prepare detections without confidence scores (as per eg.json)
430
+ detections = []
431
+ for detection in counting_summary.get("detections", []):
432
+ bbox = detection.get("bounding_box", {})
433
+ category = detection.get("category", "person")
434
+ # Include segmentation if available (like in eg.json)
435
+ if detection.get("masks"):
436
+ segmentation= detection.get("masks", [])
437
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
438
+ elif detection.get("segmentation"):
439
+ segmentation= detection.get("segmentation")
440
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
441
+ elif detection.get("mask"):
442
+ segmentation= detection.get("mask")
443
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
444
+ else:
445
+ detection_obj = self.create_detection_object(category, bbox)
446
+ detections.append(detection_obj)
447
+
448
+ # Build alert_settings array in expected format
449
+ alert_settings = []
450
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
451
+ alert_settings.append({
452
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
453
+ "incident_category": self.CASE_TYPE,
454
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
455
+ "ascending": True,
456
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
457
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
458
+ }
459
+ })
460
+
461
+ # Generate human_text in expected format
462
+ human_text_lines = [f"Tracking Statistics:"]
463
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
464
+
465
+ for cat, count in per_category_count.items():
466
+ human_text_lines.append(f"\t{cat}: {count}")
467
+
468
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
469
+ for cat, count in total_counts_dict.items():
470
+ if count > 0:
471
+ human_text_lines.append(f"\t{cat}: {count}")
472
+
473
+ if alerts:
474
+ for alert in alerts:
475
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
476
+ else:
477
+ human_text_lines.append("Alerts: None")
478
+
479
+ human_text = "\n".join(human_text_lines)
480
+ reset_settings=[
481
+ {
482
+ "interval_type": "daily",
483
+ "reset_time": {
484
+ "value": 9,
485
+ "time_unit": "hour"
486
+ }
487
+ }
488
+ ]
489
+
490
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
491
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
492
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
493
+ reset_time=high_precision_reset_timestamp)
494
+ print(tracking_stats)
495
+ tracking_stats.append(tracking_stat)
496
+ return tracking_stats
497
+
498
+ def _generate_business_analytics(self, counting_summary: Dict, alerts: Any, config: MaskDetectionConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
499
+ """Generate standardized business analytics for the agg_summary structure."""
500
+ if is_empty:
501
+ return []
502
+
503
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
504
+ #camera_info = self.get_camera_info_from_stream(stream_info)
505
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
506
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
507
+ # reset_settings)
508
+ # return business_analytics
509
+
510
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
511
+ """
512
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
513
+ """
514
+ lines = {}
515
+ lines["Application Name"] = self.CASE_TYPE
516
+ lines["Application Version"] = self.CASE_VERSION
517
+ if len(incidents) > 0:
518
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
519
+ if len(tracking_stats) > 0:
520
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
521
+ if len(business_analytics) > 0:
522
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
523
+
524
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
525
+ lines["Summary"] = "No Summary Data"
526
+
527
+ return [lines]
528
+
529
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
530
+ """
531
+ Get detailed information about track IDs (per frame).
532
+ """
533
+ # Collect all track_ids in this frame
534
+ frame_track_ids = set()
535
+ for det in detections:
536
+ tid = det.get('track_id')
537
+ if tid is not None:
538
+ frame_track_ids.add(tid)
539
+ # Use persistent total set for unique counting
540
+ total_track_ids = set()
541
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
542
+ total_track_ids.update(s)
543
+ return {
544
+ "total_count": len(total_track_ids),
545
+ "current_frame_count": len(frame_track_ids),
546
+ "total_unique_track_ids": len(total_track_ids),
547
+ "current_frame_track_ids": list(frame_track_ids),
548
+ "last_update_time": time.time(),
549
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
550
+ }
551
+
552
+ def _update_tracking_state(self, detections: list):
553
+ """
554
+ Track unique categories track_ids per category for total count after tracking.
555
+ Applies canonical ID merging to avoid duplicate counting when the underlying
556
+ tracker loses an object temporarily and assigns a new ID.
557
+ """
558
+ # Lazily initialise storage dicts
559
+ if not hasattr(self, "_per_category_total_track_ids"):
560
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
561
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
562
+
563
+ for det in detections:
564
+ cat = det.get("category")
565
+ raw_track_id = det.get("track_id")
566
+ if cat not in self.target_categories or raw_track_id is None:
567
+ continue
568
+ bbox = det.get("bounding_box", det.get("bbox"))
569
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
570
+ # Propagate canonical ID back to detection so downstream logic uses it
571
+ det["track_id"] = canonical_id
572
+
573
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
574
+ self._current_frame_track_ids[cat].add(canonical_id)
575
+
576
+ def get_total_counts(self):
577
+ """
578
+ Return total unique track_id count for each category.
579
+ """
580
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
581
+
582
+
583
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
584
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
585
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
586
+
587
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
588
+ hours = int(timestamp // 3600)
589
+ minutes = int((timestamp % 3600) // 60)
590
+ seconds = round(float(timestamp % 60), 2)
591
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
592
+
593
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
594
+ """Get formatted current timestamp based on stream type."""
595
+ if not stream_info:
596
+ return "00:00:00.00"
597
+ print("---------------------------------STREAM_INFO------------------------------")
598
+ print(stream_info)
599
+ print("---------------------------------STREAM_INFO------------------------------")
600
+ if precision:
601
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
602
+ if frame_id:
603
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
604
+ else:
605
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
606
+ stream_time_str = self._format_timestamp_for_video(start_time)
607
+
608
+
609
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
610
+ else:
611
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
612
+
613
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
614
+ if frame_id:
615
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
616
+ else:
617
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
618
+
619
+ stream_time_str = self._format_timestamp_for_video(start_time)
620
+
621
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
622
+ else:
623
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
624
+ if stream_time_str:
625
+ try:
626
+ timestamp_str = stream_time_str.replace(" UTC", "")
627
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
628
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
629
+ return self._format_timestamp_for_stream(timestamp)
630
+ except:
631
+ return self._format_timestamp_for_stream(time.time())
632
+ else:
633
+ return self._format_timestamp_for_stream(time.time())
634
+
635
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
636
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
637
+ if not stream_info:
638
+ return "00:00:00"
639
+
640
+ if precision:
641
+ if self.start_timer is None:
642
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
643
+ return self._format_timestamp(self.start_timer)
644
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
645
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
646
+ return self._format_timestamp(self.start_timer)
647
+ else:
648
+ return self._format_timestamp(self.start_timer)
649
+
650
+ if self.start_timer is None:
651
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
652
+ return self._format_timestamp(self.start_timer)
653
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
654
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
655
+ return self._format_timestamp(self.start_timer)
656
+
657
+ else:
658
+ if self.start_timer is not None:
659
+ return self._format_timestamp(self.start_timer)
660
+
661
+ if self._tracking_start_time is None:
662
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
663
+ if stream_time_str:
664
+ try:
665
+ timestamp_str = stream_time_str.replace(" UTC", "")
666
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
667
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
668
+ except:
669
+ self._tracking_start_time = time.time()
670
+ else:
671
+ self._tracking_start_time = time.time()
672
+
673
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
674
+ dt = dt.replace(minute=0, second=0, microsecond=0)
675
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
676
+
677
+ def _format_timestamp(self, timestamp: Any) -> str:
678
+ """Format a timestamp so that exactly two digits follow the decimal point (milliseconds).
679
+
680
+ The input can be either:
681
+ 1. A numeric Unix timestamp (``float`` / ``int``) – it will first be converted to a
682
+ string in the format ``YYYY-MM-DD-HH:MM:SS.ffffff UTC``.
683
+ 2. A string already following the same layout.
684
+
685
+ The returned value preserves the overall format of the input but truncates or pads
686
+ the fractional seconds portion to **exactly two digits**.
687
+
688
+ Example
689
+ -------
690
+ >>> self._format_timestamp("2025-08-19-04:22:47.187574 UTC")
691
+ '2025-08-19-04:22:47.18 UTC'
692
+ """
693
+
694
+ # Convert numeric timestamps to the expected string representation first
695
+ if isinstance(timestamp, (int, float)):
696
+ timestamp = datetime.fromtimestamp(timestamp, timezone.utc).strftime(
697
+ '%Y-%m-%d-%H:%M:%S.%f UTC'
698
+ )
699
+
700
+ # Ensure we are working with a string from here on
701
+ if not isinstance(timestamp, str):
702
+ return str(timestamp)
703
+
704
+ # If there is no fractional component, simply return the original string
705
+ if '.' not in timestamp:
706
+ return timestamp
707
+
708
+ # Split out the main portion (up to the decimal point)
709
+ main_part, fractional_and_suffix = timestamp.split('.', 1)
710
+
711
+ # Separate fractional digits from the suffix (typically ' UTC')
712
+ if ' ' in fractional_and_suffix:
713
+ fractional_part, suffix = fractional_and_suffix.split(' ', 1)
714
+ suffix = ' ' + suffix # Re-attach the space removed by split
715
+ else:
716
+ fractional_part, suffix = fractional_and_suffix, ''
717
+
718
+ # Guarantee exactly two digits for the fractional part
719
+ fractional_part = (fractional_part + '00')[:2]
720
+
721
+ return f"{main_part}.{fractional_part}{suffix}"
722
+
723
+ def _count_categories(self, detections: list, config: MaskDetectionConfig) -> dict:
724
+ """
725
+ Count the number of detections per category and return a summary dict.
726
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
727
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
728
+ """
729
+ counts = {}
730
+ for det in detections:
731
+ cat = det.get('category', 'unknown')
732
+ counts[cat] = counts.get(cat, 0) + 1
733
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
734
+ return {
735
+ "total_count": sum(counts.values()),
736
+ "per_category_count": counts,
737
+ "detections": [
738
+ {
739
+ "bounding_box": det.get("bounding_box"),
740
+ "category": det.get("category"),
741
+ "confidence": det.get("confidence"),
742
+ "track_id": det.get("track_id"),
743
+ "frame_id": det.get("frame_id")
744
+ }
745
+ for det in detections
746
+ ]
747
+ }
748
+
749
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
750
+ """
751
+ Extract prediction details for output (category, confidence, bounding box).
752
+ """
753
+ return [
754
+ {
755
+ "category": det.get("category", "unknown"),
756
+ "confidence": det.get("confidence", 0.0),
757
+ "bounding_box": det.get("bounding_box", {})
758
+ }
759
+ for det in detections
760
+ ]
761
+
762
+ # ------------------------------------------------------------------ #
763
+ # Canonical ID helpers #
764
+ # ------------------------------------------------------------------ #
765
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
766
+ """Compute IoU between two bounding boxes which may be dicts or lists.
767
+ Falls back to 0 when insufficient data is available."""
768
+
769
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
770
+ def _bbox_to_list(bbox):
771
+ if bbox is None:
772
+ return []
773
+ if isinstance(bbox, list):
774
+ return bbox[:4] if len(bbox) >= 4 else []
775
+ if isinstance(bbox, dict):
776
+ if "xmin" in bbox:
777
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
778
+ if "x1" in bbox:
779
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
780
+ # Fallback: first four numeric values
781
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
782
+ return values[:4] if len(values) >= 4 else []
783
+ return []
784
+
785
+ l1 = _bbox_to_list(box1)
786
+ l2 = _bbox_to_list(box2)
787
+ if len(l1) < 4 or len(l2) < 4:
788
+ return 0.0
789
+ x1_min, y1_min, x1_max, y1_max = l1
790
+ x2_min, y2_min, x2_max, y2_max = l2
791
+
792
+ # Ensure correct order
793
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
794
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
795
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
796
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
797
+
798
+ inter_x_min = max(x1_min, x2_min)
799
+ inter_y_min = max(y1_min, y2_min)
800
+ inter_x_max = min(x1_max, x2_max)
801
+ inter_y_max = min(y1_max, y2_max)
802
+
803
+ inter_w = max(0.0, inter_x_max - inter_x_min)
804
+ inter_h = max(0.0, inter_y_max - inter_y_min)
805
+ inter_area = inter_w * inter_h
806
+
807
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
808
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
809
+ union_area = area1 + area2 - inter_area
810
+
811
+ return (inter_area / union_area) if union_area > 0 else 0.0
812
+
813
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
814
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
815
+ tracks when IoU and temporal constraints indicate they represent the
816
+ same physical."""
817
+ if raw_id is None or bbox is None:
818
+ # Nothing to merge
819
+ return raw_id
820
+
821
+ now = time.time()
822
+
823
+ # Fast path – raw_id already mapped
824
+ if raw_id in self._track_aliases:
825
+ canonical_id = self._track_aliases[raw_id]
826
+ track_info = self._canonical_tracks.get(canonical_id)
827
+ if track_info is not None:
828
+ track_info["last_bbox"] = bbox
829
+ track_info["last_update"] = now
830
+ track_info["raw_ids"].add(raw_id)
831
+ return canonical_id
832
+
833
+ # Attempt to merge with an existing canonical track
834
+ for canonical_id, info in self._canonical_tracks.items():
835
+ # Only consider recently updated tracks
836
+ if now - info["last_update"] > self._track_merge_time_window:
837
+ continue
838
+ iou = self._compute_iou(bbox, info["last_bbox"])
839
+ if iou >= self._track_merge_iou_threshold:
840
+ # Merge
841
+ self._track_aliases[raw_id] = canonical_id
842
+ info["last_bbox"] = bbox
843
+ info["last_update"] = now
844
+ info["raw_ids"].add(raw_id)
845
+ return canonical_id
846
+
847
+ # No match – register new canonical track
848
+ canonical_id = raw_id
849
+ self._track_aliases[raw_id] = canonical_id
850
+ self._canonical_tracks[canonical_id] = {
851
+ "last_bbox": bbox,
852
+ "last_update": now,
853
+ "raw_ids": {raw_id},
854
+ }
855
+ return canonical_id
856
+
857
+ def _format_timestamp(self, timestamp: float) -> str:
858
+ """Format a timestamp for human-readable output."""
859
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
860
+
861
+ def _get_tracking_start_time(self) -> str:
862
+ """Get the tracking start time, formatted as a string."""
863
+ if self._tracking_start_time is None:
864
+ return "N/A"
865
+ return self._format_timestamp(self._tracking_start_time)
866
+
867
+ def _set_tracking_start_time(self) -> None:
868
+ """Set the tracking start time to the current time."""
869
+ self._tracking_start_time = time.time()