matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,907 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class NaturalDisasterConfig(BaseConfig):
25
+ """Configuration for PCB Defect Detection use case."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+ usecase: str = "natural_disaster_detection"
33
+
34
+ #confidence thresholds
35
+ confidence_threshold: float = 0.3
36
+
37
+ usecase_categories: List[str] = field(
38
+ default_factory=lambda: ['Air', 'Car crash', 'Cracked_Wall', 'Cyclone', 'Fire', 'Flooded area', 'Slab', 'Tornado', 'bleached_coral', 'drought_area', 'iceberg', 'landslide_risk_area', 'lava', 'nuclear_explosion', 'oil_spill', 'sinkhole_risk', 'snow_avalanche', 'tsunami_wave', 'war_zone']
39
+ )
40
+
41
+ target_categories: List[str] = field(
42
+ default_factory=lambda: ['Air', 'Car crash', 'Cracked_Wall', 'Cyclone', 'Fire', 'Flooded area', 'Slab', 'Tornado', 'bleached_coral', 'drought_area', 'iceberg', 'landslide_risk_area', 'lava', 'nuclear_explosion', 'oil_spill', 'sinkhole_risk', 'snow_avalanche', 'tsunami_wave', 'war_zone']
43
+ )
44
+
45
+ alert_config: Optional[AlertConfig] = None
46
+
47
+ index_to_category: Optional[Dict[int, str]] = field(
48
+ default_factory=lambda: {
49
+ 0: 'Air',
50
+ 1: 'Car crash',
51
+ 2: 'Cracked_Wall',
52
+ 3: 'Cyclone',
53
+ 4: 'Fire',
54
+ 5: 'Flooded area',
55
+ 6: 'Slab',
56
+ 7: 'Tornado',
57
+ 8: 'bleached_coral',
58
+ 9: 'drought_area',
59
+ 10: 'iceberg',
60
+ 11: 'landslide_risk_area',
61
+ 12: 'lava',
62
+ 13: 'nuclear_explosion',
63
+ 14: 'oil_spill',
64
+ 15: 'sinkhole_risk',
65
+ 16: 'snow_avalanche',
66
+ 17: 'tsunami_wave',
67
+ 18: 'war_zone'
68
+ }
69
+ )
70
+
71
+
72
+ class NaturalDisasterUseCase(BaseProcessor):
73
+ # Human-friendly display names for categories
74
+
75
+ def __init__(self):
76
+ super().__init__("natural_disaster_detection")
77
+ self.category = "environmental"
78
+
79
+ self.CASE_TYPE: Optional[str] = 'natural_disaster_detection'
80
+ self.CASE_VERSION: Optional[str] = '1.2'
81
+ # List of categories to track
82
+ self.target_categories = ['Air', 'Car crash', 'Cracked_Wall', 'Cyclone', 'Fire', 'Flooded area', 'Slab', 'Tornado', 'bleached_coral', 'drought_area', 'iceberg', 'landslide_risk_area', 'lava', 'nuclear_explosion', 'oil_spill', 'sinkhole_risk', 'snow_avalanche', 'tsunami_wave', 'war_zone']
83
+
84
+
85
+ # Initialize smoothing tracker
86
+ self.smoothing_tracker = None
87
+
88
+ # Initialize advanced tracker (will be created on first use)
89
+ self.tracker = None
90
+ # Initialize tracking state variables
91
+ self._total_frame_counter = 0
92
+ self._global_frame_offset = 0
93
+
94
+ # Track start time for "TOTAL SINCE" calculation
95
+ self._tracking_start_time = None
96
+
97
+ self._track_aliases: Dict[Any, Any] = {}
98
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
99
+ # Tunable parameters – adjust if necessary for specific scenarios
100
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
101
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
102
+
103
+ self._ascending_alert_list: List[int] = []
104
+ self.current_incident_end_timestamp: str = "N/A"
105
+ self.start_timer = None
106
+
107
+
108
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
109
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
110
+ """
111
+ Main entry point for post-processing.
112
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
113
+ Returns a ProcessingResult with all relevant outputs.
114
+ """
115
+ start_time = time.time()
116
+ # Ensure config is correct type
117
+ if not isinstance(config, NaturalDisasterConfig):
118
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
119
+ context=context)
120
+ if context is None:
121
+ context = ProcessingContext()
122
+
123
+ # Detect input format and store in context
124
+ input_format = match_results_structure(data)
125
+ context.input_format = input_format
126
+ context.confidence_threshold = config.confidence_threshold
127
+ print(f"config.confidence_threshold: {config.confidence_threshold}")
128
+ print("Raw data: ", data)
129
+
130
+ if config.confidence_threshold is not None:
131
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
132
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
133
+ else:
134
+ processed_data = data
135
+
136
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
137
+
138
+ # Step 2: Apply category mapping if provided
139
+ if config.index_to_category:
140
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
141
+ self.logger.debug("Applied category mapping")
142
+
143
+ print(f"processed_data: {processed_data}")
144
+
145
+ if config.target_categories:
146
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
147
+ self.logger.debug(f"Applied category filtering")
148
+
149
+ # Apply bbox smoothing if enabled
150
+ if config.enable_smoothing:
151
+ if self.smoothing_tracker is None:
152
+ smoothing_config = BBoxSmoothingConfig(
153
+ smoothing_algorithm=config.smoothing_algorithm,
154
+ window_size=config.smoothing_window_size,
155
+ cooldown_frames=config.smoothing_cooldown_frames,
156
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
157
+ confidence_range_factor=config.smoothing_confidence_range_factor,
158
+ enable_smoothing=True
159
+ )
160
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
161
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
162
+
163
+ # Advanced tracking (BYTETracker-like)
164
+ try:
165
+ from ..advanced_tracker import AdvancedTracker
166
+ from ..advanced_tracker.config import TrackerConfig
167
+
168
+ # Create tracker instance if it doesn't exist (preserves state across frames)
169
+ if self.tracker is None:
170
+ # Configure tracker thresholds based on the use-case confidence threshold so that
171
+ # low-confidence detections (e.g. < 0.7) can still be initialised as tracks when
172
+ # the user passes a lower `confidence_threshold` in the post-processing config.
173
+ if config.confidence_threshold is not None:
174
+ tracker_config = TrackerConfig(
175
+ track_high_thresh=float(config.confidence_threshold),
176
+ # Allow even lower detections to participate in secondary association
177
+ track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
178
+ new_track_thresh=float(config.confidence_threshold)
179
+ )
180
+ else:
181
+ tracker_config = TrackerConfig()
182
+ self.tracker = AdvancedTracker(tracker_config)
183
+ self.logger.info(
184
+ "Initialized AdvancedTracker for Monitoring and tracking with thresholds: "
185
+ f"high={tracker_config.track_high_thresh}, "
186
+ f"low={tracker_config.track_low_thresh}, "
187
+ f"new={tracker_config.new_track_thresh}"
188
+ )
189
+
190
+ # The tracker expects the data in the same format as input
191
+ # It will add track_id and frame_id to each detection
192
+ processed_data = self.tracker.update(processed_data)
193
+
194
+ except Exception as e:
195
+ # If advanced tracker fails, fallback to unsmoothed detections
196
+ self.logger.warning(f"AdvancedTracker failed: {e}")
197
+
198
+ # Update tracking state for total count per label
199
+ self._update_tracking_state(processed_data)
200
+
201
+ # Update frame counter
202
+ self._total_frame_counter += 1
203
+ print(f"processed_data after tracking: {processed_data}")
204
+
205
+ # Extract frame information from stream_info
206
+ frame_number = None
207
+ if stream_info:
208
+ input_settings = stream_info.get("input_settings", {})
209
+ start_frame = input_settings.get("start_frame")
210
+ end_frame = input_settings.get("end_frame")
211
+ # If start and end frame are the same, it's a single frame
212
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
213
+ frame_number = start_frame
214
+
215
+ # Compute summaries and alerts
216
+ general_counting_summary = calculate_counting_summary(data)
217
+ counting_summary = self._count_categories(processed_data, config)
218
+ # Add total unique counts after tracking using only local state
219
+ total_counts = self.get_total_counts()
220
+ counting_summary['total_counts'] = total_counts
221
+
222
+ alerts = self._check_alerts(counting_summary, frame_number, config)
223
+ predictions = self._extract_predictions(processed_data)
224
+
225
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
226
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
227
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
228
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
229
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
230
+
231
+ # Extract frame-based dictionaries from the lists
232
+ incidents = incidents_list[0] if incidents_list else {}
233
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
234
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
235
+ summary = summary_list[0] if summary_list else {}
236
+ agg_summary = {str(frame_number): {
237
+ "incidents": incidents,
238
+ "tracking_stats": tracking_stats,
239
+ "business_analytics": business_analytics,
240
+ "alerts": alerts,
241
+ "human_text": summary}
242
+ }
243
+
244
+
245
+ context.mark_completed()
246
+
247
+ # Build result object following the new pattern
248
+
249
+ result = self.create_result(
250
+ data={"agg_summary": agg_summary},
251
+ usecase=self.name,
252
+ category=self.category,
253
+ context=context
254
+ )
255
+
256
+ return result
257
+
258
+ def _check_alerts(self, summary: dict, frame_number:Any, config: NaturalDisasterConfig) -> List[Dict]:
259
+ """
260
+ Check if any alert thresholds are exceeded and return alert dicts.
261
+ """
262
+ def get_trend(data, lookback=900, threshold=0.6):
263
+ '''
264
+ Determine if the trend is ascending or descending based on actual value progression.
265
+ Now works with values 0,1,2,3 (not just binary).
266
+ '''
267
+ window = data[-lookback:] if len(data) >= lookback else data
268
+ if len(window) < 2:
269
+ return True # not enough data to determine trend
270
+ increasing = 0
271
+ total = 0
272
+ for i in range(1, len(window)):
273
+ if window[i] >= window[i - 1]:
274
+ increasing += 1
275
+ total += 1
276
+ ratio = increasing / total
277
+ if ratio >= threshold:
278
+ return True
279
+ elif ratio <= (1 - threshold):
280
+ return False
281
+
282
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
283
+ alerts = []
284
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
285
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
286
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
287
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
288
+
289
+ if not config.alert_config:
290
+ return alerts
291
+
292
+ total = summary.get("total_count", 0)
293
+ #self._ascending_alert_list
294
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
295
+
296
+ for category, threshold in config.alert_config.count_thresholds.items():
297
+ if category == "all" and total > threshold:
298
+
299
+ alerts.append({
300
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
301
+ "alert_id": "alert_"+category+'_'+frame_key,
302
+ "incident_category": self.CASE_TYPE,
303
+ "threshold_level": threshold,
304
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
305
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
306
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
307
+ }
308
+ })
309
+ elif category in summary.get("per_category_count", {}):
310
+ count = summary.get("per_category_count", {})[category]
311
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
312
+ alerts.append({
313
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
314
+ "alert_id": "alert_"+category+'_'+frame_key,
315
+ "incident_category": self.CASE_TYPE,
316
+ "threshold_level": threshold,
317
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
318
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
319
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
320
+ }
321
+ })
322
+ else:
323
+ pass
324
+ return alerts
325
+
326
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: NaturalDisasterConfig,
327
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
328
+ Dict]:
329
+ """Generate structured incidents for the output format with frame-based keys."""
330
+
331
+ incidents = []
332
+ total_detections = counting_summary.get("total_count", 0)
333
+ current_timestamp = self._get_current_timestamp_str(stream_info)
334
+ camera_info = self.get_camera_info_from_stream(stream_info)
335
+
336
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
337
+
338
+ if total_detections > 0:
339
+ # Determine event level based on thresholds
340
+ level = "low"
341
+ intensity = 5.0
342
+ start_timestamp = self._get_start_timestamp_str(stream_info)
343
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
344
+ self.current_incident_end_timestamp = 'Incident still active'
345
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
346
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
347
+ self.current_incident_end_timestamp = current_timestamp
348
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
349
+ self.current_incident_end_timestamp = 'N/A'
350
+
351
+ if config.alert_config and config.alert_config.count_thresholds:
352
+ threshold = config.alert_config.count_thresholds.get("all", 15)
353
+ intensity = min(10.0, (total_detections / threshold) * 10)
354
+
355
+ if intensity >= 9:
356
+ level = "critical"
357
+ self._ascending_alert_list.append(3)
358
+ elif intensity >= 7:
359
+ level = "significant"
360
+ self._ascending_alert_list.append(2)
361
+ elif intensity >= 5:
362
+ level = "medium"
363
+ self._ascending_alert_list.append(1)
364
+ else:
365
+ level = "low"
366
+ self._ascending_alert_list.append(0)
367
+ else:
368
+ if total_detections > 30:
369
+ level = "critical"
370
+ intensity = 10.0
371
+ self._ascending_alert_list.append(3)
372
+ elif total_detections > 25:
373
+ level = "significant"
374
+ intensity = 9.0
375
+ self._ascending_alert_list.append(2)
376
+ elif total_detections > 15:
377
+ level = "medium"
378
+ intensity = 7.0
379
+ self._ascending_alert_list.append(1)
380
+ else:
381
+ level = "low"
382
+ intensity = min(10.0, total_detections / 3.0)
383
+ self._ascending_alert_list.append(0)
384
+
385
+ # Generate human text in new format
386
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
387
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
388
+ human_text = "\n".join(human_text_lines)
389
+
390
+ alert_settings=[]
391
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
392
+ alert_settings.append({
393
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
394
+ "incident_category": self.CASE_TYPE,
395
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
396
+ "ascending": True,
397
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
398
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
399
+ }
400
+ })
401
+
402
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
403
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
404
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
405
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
406
+ incidents.append(event)
407
+
408
+ else:
409
+ self._ascending_alert_list.append(0)
410
+ incidents.append({})
411
+
412
+ return incidents
413
+ def _generate_tracking_stats(
414
+ self,
415
+ counting_summary: Dict,
416
+ alerts: List,
417
+ config: NaturalDisasterConfig,
418
+ frame_number: Optional[int] = None,
419
+ stream_info: Optional[Dict[str, Any]] = None
420
+ ) -> List[Dict]:
421
+ """Generate structured tracking stats matching eg.json format."""
422
+ camera_info = self.get_camera_info_from_stream(stream_info)
423
+
424
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
425
+ # tracking_stats = [{frame_key: []}]
426
+ # frame_tracking_stats = tracking_stats[0][frame_key]
427
+ tracking_stats = []
428
+
429
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
430
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
431
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
432
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
433
+
434
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
435
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
436
+
437
+ # Create high precision timestamps for input_timestamp and reset_timestamp
438
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
439
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
440
+
441
+
442
+ # Build total_counts array in expected format
443
+ total_counts = []
444
+ for cat, count in total_counts_dict.items():
445
+ if count > 0:
446
+ total_counts.append({
447
+ "category": cat,
448
+ "count": count
449
+ })
450
+
451
+ # Build current_counts array in expected format
452
+ current_counts = []
453
+ for cat, count in per_category_count.items():
454
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
455
+ current_counts.append({
456
+ "category": cat,
457
+ "count": count
458
+ })
459
+
460
+ # Prepare detections without confidence scores (as per eg.json)
461
+ detections = []
462
+ for detection in counting_summary.get("detections", []):
463
+ bbox = detection.get("bounding_box", {})
464
+ category = detection.get("category", "person")
465
+ # Include segmentation if available (like in eg.json)
466
+ if detection.get("masks"):
467
+ segmentation= detection.get("masks", [])
468
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
469
+ elif detection.get("segmentation"):
470
+ segmentation= detection.get("segmentation")
471
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
472
+ elif detection.get("mask"):
473
+ segmentation= detection.get("mask")
474
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
475
+ else:
476
+ detection_obj = self.create_detection_object(category, bbox)
477
+ detections.append(detection_obj)
478
+
479
+ # Build alert_settings array in expected format
480
+ alert_settings = []
481
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
482
+ alert_settings.append({
483
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
484
+ "incident_category": self.CASE_TYPE,
485
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
486
+ "ascending": True,
487
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
488
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
489
+ }
490
+ })
491
+
492
+ # Generate human_text in expected format
493
+ human_text_lines = [f"Tracking Statistics:"]
494
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
495
+ if total_detections > 0:
496
+ category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
497
+ if len(category_counts) == 1:
498
+ detection_text = category_counts[0] + " detected"
499
+ elif len(category_counts) == 2:
500
+ detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
501
+ else:
502
+ detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
503
+ human_text_lines.append(f"\t- {detection_text}")
504
+ else:
505
+ human_text_lines.append(f"\t- No detections")
506
+
507
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
508
+ human_text_lines.append(f"Total Disaster Detected:- {cumulative_total}")
509
+ for cat, count in total_counts_dict.items():
510
+ if count > 0:
511
+ human_text_lines.append(f"\t{cat}: {count}")
512
+
513
+ if alerts:
514
+ for alert in alerts:
515
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
516
+ else:
517
+ human_text_lines.append("Alerts: None")
518
+
519
+ human_text = "\n".join(human_text_lines)
520
+ reset_settings=[
521
+ {
522
+ "interval_type": "daily",
523
+ "reset_time": {
524
+ "value": 9,
525
+ "time_unit": "hour"
526
+ }
527
+ }
528
+ ]
529
+
530
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
531
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
532
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
533
+ reset_time=high_precision_reset_timestamp)
534
+
535
+ tracking_stats.append(tracking_stat)
536
+ return tracking_stats
537
+
538
+ def _generate_business_analytics(self, counting_summary: Dict, alerts:Any, config: NaturalDisasterConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
539
+ """Generate standardized business analytics for the agg_summary structure."""
540
+ if is_empty:
541
+ return []
542
+
543
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
544
+ #camera_info = self.get_camera_info_from_stream(stream_info)
545
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
546
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
547
+ # reset_settings)
548
+ # return business_analytics
549
+
550
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
551
+ """
552
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
553
+ """
554
+ lines = {}
555
+ lines["Application Name"] = self.CASE_TYPE
556
+ lines["Application Version"] = self.CASE_VERSION
557
+ if len(incidents) > 0:
558
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
559
+ if len(tracking_stats) > 0:
560
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
561
+ if len(business_analytics) > 0:
562
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
563
+
564
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
565
+ lines["Summary"] = "No Summary Data"
566
+
567
+ return [lines]
568
+
569
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
570
+ """
571
+ Get detailed information about track IDs (per frame).
572
+ """
573
+ # Collect all track_ids in this frame
574
+ frame_track_ids = set()
575
+ for det in detections:
576
+ tid = det.get('track_id')
577
+ if tid is not None:
578
+ frame_track_ids.add(tid)
579
+ # Use persistent total set for unique counting
580
+ total_track_ids = set()
581
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
582
+ total_track_ids.update(s)
583
+ return {
584
+ "total_count": len(total_track_ids),
585
+ "current_frame_count": len(frame_track_ids),
586
+ "total_unique_track_ids": len(total_track_ids),
587
+ "current_frame_track_ids": list(frame_track_ids),
588
+ "last_update_time": time.time(),
589
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
590
+ }
591
+
592
+ def _update_tracking_state(self, detections: list):
593
+ """
594
+ Track unique categories track_ids per category for total count after tracking.
595
+ Applies canonical ID merging to avoid duplicate counting when the underlying
596
+ tracker loses an object temporarily and assigns a new ID.
597
+ """
598
+ # Lazily initialise storage dicts
599
+ if not hasattr(self, "_per_category_total_track_ids"):
600
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
601
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
602
+
603
+ for det in detections:
604
+ cat = det.get("category")
605
+ raw_track_id = det.get("track_id")
606
+ if cat not in self.target_categories or raw_track_id is None:
607
+ continue
608
+ bbox = det.get("bounding_box", det.get("bbox"))
609
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
610
+ # Propagate canonical ID back to detection so downstream logic uses it
611
+ det["track_id"] = canonical_id
612
+
613
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
614
+ self._current_frame_track_ids[cat].add(canonical_id)
615
+
616
+ def get_total_counts(self):
617
+ """
618
+ Return total unique track_id count for each category.
619
+ """
620
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
621
+
622
+
623
+ def _format_timestamp(self, timestamp: Any) -> str:
624
+ """Format a timestamp so that exactly two digits follow the decimal point (milliseconds).
625
+
626
+ The input can be either:
627
+ 1. A numeric Unix timestamp (``float`` / ``int``) – it will first be converted to a
628
+ string in the format ``YYYY-MM-DD-HH:MM:SS.ffffff UTC``.
629
+ 2. A string already following the same layout.
630
+
631
+ The returned value preserves the overall format of the input but truncates or pads
632
+ the fractional seconds portion to **exactly two digits**.
633
+
634
+ Example
635
+ -------
636
+ >>> self._format_timestamp("2025-08-19-04:22:47.187574 UTC")
637
+ '2025-08-19-04:22:47.18 UTC'
638
+ """
639
+
640
+ # Convert numeric timestamps to the expected string representation first
641
+ if isinstance(timestamp, (int, float)):
642
+ timestamp = datetime.fromtimestamp(timestamp, timezone.utc).strftime(
643
+ '%Y-%m-%d-%H:%M:%S.%f UTC'
644
+ )
645
+
646
+ # Ensure we are working with a string from here on
647
+ if not isinstance(timestamp, str):
648
+ return str(timestamp)
649
+
650
+ # If there is no fractional component, simply return the original string
651
+ if '.' not in timestamp:
652
+ return timestamp
653
+
654
+ # Split out the main portion (up to the decimal point)
655
+ main_part, fractional_and_suffix = timestamp.split('.', 1)
656
+
657
+ # Separate fractional digits from the suffix (typically ' UTC')
658
+ if ' ' in fractional_and_suffix:
659
+ fractional_part, suffix = fractional_and_suffix.split(' ', 1)
660
+ suffix = ' ' + suffix # Re-attach the space removed by split
661
+ else:
662
+ fractional_part, suffix = fractional_and_suffix, ''
663
+
664
+ # Guarantee exactly two digits for the fractional part
665
+ fractional_part = (fractional_part + '00')[:2]
666
+
667
+ return f"{main_part}.{fractional_part}{suffix}"
668
+
669
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
670
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
671
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
672
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
673
+
674
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
675
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
676
+ hours = int(timestamp // 3600)
677
+ minutes = int((timestamp % 3600) // 60)
678
+ seconds = round(float(timestamp % 60), 2)
679
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
680
+
681
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
682
+ """Get formatted current timestamp based on stream type."""
683
+
684
+ if not stream_info:
685
+ return "00:00:00.00"
686
+ if precision:
687
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
688
+ if frame_id:
689
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
690
+ else:
691
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
692
+ stream_time_str = self._format_timestamp_for_video(start_time)
693
+
694
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
695
+ else:
696
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
697
+
698
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
699
+ if frame_id:
700
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
701
+ else:
702
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
703
+
704
+ stream_time_str = self._format_timestamp_for_video(start_time)
705
+
706
+
707
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
708
+ else:
709
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
710
+ if stream_time_str:
711
+ try:
712
+ timestamp_str = stream_time_str.replace(" UTC", "")
713
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
714
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
715
+ return self._format_timestamp_for_stream(timestamp)
716
+ except:
717
+ return self._format_timestamp_for_stream(time.time())
718
+ else:
719
+ return self._format_timestamp_for_stream(time.time())
720
+
721
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
722
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
723
+ if not stream_info:
724
+ return "00:00:00"
725
+
726
+ if precision:
727
+ if self.start_timer is None:
728
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
729
+ return self._format_timestamp(self.start_timer)
730
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
731
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
732
+ return self._format_timestamp(self.start_timer)
733
+ else:
734
+ return self._format_timestamp(self.start_timer)
735
+
736
+ if self.start_timer is None:
737
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
738
+ return self._format_timestamp(self.start_timer)
739
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
740
+ self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
741
+ return self._format_timestamp(self.start_timer)
742
+
743
+ else:
744
+ if self.start_timer is not None:
745
+ return self._format_timestamp(self.start_timer)
746
+
747
+ if self._tracking_start_time is None:
748
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
749
+ if stream_time_str:
750
+ try:
751
+ timestamp_str = stream_time_str.replace(" UTC", "")
752
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
753
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
754
+ except:
755
+ self._tracking_start_time = time.time()
756
+ else:
757
+ self._tracking_start_time = time.time()
758
+
759
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
760
+ dt = dt.replace(minute=0, second=0, microsecond=0)
761
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
762
+
763
+ def _get_tracking_start_time(self) -> str:
764
+ """Get the tracking start time, formatted as a string."""
765
+ if self._tracking_start_time is None:
766
+ return "N/A"
767
+ return self._format_timestamp(self._tracking_start_time)
768
+
769
+ def _set_tracking_start_time(self) -> None:
770
+ """Set the tracking start time to the current time."""
771
+ self._tracking_start_time = time.time()
772
+
773
+
774
+ def _count_categories(self, detections: list, config: NaturalDisasterConfig) -> dict:
775
+ """
776
+ Count the number of detections per category and return a summary dict.
777
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
778
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
779
+ """
780
+ counts = {}
781
+ for det in detections:
782
+ cat = det.get('category', 'unknown')
783
+ counts[cat] = counts.get(cat, 0) + 1
784
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
785
+ return {
786
+ "total_count": sum(counts.values()),
787
+ "per_category_count": counts,
788
+ "detections": [
789
+ {
790
+ "bounding_box": det.get("bounding_box"),
791
+ "category": det.get("category"),
792
+ "confidence": det.get("confidence"),
793
+ "track_id": det.get("track_id"),
794
+ "frame_id": det.get("frame_id")
795
+ }
796
+ for det in detections
797
+ ]
798
+ }
799
+
800
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
801
+ """
802
+ Extract prediction details for output (category, confidence, bounding box).
803
+ """
804
+ return [
805
+ {
806
+ "category": det.get("category", "unknown"),
807
+ "confidence": det.get("confidence", 0.0),
808
+ "bounding_box": det.get("bounding_box", {})
809
+ }
810
+ for det in detections
811
+ ]
812
+
813
+ # ------------------------------------------------------------------ #
814
+ # Canonical ID helpers #
815
+ # ------------------------------------------------------------------ #
816
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
817
+ """Compute IoU between two bounding boxes which may be dicts or lists.
818
+ Falls back to 0 when insufficient data is available."""
819
+
820
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
821
+ def _bbox_to_list(bbox):
822
+ if bbox is None:
823
+ return []
824
+ if isinstance(bbox, list):
825
+ return bbox[:4] if len(bbox) >= 4 else []
826
+ if isinstance(bbox, dict):
827
+ if "xmin" in bbox:
828
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
829
+ if "x1" in bbox:
830
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
831
+ # Fallback: first four numeric values
832
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
833
+ return values[:4] if len(values) >= 4 else []
834
+ return []
835
+
836
+ l1 = _bbox_to_list(box1)
837
+ l2 = _bbox_to_list(box2)
838
+ if len(l1) < 4 or len(l2) < 4:
839
+ return 0.0
840
+ x1_min, y1_min, x1_max, y1_max = l1
841
+ x2_min, y2_min, x2_max, y2_max = l2
842
+
843
+ # Ensure correct order
844
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
845
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
846
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
847
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
848
+
849
+ inter_x_min = max(x1_min, x2_min)
850
+ inter_y_min = max(y1_min, y2_min)
851
+ inter_x_max = min(x1_max, x2_max)
852
+ inter_y_max = min(y1_max, y2_max)
853
+
854
+ inter_w = max(0.0, inter_x_max - inter_x_min)
855
+ inter_h = max(0.0, inter_y_max - inter_y_min)
856
+ inter_area = inter_w * inter_h
857
+
858
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
859
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
860
+ union_area = area1 + area2 - inter_area
861
+
862
+ return (inter_area / union_area) if union_area > 0 else 0.0
863
+
864
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
865
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
866
+ tracks when IoU and temporal constraints indicate they represent the
867
+ same physical."""
868
+ if raw_id is None or bbox is None:
869
+ # Nothing to merge
870
+ return raw_id
871
+
872
+ now = time.time()
873
+
874
+ # Fast path – raw_id already mapped
875
+ if raw_id in self._track_aliases:
876
+ canonical_id = self._track_aliases[raw_id]
877
+ track_info = self._canonical_tracks.get(canonical_id)
878
+ if track_info is not None:
879
+ track_info["last_bbox"] = bbox
880
+ track_info["last_update"] = now
881
+ track_info["raw_ids"].add(raw_id)
882
+ return canonical_id
883
+
884
+ # Attempt to merge with an existing canonical track
885
+ for canonical_id, info in self._canonical_tracks.items():
886
+ # Only consider recently updated tracks
887
+ if now - info["last_update"] > self._track_merge_time_window:
888
+ continue
889
+ iou = self._compute_iou(bbox, info["last_bbox"])
890
+ if iou >= self._track_merge_iou_threshold:
891
+ # Merge
892
+ self._track_aliases[raw_id] = canonical_id
893
+ info["last_bbox"] = bbox
894
+ info["last_update"] = now
895
+ info["raw_ids"].add(raw_id)
896
+ return canonical_id
897
+
898
+ # No match – register new canonical track
899
+ canonical_id = raw_id
900
+ self._track_aliases[raw_id] = canonical_id
901
+ self._canonical_tracks[canonical_id] = {
902
+ "last_bbox": bbox,
903
+ "last_update": now,
904
+ "raw_ids": {raw_id},
905
+ }
906
+ return canonical_id
907
+