matrice-analytics 0.1.60__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- matrice_analytics/__init__.py +28 -0
- matrice_analytics/boundary_drawing_internal/README.md +305 -0
- matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
- matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
- matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
- matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
- matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
- matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
- matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
- matrice_analytics/post_processing/README.md +455 -0
- matrice_analytics/post_processing/__init__.py +732 -0
- matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
- matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
- matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
- matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
- matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
- matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
- matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
- matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
- matrice_analytics/post_processing/config.py +146 -0
- matrice_analytics/post_processing/core/__init__.py +63 -0
- matrice_analytics/post_processing/core/base.py +704 -0
- matrice_analytics/post_processing/core/config.py +3291 -0
- matrice_analytics/post_processing/core/config_utils.py +925 -0
- matrice_analytics/post_processing/face_reg/__init__.py +43 -0
- matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
- matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
- matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
- matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
- matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
- matrice_analytics/post_processing/ocr/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
- matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
- matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
- matrice_analytics/post_processing/post_processor.py +1175 -0
- matrice_analytics/post_processing/test_cases/__init__.py +1 -0
- matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
- matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
- matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
- matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
- matrice_analytics/post_processing/test_cases/test_config.py +852 -0
- matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
- matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
- matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
- matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
- matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
- matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
- matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
- matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
- matrice_analytics/post_processing/usecases/__init__.py +267 -0
- matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
- matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
- matrice_analytics/post_processing/usecases/age_detection.py +842 -0
- matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
- matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
- matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
- matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
- matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
- matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
- matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
- matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
- matrice_analytics/post_processing/usecases/car_service.py +1601 -0
- matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
- matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
- matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
- matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
- matrice_analytics/post_processing/usecases/color/clip.py +660 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
- matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
- matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
- matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
- matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
- matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
- matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
- matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
- matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
- matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
- matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
- matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
- matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
- matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
- matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
- matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
- matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
- matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
- matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
- matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
- matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
- matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
- matrice_analytics/post_processing/usecases/leaf.py +821 -0
- matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
- matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
- matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
- matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
- matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
- matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
- matrice_analytics/post_processing/usecases/parking.py +787 -0
- matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
- matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
- matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
- matrice_analytics/post_processing/usecases/people_counting.py +706 -0
- matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
- matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
- matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
- matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
- matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
- matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
- matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
- matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
- matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
- matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
- matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
- matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
- matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
- matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
- matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
- matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
- matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
- matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
- matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
- matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
- matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
- matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
- matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
- matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
- matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
- matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
- matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
- matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
- matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
- matrice_analytics/post_processing/utils/__init__.py +150 -0
- matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
- matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
- matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
- matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
- matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
- matrice_analytics/post_processing/utils/color_utils.py +592 -0
- matrice_analytics/post_processing/utils/counting_utils.py +182 -0
- matrice_analytics/post_processing/utils/filter_utils.py +261 -0
- matrice_analytics/post_processing/utils/format_utils.py +293 -0
- matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
- matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
- matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
- matrice_analytics/py.typed +0 -0
- matrice_analytics-0.1.60.dist-info/METADATA +481 -0
- matrice_analytics-0.1.60.dist-info/RECORD +196 -0
- matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
- matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
- matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,902 @@
|
|
|
1
|
+
"""
|
|
2
|
+
field mapping Monitoring Use Case for Post-Processing
|
|
3
|
+
|
|
4
|
+
This module provides field mapping damage monitoring functionality ,
|
|
5
|
+
zone analysis, and alert generation.
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
from typing import Any, Dict, List, Optional
|
|
10
|
+
from dataclasses import asdict
|
|
11
|
+
import time
|
|
12
|
+
from datetime import datetime, timezone
|
|
13
|
+
import copy # Added for deep copying detections to preserve original masks
|
|
14
|
+
|
|
15
|
+
from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
|
|
16
|
+
from ..utils import (
|
|
17
|
+
filter_by_confidence,
|
|
18
|
+
filter_by_categories,
|
|
19
|
+
apply_category_mapping,
|
|
20
|
+
count_objects_by_category,
|
|
21
|
+
count_objects_in_zones,
|
|
22
|
+
calculate_counting_summary,
|
|
23
|
+
match_results_structure,
|
|
24
|
+
bbox_smoothing,
|
|
25
|
+
BBoxSmoothingConfig,
|
|
26
|
+
BBoxSmoothingTracker
|
|
27
|
+
)
|
|
28
|
+
from dataclasses import dataclass, field
|
|
29
|
+
from ..core.config import BaseConfig, AlertConfig, ZoneConfig
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@dataclass
|
|
33
|
+
class FieldMappingConfig(BaseConfig):
|
|
34
|
+
"""Configuration for field mapping detection use case in field mapping monitoring."""
|
|
35
|
+
# Smoothing configuration
|
|
36
|
+
enable_smoothing: bool = True
|
|
37
|
+
smoothing_algorithm: str = "observability" # "window" or "observability"
|
|
38
|
+
smoothing_window_size: int = 20
|
|
39
|
+
smoothing_cooldown_frames: int = 5
|
|
40
|
+
smoothing_confidence_range_factor: float = 0.5
|
|
41
|
+
|
|
42
|
+
# confidence thresholds
|
|
43
|
+
confidence_threshold: float = 0.6
|
|
44
|
+
|
|
45
|
+
usecase_categories: List[str] = field(
|
|
46
|
+
default_factory=lambda: [
|
|
47
|
+
'Trees',
|
|
48
|
+
'Agriculture land',
|
|
49
|
+
'Water Bodies',
|
|
50
|
+
'Agricultural land with black soil',
|
|
51
|
+
'other land',
|
|
52
|
+
'Buildings',
|
|
53
|
+
'Road',
|
|
54
|
+
'half seeded land',
|
|
55
|
+
'grown agricultural land'
|
|
56
|
+
]
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
target_categories: List[str] = field(
|
|
60
|
+
default_factory=lambda: [
|
|
61
|
+
'Trees',
|
|
62
|
+
'Agriculture land',
|
|
63
|
+
'Water Bodies',
|
|
64
|
+
'Agricultural land with black soil',
|
|
65
|
+
'other land',
|
|
66
|
+
'Buildings',
|
|
67
|
+
'Road',
|
|
68
|
+
'half seeded land',
|
|
69
|
+
'grown agricultural land'
|
|
70
|
+
]
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
alert_config: Optional[AlertConfig] = None
|
|
74
|
+
|
|
75
|
+
index_to_category: Optional[Dict[int, str]] = field(
|
|
76
|
+
default_factory=lambda: {
|
|
77
|
+
0: "Trees",
|
|
78
|
+
1: "Agriculture land",
|
|
79
|
+
2: "Water Bodies",
|
|
80
|
+
3: "Agricultural land with black soil",
|
|
81
|
+
4: "other land",
|
|
82
|
+
5: "Buildings",
|
|
83
|
+
6: "Road",
|
|
84
|
+
7: "half seeded land",
|
|
85
|
+
8: "grown agricultural land"
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class FieldMappingUseCase(BaseProcessor):
|
|
92
|
+
def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
|
|
93
|
+
"""
|
|
94
|
+
Get detailed information about track IDs (per frame).
|
|
95
|
+
"""
|
|
96
|
+
# Collect all track_ids in this frame
|
|
97
|
+
frame_track_ids = set()
|
|
98
|
+
for det in detections:
|
|
99
|
+
tid = det.get('track_id')
|
|
100
|
+
if tid is not None:
|
|
101
|
+
frame_track_ids.add(tid)
|
|
102
|
+
# Use persistent total set for unique counting
|
|
103
|
+
total_track_ids = set()
|
|
104
|
+
for s in getattr(self, '_per_category_total_track_ids', {}).values():
|
|
105
|
+
total_track_ids.update(s)
|
|
106
|
+
return {
|
|
107
|
+
"total_count": len(total_track_ids),
|
|
108
|
+
"current_frame_count": len(frame_track_ids),
|
|
109
|
+
"total_unique_track_ids": len(total_track_ids),
|
|
110
|
+
"current_frame_track_ids": list(frame_track_ids),
|
|
111
|
+
"last_update_time": time.time(),
|
|
112
|
+
"total_frames_processed": getattr(self, '_total_frame_counter', 0)
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
def _update_tracking_state(self, detections: list):
|
|
116
|
+
"""
|
|
117
|
+
Track unique categories track_ids per category for total count after tracking.
|
|
118
|
+
Applies canonical ID merging to avoid duplicate counting when the underlying
|
|
119
|
+
tracker loses an object temporarily and assigns a new ID.
|
|
120
|
+
"""
|
|
121
|
+
# Lazily initialise storage dicts
|
|
122
|
+
if not hasattr(self, "_per_category_total_track_ids"):
|
|
123
|
+
self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
|
|
124
|
+
self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
|
|
125
|
+
|
|
126
|
+
for det in detections:
|
|
127
|
+
cat = det.get("category")
|
|
128
|
+
raw_track_id = det.get("track_id")
|
|
129
|
+
if cat not in self.target_categories or raw_track_id is None:
|
|
130
|
+
continue
|
|
131
|
+
bbox = det.get("bounding_box", det.get("bbox"))
|
|
132
|
+
canonical_id = self._merge_or_register_track(raw_track_id, bbox)
|
|
133
|
+
# Propagate canonical ID back to detection so downstream logic uses it
|
|
134
|
+
det["track_id"] = canonical_id
|
|
135
|
+
|
|
136
|
+
self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
|
|
137
|
+
self._current_frame_track_ids[cat].add(canonical_id)
|
|
138
|
+
|
|
139
|
+
def get_total_counts(self):
|
|
140
|
+
"""
|
|
141
|
+
Return total unique track_id count for each category.
|
|
142
|
+
"""
|
|
143
|
+
return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
|
|
144
|
+
|
|
145
|
+
def _format_timestamp_for_video(self, timestamp: float) -> str:
|
|
146
|
+
"""Format timestamp for video chunks (HH:MM:SS.ms format)."""
|
|
147
|
+
hours = int(timestamp // 3600)
|
|
148
|
+
minutes = int((timestamp % 3600) // 60)
|
|
149
|
+
seconds = timestamp % 60
|
|
150
|
+
return f"{hours:02d}:{minutes:02d}:{seconds:06.2f}"
|
|
151
|
+
|
|
152
|
+
def _format_timestamp_for_stream(self, timestamp: float) -> str:
|
|
153
|
+
"""Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
|
|
154
|
+
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
|
155
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
156
|
+
|
|
157
|
+
def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
|
|
158
|
+
"""Get formatted current timestamp based on stream type."""
|
|
159
|
+
if not stream_info:
|
|
160
|
+
return "00:00:00.00"
|
|
161
|
+
|
|
162
|
+
is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
|
|
163
|
+
|
|
164
|
+
# if is_video_chunk:
|
|
165
|
+
# # For video chunks, use video_timestamp from stream_info
|
|
166
|
+
# video_timestamp = stream_info.get("video_timestamp", 0.0)
|
|
167
|
+
# return self._format_timestamp_for_video(video_timestamp)
|
|
168
|
+
if stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
|
|
169
|
+
# If video format, return video timestamp
|
|
170
|
+
stream_time_str = stream_info.get("video_timestamp", "")
|
|
171
|
+
return stream_time_str[:8]
|
|
172
|
+
else:
|
|
173
|
+
# For streams, use stream_time from stream_info
|
|
174
|
+
stream_time_str = stream_info.get("stream_time", "")
|
|
175
|
+
if stream_time_str:
|
|
176
|
+
# Parse the high precision timestamp string to get timestamp
|
|
177
|
+
try:
|
|
178
|
+
# Remove " UTC" suffix and parse
|
|
179
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
180
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
181
|
+
timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
182
|
+
return self._format_timestamp_for_stream(timestamp)
|
|
183
|
+
except:
|
|
184
|
+
# Fallback to current time if parsing fails
|
|
185
|
+
return self._format_timestamp_for_stream(time.time())
|
|
186
|
+
else:
|
|
187
|
+
return self._format_timestamp_for_stream(time.time())
|
|
188
|
+
|
|
189
|
+
def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]]) -> str:
|
|
190
|
+
"""Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
|
|
191
|
+
if not stream_info:
|
|
192
|
+
return "00:00:00"
|
|
193
|
+
|
|
194
|
+
is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
|
|
195
|
+
|
|
196
|
+
if is_video_chunk:
|
|
197
|
+
# For video chunks, start from 00:00:00
|
|
198
|
+
return "00:00:00"
|
|
199
|
+
elif stream_info.get("input_settings", {}).get("stream_type", "video_file") == "video_file":
|
|
200
|
+
# If video format, start from 00:00:00
|
|
201
|
+
return "00:00:00"
|
|
202
|
+
else:
|
|
203
|
+
# For streams, use tracking start time or current time with minutes/seconds reset
|
|
204
|
+
if self._tracking_start_time is None:
|
|
205
|
+
# Try to extract timestamp from stream_time string
|
|
206
|
+
stream_time_str = stream_info.get("stream_time", "")
|
|
207
|
+
if stream_time_str:
|
|
208
|
+
try:
|
|
209
|
+
# Remove " UTC" suffix and parse
|
|
210
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
211
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
212
|
+
self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
213
|
+
except:
|
|
214
|
+
# Fallback to current time if parsing fails
|
|
215
|
+
self._tracking_start_time = time.time()
|
|
216
|
+
else:
|
|
217
|
+
self._tracking_start_time = time.time()
|
|
218
|
+
|
|
219
|
+
dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
|
|
220
|
+
# Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
|
|
221
|
+
dt = dt.replace(minute=0, second=0, microsecond=0)
|
|
222
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
223
|
+
|
|
224
|
+
""" Monitoring use case with smoothing and alerting."""
|
|
225
|
+
|
|
226
|
+
def __init__(self):
|
|
227
|
+
super().__init__("field_mapping")
|
|
228
|
+
self.category = "infrastructure"
|
|
229
|
+
|
|
230
|
+
# List of categories to track
|
|
231
|
+
self.target_categories = [
|
|
232
|
+
"Trees",
|
|
233
|
+
"Agriculture land",
|
|
234
|
+
"Water Bodies",
|
|
235
|
+
"Agricultural land with black soil",
|
|
236
|
+
"other land",
|
|
237
|
+
"Buildings",
|
|
238
|
+
"Road",
|
|
239
|
+
"half seeded land",
|
|
240
|
+
"grown agricultural land"
|
|
241
|
+
]
|
|
242
|
+
|
|
243
|
+
# Initialize smoothing tracker
|
|
244
|
+
self.smoothing_tracker = None
|
|
245
|
+
|
|
246
|
+
# Initialize advanced tracker (will be created on first use)
|
|
247
|
+
self.tracker = None
|
|
248
|
+
|
|
249
|
+
# Initialize tracking state variables
|
|
250
|
+
self._total_frame_counter = 0
|
|
251
|
+
self._global_frame_offset = 0
|
|
252
|
+
|
|
253
|
+
# Track start time for "TOTAL SINCE" calculation
|
|
254
|
+
self._tracking_start_time = None
|
|
255
|
+
|
|
256
|
+
# ------------------------------------------------------------------ #
|
|
257
|
+
# Canonical tracking aliasing to avoid duplicate counts #
|
|
258
|
+
# ------------------------------------------------------------------ #
|
|
259
|
+
# Maps raw tracker-generated IDs to stable canonical IDs that persist
|
|
260
|
+
# even if the underlying tracker re-assigns a new ID after a short
|
|
261
|
+
# interruption. This mirrors the logic used in people_counting to
|
|
262
|
+
# provide accurate unique counting.
|
|
263
|
+
self._track_aliases: Dict[Any, Any] = {}
|
|
264
|
+
self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
|
|
265
|
+
# Tunable parameters – adjust if necessary for specific scenarios
|
|
266
|
+
self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
|
|
267
|
+
self._track_merge_time_window: float = 7.0 # seconds within which to merge
|
|
268
|
+
|
|
269
|
+
def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
|
|
270
|
+
stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
|
|
271
|
+
"""
|
|
272
|
+
Main entry point for post-processing.
|
|
273
|
+
Applies category mapping, smoothing, counting, alerting, and summary generation.
|
|
274
|
+
Returns a ProcessingResult with all relevant outputs.
|
|
275
|
+
"""
|
|
276
|
+
start_time = time.time()
|
|
277
|
+
# Ensure config is correct type
|
|
278
|
+
if not isinstance(config, FieldMappingConfig):
|
|
279
|
+
return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
|
|
280
|
+
context=context)
|
|
281
|
+
if context is None:
|
|
282
|
+
context = ProcessingContext()
|
|
283
|
+
|
|
284
|
+
# Detect input format and store in context
|
|
285
|
+
input_format = match_results_structure(data)
|
|
286
|
+
context.input_format = input_format
|
|
287
|
+
context.confidence_threshold = config.confidence_threshold
|
|
288
|
+
|
|
289
|
+
# Step 1: Confidence filtering
|
|
290
|
+
if config.confidence_threshold is not None:
|
|
291
|
+
processed_data = filter_by_confidence(data, config.confidence_threshold)
|
|
292
|
+
else:
|
|
293
|
+
processed_data = data
|
|
294
|
+
self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
|
|
295
|
+
|
|
296
|
+
# Step 2: Apply category mapping if provided
|
|
297
|
+
if config.index_to_category:
|
|
298
|
+
processed_data = apply_category_mapping(processed_data, config.index_to_category)
|
|
299
|
+
|
|
300
|
+
# Step 3: Category filtering
|
|
301
|
+
if config.target_categories:
|
|
302
|
+
processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
|
|
303
|
+
|
|
304
|
+
# Step 4: Apply bbox smoothing if enabled
|
|
305
|
+
# Deep-copy detections so that we preserve the original masks before any
|
|
306
|
+
# smoothing/tracking logic potentially removes them.
|
|
307
|
+
raw_processed_data = [copy.deepcopy(det) for det in processed_data]
|
|
308
|
+
if config.enable_smoothing:
|
|
309
|
+
if self.smoothing_tracker is None:
|
|
310
|
+
smoothing_config = BBoxSmoothingConfig(
|
|
311
|
+
smoothing_algorithm=config.smoothing_algorithm,
|
|
312
|
+
window_size=config.smoothing_window_size,
|
|
313
|
+
cooldown_frames=config.smoothing_cooldown_frames,
|
|
314
|
+
confidence_threshold=config.confidence_threshold,
|
|
315
|
+
confidence_range_factor=config.smoothing_confidence_range_factor,
|
|
316
|
+
enable_smoothing=True
|
|
317
|
+
)
|
|
318
|
+
self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
|
|
319
|
+
|
|
320
|
+
processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
|
|
321
|
+
# Restore masks after smoothing
|
|
322
|
+
|
|
323
|
+
# Step 5: Advanced tracking (BYTETracker-like)
|
|
324
|
+
try:
|
|
325
|
+
from ..advanced_tracker import AdvancedTracker
|
|
326
|
+
from ..advanced_tracker.config import TrackerConfig
|
|
327
|
+
|
|
328
|
+
# Create tracker instance if it doesn't exist (preserves state across frames)
|
|
329
|
+
if self.tracker is None:
|
|
330
|
+
tracker_config = TrackerConfig()
|
|
331
|
+
self.tracker = AdvancedTracker(tracker_config)
|
|
332
|
+
self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
|
|
333
|
+
|
|
334
|
+
processed_data = self.tracker.update(processed_data)
|
|
335
|
+
except Exception as e:
|
|
336
|
+
# If advanced tracker fails, fallback to unsmoothed detections
|
|
337
|
+
self.logger.warning(f"AdvancedTracker failed: {e}")
|
|
338
|
+
|
|
339
|
+
# Update tracking state for total count per label
|
|
340
|
+
self._update_tracking_state(processed_data)
|
|
341
|
+
|
|
342
|
+
# ------------------------------------------------------------------ #
|
|
343
|
+
# Re-attach segmentation masks that were present in the original input
|
|
344
|
+
# but may have been stripped during smoothing/tracking. We match each
|
|
345
|
+
# processed detection back to the raw detection with the highest IoU
|
|
346
|
+
# and copy over its "masks" field (if available).
|
|
347
|
+
# ------------------------------------------------------------------ #
|
|
348
|
+
processed_data = self._attach_masks_to_detections(processed_data, raw_processed_data)
|
|
349
|
+
|
|
350
|
+
# Update frame counter
|
|
351
|
+
self._total_frame_counter += 1
|
|
352
|
+
|
|
353
|
+
# Extract frame information from stream_info
|
|
354
|
+
frame_number = None
|
|
355
|
+
if stream_info:
|
|
356
|
+
input_settings = stream_info.get("input_settings", {})
|
|
357
|
+
start_frame = input_settings.get("start_frame")
|
|
358
|
+
end_frame = input_settings.get("end_frame")
|
|
359
|
+
# If start and end frame are the same, it's a single frame
|
|
360
|
+
if start_frame is not None and end_frame is not None and start_frame == end_frame:
|
|
361
|
+
frame_number = start_frame
|
|
362
|
+
|
|
363
|
+
# Compute summaries and alerts
|
|
364
|
+
general_counting_summary = calculate_counting_summary(data)
|
|
365
|
+
counting_summary = self._count_categories(processed_data, config)
|
|
366
|
+
# Add total unique counts after tracking using only local state
|
|
367
|
+
total_counts = self.get_total_counts()
|
|
368
|
+
counting_summary['total_counts'] = total_counts
|
|
369
|
+
|
|
370
|
+
insights = self._generate_insights(counting_summary, config)
|
|
371
|
+
alerts = self._check_alerts(counting_summary, config)
|
|
372
|
+
predictions = self._extract_predictions(processed_data)
|
|
373
|
+
summary = self._generate_summary(counting_summary, alerts)
|
|
374
|
+
|
|
375
|
+
# Step: Generate structured events and tracking stats with frame-based keys
|
|
376
|
+
events_list = self._generate_events(counting_summary, alerts, config, frame_number, stream_info)
|
|
377
|
+
tracking_stats_list = self._generate_tracking_stats(counting_summary, insights, summary, config, frame_number,
|
|
378
|
+
stream_info)
|
|
379
|
+
|
|
380
|
+
# Extract frame-based dictionaries from the lists
|
|
381
|
+
events = events_list[0] if events_list else {}
|
|
382
|
+
tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
|
|
383
|
+
|
|
384
|
+
context.mark_completed()
|
|
385
|
+
|
|
386
|
+
# Build result object
|
|
387
|
+
result = self.create_result(
|
|
388
|
+
data={
|
|
389
|
+
"counting_summary": counting_summary,
|
|
390
|
+
"general_counting_summary": general_counting_summary,
|
|
391
|
+
"alerts": alerts,
|
|
392
|
+
"total_detections": counting_summary.get("total_count", 0),
|
|
393
|
+
"events": events,
|
|
394
|
+
"tracking_stats": tracking_stats,
|
|
395
|
+
},
|
|
396
|
+
usecase=self.name,
|
|
397
|
+
category=self.category,
|
|
398
|
+
context=context
|
|
399
|
+
)
|
|
400
|
+
result.summary = summary
|
|
401
|
+
result.insights = insights
|
|
402
|
+
result.predictions = predictions
|
|
403
|
+
return result
|
|
404
|
+
|
|
405
|
+
def _generate_events(self, counting_summary: Dict, alerts: List, config: FieldMappingConfig,
|
|
406
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
|
|
407
|
+
Dict]:
|
|
408
|
+
"""Generate structured events for the output format with frame-based keys."""
|
|
409
|
+
from datetime import datetime, timezone
|
|
410
|
+
|
|
411
|
+
# Use frame number as key, fallback to 'current_frame' if not available
|
|
412
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
413
|
+
events = [{frame_key: []}]
|
|
414
|
+
frame_events = events[0][frame_key]
|
|
415
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
416
|
+
|
|
417
|
+
if total_detections > 0:
|
|
418
|
+
# Determine event level based on thresholds
|
|
419
|
+
level = "info"
|
|
420
|
+
intensity = 5.0
|
|
421
|
+
if config.alert_config and config.alert_config.count_thresholds:
|
|
422
|
+
threshold = config.alert_config.count_thresholds.get("all", 15)
|
|
423
|
+
intensity = min(10.0, (total_detections / threshold) * 10)
|
|
424
|
+
|
|
425
|
+
if intensity >= 7:
|
|
426
|
+
level = "critical"
|
|
427
|
+
elif intensity >= 5:
|
|
428
|
+
level = "warning"
|
|
429
|
+
else:
|
|
430
|
+
level = "info"
|
|
431
|
+
else:
|
|
432
|
+
if total_detections > 25:
|
|
433
|
+
level = "critical"
|
|
434
|
+
intensity = 9.0
|
|
435
|
+
elif total_detections > 15:
|
|
436
|
+
level = "warning"
|
|
437
|
+
intensity = 7.0
|
|
438
|
+
else:
|
|
439
|
+
level = "info"
|
|
440
|
+
intensity = min(10.0, total_detections / 3.0)
|
|
441
|
+
|
|
442
|
+
# Generate human text in new format
|
|
443
|
+
human_text_lines = ["EVENTS DETECTED:"]
|
|
444
|
+
human_text_lines.append(f" - {total_detections} detected [INFO]")
|
|
445
|
+
human_text = "\n".join(human_text_lines)
|
|
446
|
+
|
|
447
|
+
event = {
|
|
448
|
+
"type": "field_mapping",
|
|
449
|
+
"stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
|
|
450
|
+
"level": level,
|
|
451
|
+
"intensity": round(intensity, 1),
|
|
452
|
+
"config": {
|
|
453
|
+
"min_value": 0,
|
|
454
|
+
"max_value": 10,
|
|
455
|
+
"level_settings": {"info": 2, "warning": 5, "critical": 7}
|
|
456
|
+
},
|
|
457
|
+
"application_name": "field mapping System",
|
|
458
|
+
"application_version": "1.2",
|
|
459
|
+
"location_info": None,
|
|
460
|
+
"human_text": human_text
|
|
461
|
+
}
|
|
462
|
+
frame_events.append(event)
|
|
463
|
+
|
|
464
|
+
# Add alert events
|
|
465
|
+
for alert in alerts:
|
|
466
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
467
|
+
intensity_message = "ALERT: Low congestion in the scene"
|
|
468
|
+
if config.alert_config and config.alert_config.count_thresholds:
|
|
469
|
+
threshold = config.alert_config.count_thresholds.get("all", 15)
|
|
470
|
+
percentage = (total_detections / threshold) * 100 if threshold > 0 else 0
|
|
471
|
+
if percentage < 20:
|
|
472
|
+
intensity_message = "ALERT: Low congestion in the scene"
|
|
473
|
+
elif percentage <= 50:
|
|
474
|
+
intensity_message = "ALERT: Moderate congestion in the scene"
|
|
475
|
+
elif percentage <= 70:
|
|
476
|
+
intensity_message = "ALERT: Heavy congestion in the scene"
|
|
477
|
+
else:
|
|
478
|
+
intensity_message = "ALERT: Severe congestion in the scene"
|
|
479
|
+
else:
|
|
480
|
+
if total_detections > 15:
|
|
481
|
+
intensity_message = "ALERT: Heavy congestion in the scene"
|
|
482
|
+
elif total_detections == 1:
|
|
483
|
+
intensity_message = "ALERT: Low congestion in the scene"
|
|
484
|
+
else:
|
|
485
|
+
intensity_message = "ALERT: Moderate congestion in the scene"
|
|
486
|
+
|
|
487
|
+
alert_event = {
|
|
488
|
+
"type": alert.get("type", "congestion_alert"),
|
|
489
|
+
"stream_time": datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S UTC"),
|
|
490
|
+
"level": alert.get("severity", "warning"),
|
|
491
|
+
"intensity": 8.0,
|
|
492
|
+
"config": {
|
|
493
|
+
"min_value": 0,
|
|
494
|
+
"max_value": 10,
|
|
495
|
+
"level_settings": {"info": 2, "warning": 5, "critical": 7}
|
|
496
|
+
},
|
|
497
|
+
"application_name": "Congestion Alert System",
|
|
498
|
+
"application_version": "1.2",
|
|
499
|
+
"location_info": alert.get("zone"),
|
|
500
|
+
"human_text": f"{datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC')} : {intensity_message}"
|
|
501
|
+
}
|
|
502
|
+
frame_events.append(alert_event)
|
|
503
|
+
|
|
504
|
+
return events
|
|
505
|
+
|
|
506
|
+
def _generate_tracking_stats(
|
|
507
|
+
self,
|
|
508
|
+
counting_summary: Dict,
|
|
509
|
+
insights: List[str],
|
|
510
|
+
summary: str,
|
|
511
|
+
config: FieldMappingConfig,
|
|
512
|
+
frame_number: Optional[int] = None,
|
|
513
|
+
stream_info: Optional[Dict[str, Any]] = None
|
|
514
|
+
) -> List[Dict]:
|
|
515
|
+
"""Generate structured tracking stats for the output format with frame-based keys, including track_ids_info and detections with masks."""
|
|
516
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
517
|
+
tracking_stats = [{frame_key: []}]
|
|
518
|
+
frame_tracking_stats = tracking_stats[0][frame_key]
|
|
519
|
+
|
|
520
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
521
|
+
total_counts = counting_summary.get("total_counts", {})
|
|
522
|
+
cumulative_total = sum(total_counts.values()) if total_counts else 0
|
|
523
|
+
per_category_count = counting_summary.get("per_category_count", {})
|
|
524
|
+
|
|
525
|
+
track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
|
|
526
|
+
|
|
527
|
+
current_timestamp = self._get_current_timestamp_str(stream_info)
|
|
528
|
+
start_timestamp = self._get_start_timestamp_str(stream_info)
|
|
529
|
+
|
|
530
|
+
human_text_lines = []
|
|
531
|
+
|
|
532
|
+
# CURRENT FRAME section
|
|
533
|
+
human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
|
|
534
|
+
if total_detections > 0:
|
|
535
|
+
category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
|
|
536
|
+
if len(category_counts) == 1:
|
|
537
|
+
detection_text = category_counts[0] + " detected"
|
|
538
|
+
elif len(category_counts) == 2:
|
|
539
|
+
detection_text = f"{category_counts[0]} and {category_counts[1]} detected"
|
|
540
|
+
else:
|
|
541
|
+
detection_text = f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
|
|
542
|
+
human_text_lines.append(f"\t- {detection_text}")
|
|
543
|
+
else:
|
|
544
|
+
human_text_lines.append(f"\t- No detections")
|
|
545
|
+
|
|
546
|
+
human_text_lines.append("") # spacing
|
|
547
|
+
|
|
548
|
+
# TOTAL SINCE section
|
|
549
|
+
human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
|
|
550
|
+
human_text_lines.append(f"\t- Total Detected: {cumulative_total}")
|
|
551
|
+
# Add category-wise counts
|
|
552
|
+
if total_counts:
|
|
553
|
+
for cat, count in total_counts.items():
|
|
554
|
+
if count > 0: # Only include categories with non-zero counts
|
|
555
|
+
human_text_lines.append(f"\t- {cat}: {count}")
|
|
556
|
+
|
|
557
|
+
human_text = "\n".join(human_text_lines)
|
|
558
|
+
|
|
559
|
+
# Include detections with masks from counting_summary
|
|
560
|
+
detections = [
|
|
561
|
+
{
|
|
562
|
+
"category": det.get("category"),
|
|
563
|
+
"confidence": det.get("confidence"),
|
|
564
|
+
"bounding_box": det.get("bounding_box"),
|
|
565
|
+
"track_id": det.get("track_id"),
|
|
566
|
+
"frame_id": det.get("frame_id"),
|
|
567
|
+
"masks": det.get("masks", det.get("mask", [])) # Include masks, fallback to empty list
|
|
568
|
+
}
|
|
569
|
+
for det in counting_summary.get("detections", [])
|
|
570
|
+
]
|
|
571
|
+
|
|
572
|
+
tracking_stat = {
|
|
573
|
+
"type": "field_mapping",
|
|
574
|
+
"category": "infrastructure",
|
|
575
|
+
"count": total_detections,
|
|
576
|
+
"insights": insights,
|
|
577
|
+
"summary": summary,
|
|
578
|
+
"timestamp": datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC'),
|
|
579
|
+
"human_text": human_text,
|
|
580
|
+
"track_ids_info": track_ids_info,
|
|
581
|
+
"global_frame_offset": getattr(self, '_global_frame_offset', 0),
|
|
582
|
+
"local_frame_id": frame_key,
|
|
583
|
+
"detections": detections # Add detections with masks
|
|
584
|
+
}
|
|
585
|
+
|
|
586
|
+
frame_tracking_stats.append(tracking_stat)
|
|
587
|
+
return tracking_stats
|
|
588
|
+
|
|
589
|
+
def _count_categories(self, detections: list, config: FieldMappingConfig) -> dict:
|
|
590
|
+
"""
|
|
591
|
+
Count the number of detections per category and return a summary dict.
|
|
592
|
+
The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', 'masks', etc.
|
|
593
|
+
Output structure will include 'track_id' and 'masks' for each detection as per AdvancedTracker output.
|
|
594
|
+
"""
|
|
595
|
+
counts = {}
|
|
596
|
+
valid_detections = []
|
|
597
|
+
for det in detections:
|
|
598
|
+
cat = det.get('category', 'unknown')
|
|
599
|
+
if not all(k in det for k in ['category', 'confidence', 'bounding_box']): # Validate required fields
|
|
600
|
+
self.logger.warning(f"Skipping invalid detection: {det}")
|
|
601
|
+
continue
|
|
602
|
+
counts[cat] = counts.get(cat, 0) + 1
|
|
603
|
+
valid_detections.append({
|
|
604
|
+
"bounding_box": det.get("bounding_box"),
|
|
605
|
+
"category": det.get("category"),
|
|
606
|
+
"confidence": det.get("confidence"),
|
|
607
|
+
"track_id": det.get("track_id"),
|
|
608
|
+
"frame_id": det.get("frame_id"),
|
|
609
|
+
"masks": det.get("masks", det.get("mask", [])) # Include masks, fallback to empty list
|
|
610
|
+
})
|
|
611
|
+
self.logger.debug(f"Valid detections after filtering: {len(valid_detections)}")
|
|
612
|
+
return {
|
|
613
|
+
"total_count": sum(counts.values()),
|
|
614
|
+
"per_category_count": counts,
|
|
615
|
+
"detections": valid_detections
|
|
616
|
+
}
|
|
617
|
+
|
|
618
|
+
# ------------------------------------------------------------------ #
|
|
619
|
+
# Helper to merge masks back into detections #
|
|
620
|
+
# ------------------------------------------------------------------ #
|
|
621
|
+
def _attach_masks_to_detections(
|
|
622
|
+
self,
|
|
623
|
+
processed_detections: List[Dict[str, Any]],
|
|
624
|
+
raw_detections: List[Dict[str, Any]],
|
|
625
|
+
iou_threshold: float = 0.5,
|
|
626
|
+
) -> List[Dict[str, Any]]:
|
|
627
|
+
"""
|
|
628
|
+
Attach segmentation masks from the original `raw_detections` list to the
|
|
629
|
+
`processed_detections` list returned after smoothing/tracking.
|
|
630
|
+
|
|
631
|
+
Matching between detections is performed using Intersection-over-Union
|
|
632
|
+
(IoU) of the bounding boxes. For each processed detection we select the
|
|
633
|
+
raw detection with the highest IoU above `iou_threshold` and copy its
|
|
634
|
+
`masks` (or `mask`) field. If no suitable match is found, the detection
|
|
635
|
+
keeps an empty list for `masks` to maintain a consistent schema.
|
|
636
|
+
"""
|
|
637
|
+
|
|
638
|
+
if not processed_detections or not raw_detections:
|
|
639
|
+
# Nothing to do – ensure masks key exists for downstream logic.
|
|
640
|
+
for det in processed_detections:
|
|
641
|
+
det.setdefault("masks", [])
|
|
642
|
+
return processed_detections
|
|
643
|
+
|
|
644
|
+
# Track which raw detections have already been matched to avoid
|
|
645
|
+
# assigning the same mask to multiple processed detections.
|
|
646
|
+
used_raw_indices = set()
|
|
647
|
+
|
|
648
|
+
for det in processed_detections:
|
|
649
|
+
best_iou = 0.0
|
|
650
|
+
best_idx = None
|
|
651
|
+
|
|
652
|
+
for idx, raw_det in enumerate(raw_detections):
|
|
653
|
+
if idx in used_raw_indices:
|
|
654
|
+
continue
|
|
655
|
+
|
|
656
|
+
iou = self._compute_iou(det.get("bounding_box"), raw_det.get("bounding_box"))
|
|
657
|
+
if iou > best_iou:
|
|
658
|
+
best_iou = iou
|
|
659
|
+
best_idx = idx
|
|
660
|
+
|
|
661
|
+
if best_idx is not None and best_iou >= iou_threshold:
|
|
662
|
+
raw_det = raw_detections[best_idx]
|
|
663
|
+
masks = raw_det.get("masks", raw_det.get("mask"))
|
|
664
|
+
if masks is not None:
|
|
665
|
+
det["masks"] = masks
|
|
666
|
+
used_raw_indices.add(best_idx)
|
|
667
|
+
else:
|
|
668
|
+
# No adequate match – default to empty list to keep schema consistent.
|
|
669
|
+
det.setdefault("masks", ["EMPTY"])
|
|
670
|
+
|
|
671
|
+
return processed_detections
|
|
672
|
+
|
|
673
|
+
# Human-friendly display names for categories
|
|
674
|
+
CATEGORY_DISPLAY = {
|
|
675
|
+
"Trees": "Trees",
|
|
676
|
+
"Agriculture land": "Agriculture land",
|
|
677
|
+
"Water Bodies": "Water Bodies",
|
|
678
|
+
"Agricultural land with black soil": "Agricultural land with black soil",
|
|
679
|
+
"other land": "other land",
|
|
680
|
+
"Buildings": "Buildings",
|
|
681
|
+
"Road": "Road",
|
|
682
|
+
"half seeded land": "half seeded land",
|
|
683
|
+
"grown agricultural land": "grown agricultural land"
|
|
684
|
+
}
|
|
685
|
+
|
|
686
|
+
def _generate_insights(self, summary: dict, config: FieldMappingConfig) -> List[str]:
|
|
687
|
+
"""
|
|
688
|
+
Generate human-readable insights for each category.
|
|
689
|
+
"""
|
|
690
|
+
insights = []
|
|
691
|
+
per_cat = summary.get("per_category_count", {})
|
|
692
|
+
total_detections = summary.get("total_count", 0)
|
|
693
|
+
|
|
694
|
+
if total_detections == 0:
|
|
695
|
+
insights.append("No detections in the scene")
|
|
696
|
+
return insights
|
|
697
|
+
insights.append(f"EVENT: Detected {total_detections} in the scene")
|
|
698
|
+
# Intensity calculation based on threshold percentage
|
|
699
|
+
intensity_threshold = None
|
|
700
|
+
if (config.alert_config and
|
|
701
|
+
config.alert_config.count_thresholds and
|
|
702
|
+
"all" in config.alert_config.count_thresholds):
|
|
703
|
+
intensity_threshold = config.alert_config.count_thresholds["all"]
|
|
704
|
+
|
|
705
|
+
if intensity_threshold is not None:
|
|
706
|
+
# Calculate percentage relative to threshold
|
|
707
|
+
percentage = (total_detections / intensity_threshold) * 100
|
|
708
|
+
|
|
709
|
+
if percentage < 20:
|
|
710
|
+
insights.append(f"INTENSITY: Low congestion in the scene ({percentage:.1f}% of capacity)")
|
|
711
|
+
elif percentage <= 50:
|
|
712
|
+
insights.append(f"INTENSITY: Moderate congestion in the scene ({percentage:.1f}% of capacity)")
|
|
713
|
+
elif percentage <= 70:
|
|
714
|
+
insights.append(f"INTENSITY: Heavy congestion in the scene ({percentage:.1f}% of capacity)")
|
|
715
|
+
else:
|
|
716
|
+
insights.append(f"INTENSITY: Severe congestion in the scene ({percentage:.1f}% of capacity)")
|
|
717
|
+
|
|
718
|
+
for cat, count in per_cat.items():
|
|
719
|
+
display = self.CATEGORY_DISPLAY.get(cat, cat)
|
|
720
|
+
insights.append(f"{display}:{count}")
|
|
721
|
+
return insights
|
|
722
|
+
|
|
723
|
+
def _check_alerts(self, summary: dict, config: FieldMappingConfig) -> List[Dict]:
|
|
724
|
+
"""
|
|
725
|
+
Check if any alert thresholds are exceeded and return alert dicts.
|
|
726
|
+
"""
|
|
727
|
+
alerts = []
|
|
728
|
+
if not config.alert_config:
|
|
729
|
+
return alerts
|
|
730
|
+
total = summary.get("total_count", 0)
|
|
731
|
+
if config.alert_config.count_thresholds:
|
|
732
|
+
for category, threshold in config.alert_config.count_thresholds.items():
|
|
733
|
+
if category == "all" and total >= threshold:
|
|
734
|
+
timestamp = datetime.now(timezone.utc).strftime('%Y-%m-%d-%H:%M:%S UTC')
|
|
735
|
+
alert_description = f"detections count ({total}) exceeds threshold ({threshold})"
|
|
736
|
+
alerts.append({
|
|
737
|
+
"type": "count_threshold",
|
|
738
|
+
"severity": "warning",
|
|
739
|
+
"message": f"Total detections count ({total}) exceeds threshold ({threshold})",
|
|
740
|
+
"category": category,
|
|
741
|
+
"current_count": total,
|
|
742
|
+
"threshold": threshold
|
|
743
|
+
})
|
|
744
|
+
elif category in summary.get("per_category_count", {}):
|
|
745
|
+
count = summary.get("per_category_count", {})[category]
|
|
746
|
+
if count >= threshold:
|
|
747
|
+
alerts.append({
|
|
748
|
+
"type": "count_threshold",
|
|
749
|
+
"severity": "warning",
|
|
750
|
+
"message": f"{category} count ({count}) exceeds threshold ({threshold})",
|
|
751
|
+
"category": category,
|
|
752
|
+
"current_count": count,
|
|
753
|
+
"threshold": threshold
|
|
754
|
+
})
|
|
755
|
+
return alerts
|
|
756
|
+
|
|
757
|
+
def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
|
|
758
|
+
"""
|
|
759
|
+
Extract prediction details for output (category, confidence, bounding box).
|
|
760
|
+
"""
|
|
761
|
+
return [
|
|
762
|
+
{
|
|
763
|
+
"category": det.get("category", "unknown"),
|
|
764
|
+
"confidence": det.get("confidence", 0.0),
|
|
765
|
+
"bounding_box": det.get("bounding_box", {}),
|
|
766
|
+
"mask": det.get("mask", det.get("masks", None)) # Accept either key
|
|
767
|
+
}
|
|
768
|
+
for det in detections
|
|
769
|
+
]
|
|
770
|
+
|
|
771
|
+
def _generate_summary(self, summary: dict, alerts: List) -> str:
|
|
772
|
+
"""
|
|
773
|
+
Generate a human_text string for the result, including per-category insights if available.
|
|
774
|
+
Adds a tab before each label for better formatting.
|
|
775
|
+
Also always includes the cumulative count so far.
|
|
776
|
+
"""
|
|
777
|
+
total = summary.get("total_count", 0)
|
|
778
|
+
per_cat = summary.get("per_category_count", {})
|
|
779
|
+
cumulative = summary.get("total_counts", {})
|
|
780
|
+
cumulative_total = sum(cumulative.values()) if cumulative else 0
|
|
781
|
+
lines = []
|
|
782
|
+
if total > 0:
|
|
783
|
+
lines.append(f"{total} detections")
|
|
784
|
+
if per_cat:
|
|
785
|
+
lines.append("detections:")
|
|
786
|
+
for cat, count in per_cat.items():
|
|
787
|
+
lines.append(f"\t{cat}:{count}")
|
|
788
|
+
else:
|
|
789
|
+
lines.append("No detections")
|
|
790
|
+
lines.append(f"Total detections: {cumulative_total}")
|
|
791
|
+
if alerts:
|
|
792
|
+
lines.append(f"{len(alerts)} alert(s)")
|
|
793
|
+
return "\n".join(lines)
|
|
794
|
+
|
|
795
|
+
# ------------------------------------------------------------------ #
|
|
796
|
+
# Canonical ID helpers #
|
|
797
|
+
# ------------------------------------------------------------------ #
|
|
798
|
+
def _compute_iou(self, box1: Any, box2: Any) -> float:
|
|
799
|
+
"""Compute IoU between two bounding boxes which may be dicts or lists.
|
|
800
|
+
Falls back to 0 when insufficient data is available."""
|
|
801
|
+
|
|
802
|
+
# Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
|
|
803
|
+
def _bbox_to_list(bbox):
|
|
804
|
+
if bbox is None:
|
|
805
|
+
return []
|
|
806
|
+
if isinstance(bbox, list):
|
|
807
|
+
return bbox[:4] if len(bbox) >= 4 else []
|
|
808
|
+
if isinstance(bbox, dict):
|
|
809
|
+
if "xmin" in bbox:
|
|
810
|
+
return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
|
|
811
|
+
if "x1" in bbox:
|
|
812
|
+
return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
|
|
813
|
+
# Fallback: first four numeric values
|
|
814
|
+
values = [v for v in bbox.values() if isinstance(v, (int, float))]
|
|
815
|
+
return values[:4] if len(values) >= 4 else []
|
|
816
|
+
return []
|
|
817
|
+
|
|
818
|
+
l1 = _bbox_to_list(box1)
|
|
819
|
+
l2 = _bbox_to_list(box2)
|
|
820
|
+
if len(l1) < 4 or len(l2) < 4:
|
|
821
|
+
return 0.0
|
|
822
|
+
x1_min, y1_min, x1_max, y1_max = l1
|
|
823
|
+
x2_min, y2_min, x2_max, y2_max = l2
|
|
824
|
+
|
|
825
|
+
# Ensure correct order
|
|
826
|
+
x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
|
|
827
|
+
y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
|
|
828
|
+
x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
|
|
829
|
+
y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
|
|
830
|
+
|
|
831
|
+
inter_x_min = max(x1_min, x2_min)
|
|
832
|
+
inter_y_min = max(y1_min, y2_min)
|
|
833
|
+
inter_x_max = min(x1_max, x2_max)
|
|
834
|
+
inter_y_max = min(y1_max, y2_max)
|
|
835
|
+
|
|
836
|
+
inter_w = max(0.0, inter_x_max - inter_x_min)
|
|
837
|
+
inter_h = max(0.0, inter_y_max - inter_y_min)
|
|
838
|
+
inter_area = inter_w * inter_h
|
|
839
|
+
|
|
840
|
+
area1 = (x1_max - x1_min) * (y1_max - y1_min)
|
|
841
|
+
area2 = (x2_max - x2_min) * (y2_max - y2_min)
|
|
842
|
+
union_area = area1 + area2 - inter_area
|
|
843
|
+
|
|
844
|
+
return (inter_area / union_area) if union_area > 0 else 0.0
|
|
845
|
+
|
|
846
|
+
def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
|
|
847
|
+
"""Return a stable canonical ID for a raw tracker ID, merging fragmented
|
|
848
|
+
tracks when IoU and temporal constraints indicate they represent the
|
|
849
|
+
same physical."""
|
|
850
|
+
if raw_id is None or bbox is None:
|
|
851
|
+
# Nothing to merge
|
|
852
|
+
return raw_id
|
|
853
|
+
|
|
854
|
+
now = time.time()
|
|
855
|
+
|
|
856
|
+
# Fast path – raw_id already mapped
|
|
857
|
+
if raw_id in self._track_aliases:
|
|
858
|
+
canonical_id = self._track_aliases[raw_id]
|
|
859
|
+
track_info = self._canonical_tracks.get(canonical_id)
|
|
860
|
+
if track_info is not None:
|
|
861
|
+
track_info["last_bbox"] = bbox
|
|
862
|
+
track_info["last_update"] = now
|
|
863
|
+
track_info["raw_ids"].add(raw_id)
|
|
864
|
+
return canonical_id
|
|
865
|
+
|
|
866
|
+
# Attempt to merge with an existing canonical track
|
|
867
|
+
for canonical_id, info in self._canonical_tracks.items():
|
|
868
|
+
# Only consider recently updated tracks
|
|
869
|
+
if now - info["last_update"] > self._track_merge_time_window:
|
|
870
|
+
continue
|
|
871
|
+
iou = self._compute_iou(bbox, info["last_bbox"])
|
|
872
|
+
if iou >= self._track_merge_iou_threshold:
|
|
873
|
+
# Merge
|
|
874
|
+
self._track_aliases[raw_id] = canonical_id
|
|
875
|
+
info["last_bbox"] = bbox
|
|
876
|
+
info["last_update"] = now
|
|
877
|
+
info["raw_ids"].add(raw_id)
|
|
878
|
+
return canonical_id
|
|
879
|
+
|
|
880
|
+
# No match – register new canonical track
|
|
881
|
+
canonical_id = raw_id
|
|
882
|
+
self._track_aliases[raw_id] = canonical_id
|
|
883
|
+
self._canonical_tracks[canonical_id] = {
|
|
884
|
+
"last_bbox": bbox,
|
|
885
|
+
"last_update": now,
|
|
886
|
+
"raw_ids": {raw_id},
|
|
887
|
+
}
|
|
888
|
+
return canonical_id
|
|
889
|
+
|
|
890
|
+
def _format_timestamp(self, timestamp: float) -> str:
|
|
891
|
+
"""Format a timestamp for human-readable output."""
|
|
892
|
+
return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
|
|
893
|
+
|
|
894
|
+
def _get_tracking_start_time(self) -> str:
|
|
895
|
+
"""Get the tracking start time, formatted as a string."""
|
|
896
|
+
if self._tracking_start_time is None:
|
|
897
|
+
return "N/A"
|
|
898
|
+
return self._format_timestamp(self._tracking_start_time)
|
|
899
|
+
|
|
900
|
+
def _set_tracking_start_time(self) -> None:
|
|
901
|
+
"""Set the tracking start time to the current time."""
|
|
902
|
+
self._tracking_start_time = time.time()
|