matrice-analytics 0.1.60__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- matrice_analytics/__init__.py +28 -0
- matrice_analytics/boundary_drawing_internal/README.md +305 -0
- matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
- matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
- matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
- matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
- matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
- matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
- matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
- matrice_analytics/post_processing/README.md +455 -0
- matrice_analytics/post_processing/__init__.py +732 -0
- matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
- matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
- matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
- matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
- matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
- matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
- matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
- matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
- matrice_analytics/post_processing/config.py +146 -0
- matrice_analytics/post_processing/core/__init__.py +63 -0
- matrice_analytics/post_processing/core/base.py +704 -0
- matrice_analytics/post_processing/core/config.py +3291 -0
- matrice_analytics/post_processing/core/config_utils.py +925 -0
- matrice_analytics/post_processing/face_reg/__init__.py +43 -0
- matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
- matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
- matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
- matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
- matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
- matrice_analytics/post_processing/ocr/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
- matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
- matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
- matrice_analytics/post_processing/post_processor.py +1175 -0
- matrice_analytics/post_processing/test_cases/__init__.py +1 -0
- matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
- matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
- matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
- matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
- matrice_analytics/post_processing/test_cases/test_config.py +852 -0
- matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
- matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
- matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
- matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
- matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
- matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
- matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
- matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
- matrice_analytics/post_processing/usecases/__init__.py +267 -0
- matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
- matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
- matrice_analytics/post_processing/usecases/age_detection.py +842 -0
- matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
- matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
- matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
- matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
- matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
- matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
- matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
- matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
- matrice_analytics/post_processing/usecases/car_service.py +1601 -0
- matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
- matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
- matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
- matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
- matrice_analytics/post_processing/usecases/color/clip.py +660 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
- matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
- matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
- matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
- matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
- matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
- matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
- matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
- matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
- matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
- matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
- matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
- matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
- matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
- matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
- matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
- matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
- matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
- matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
- matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
- matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
- matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
- matrice_analytics/post_processing/usecases/leaf.py +821 -0
- matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
- matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
- matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
- matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
- matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
- matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
- matrice_analytics/post_processing/usecases/parking.py +787 -0
- matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
- matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
- matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
- matrice_analytics/post_processing/usecases/people_counting.py +706 -0
- matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
- matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
- matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
- matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
- matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
- matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
- matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
- matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
- matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
- matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
- matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
- matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
- matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
- matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
- matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
- matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
- matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
- matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
- matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
- matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
- matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
- matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
- matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
- matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
- matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
- matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
- matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
- matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
- matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
- matrice_analytics/post_processing/utils/__init__.py +150 -0
- matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
- matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
- matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
- matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
- matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
- matrice_analytics/post_processing/utils/color_utils.py +592 -0
- matrice_analytics/post_processing/utils/counting_utils.py +182 -0
- matrice_analytics/post_processing/utils/filter_utils.py +261 -0
- matrice_analytics/post_processing/utils/format_utils.py +293 -0
- matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
- matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
- matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
- matrice_analytics/py.typed +0 -0
- matrice_analytics-0.1.60.dist-info/METADATA +481 -0
- matrice_analytics-0.1.60.dist-info/RECORD +196 -0
- matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
- matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
- matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,717 @@
|
|
|
1
|
+
from typing import Any, Dict, List, Optional
|
|
2
|
+
from dataclasses import asdict
|
|
3
|
+
import time
|
|
4
|
+
from datetime import datetime, timezone
|
|
5
|
+
|
|
6
|
+
from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol
|
|
7
|
+
from ..utils import (
|
|
8
|
+
filter_by_confidence,
|
|
9
|
+
filter_by_categories,
|
|
10
|
+
apply_category_mapping,
|
|
11
|
+
count_objects_by_category,
|
|
12
|
+
count_objects_in_zones,
|
|
13
|
+
calculate_counting_summary,
|
|
14
|
+
match_results_structure,
|
|
15
|
+
bbox_smoothing,
|
|
16
|
+
BBoxSmoothingConfig,
|
|
17
|
+
BBoxSmoothingTracker
|
|
18
|
+
)
|
|
19
|
+
from dataclasses import dataclass, field
|
|
20
|
+
from ..core.config import BaseConfig, AlertConfig, ZoneConfig
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@dataclass
|
|
24
|
+
class LitterDetectionConfig(BaseConfig):
|
|
25
|
+
"""Configuration for litter detection use case in litter monitoring."""
|
|
26
|
+
# Smoothing configuration
|
|
27
|
+
enable_smoothing: bool = True
|
|
28
|
+
smoothing_algorithm: str = "observability"
|
|
29
|
+
smoothing_window_size: int = 20
|
|
30
|
+
smoothing_cooldown_frames: int = 5
|
|
31
|
+
smoothing_confidence_range_factor: float = 0.5
|
|
32
|
+
|
|
33
|
+
# Confidence thresholds
|
|
34
|
+
confidence_threshold: float = 0.6
|
|
35
|
+
|
|
36
|
+
usecase_categories: List[str] = field(
|
|
37
|
+
default_factory=lambda: [
|
|
38
|
+
'Aluminium foil', 'Bottle cap', 'Bottle', 'Broken glass', 'Can', 'Carton',
|
|
39
|
+
'Cigarette', 'Cup', 'Lid', 'Other litter', 'Other plastic', 'Paper',
|
|
40
|
+
'Plastic bag - wrapper', 'Plastic container', 'Pop tab', 'Straw', 'Styrofoam piece', 'Unlabeled litter'
|
|
41
|
+
]
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
target_categories: List[str] = field(
|
|
45
|
+
default_factory=lambda: [
|
|
46
|
+
'Aluminium foil', 'Bottle cap', 'Bottle', 'Broken glass', 'Can', 'Carton',
|
|
47
|
+
'Cigarette', 'Cup', 'Lid', 'Other litter', 'Other plastic', 'Paper',
|
|
48
|
+
'Plastic bag - wrapper', 'Plastic container', 'Pop tab', 'Straw', 'Styrofoam piece', 'Unlabeled litter'
|
|
49
|
+
]
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
alert_config: Optional[AlertConfig] = None
|
|
53
|
+
|
|
54
|
+
index_to_category: Optional[Dict[int, str]] = field(
|
|
55
|
+
default_factory=lambda: {
|
|
56
|
+
0: "Aluminium foil",
|
|
57
|
+
1: "Bottle cap",
|
|
58
|
+
2: "Bottle",
|
|
59
|
+
3: "Broken glass",
|
|
60
|
+
4: "Can",
|
|
61
|
+
5: "Carton",
|
|
62
|
+
6: "Cigarette",
|
|
63
|
+
7: "Cup",
|
|
64
|
+
8: "Lid",
|
|
65
|
+
9: "Other litter",
|
|
66
|
+
10: "Other plastic",
|
|
67
|
+
11: "Paper",
|
|
68
|
+
12: "Plastic bag - wrapper",
|
|
69
|
+
13: "Plastic container",
|
|
70
|
+
14: "Pop tab",
|
|
71
|
+
15: "Straw",
|
|
72
|
+
16: "Styrofoam piece",
|
|
73
|
+
17: "Unlabeled litter"
|
|
74
|
+
}
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class LitterDetectionUseCase(BaseProcessor):
|
|
79
|
+
# Human-friendly display names for categories
|
|
80
|
+
CATEGORY_DISPLAY = {
|
|
81
|
+
"Aluminium foil" : "Aluminum foil",
|
|
82
|
+
"Bottle cap": "Bottle Cap",
|
|
83
|
+
"Bottle": "Bottle",
|
|
84
|
+
"Broken glass": "Broken Glass",
|
|
85
|
+
"Can": "Can",
|
|
86
|
+
"Carton": "Carton",
|
|
87
|
+
"Cigarette": "Cigarette",
|
|
88
|
+
"Cup": "Cup",
|
|
89
|
+
"Lid": "Lid",
|
|
90
|
+
"Other litter": "Other Litter",
|
|
91
|
+
"Other plastic": "Other Plastic",
|
|
92
|
+
"Paper": "Paper",
|
|
93
|
+
"Plastic bag - wrapper": "Plastic Bag/Wrapper",
|
|
94
|
+
"Plastic container": "Plastic Container",
|
|
95
|
+
"Pop tab": "Pop Tab",
|
|
96
|
+
"Straw": "Straw",
|
|
97
|
+
"Styrofoam piece": "Styrofoam Piece",
|
|
98
|
+
"Unlabeled litter": "Unlabeled Litter"
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
def __init__(self):
|
|
102
|
+
super().__init__("litter_detection")
|
|
103
|
+
self.category = "litter_detection"
|
|
104
|
+
|
|
105
|
+
self.CASE_TYPE: Optional[str] = 'litter_detection'
|
|
106
|
+
self.CASE_VERSION: Optional[str] = '1.0'
|
|
107
|
+
|
|
108
|
+
# List of categories to track
|
|
109
|
+
self.target_categories = [
|
|
110
|
+
'Aluminium foil', 'Bottle cap', 'Bottle', 'Broken glass', 'Can', 'Carton',
|
|
111
|
+
'Cigarette', 'Cup', 'Lid', 'Other litter', 'Other plastic', 'Paper',
|
|
112
|
+
'Plastic bag - wrapper', 'Plastic container', 'Pop tab', 'Straw', 'Styrofoam piece', 'Unlabeled litter'
|
|
113
|
+
]
|
|
114
|
+
|
|
115
|
+
# Initialize smoothing tracker
|
|
116
|
+
self.smoothing_tracker = None
|
|
117
|
+
|
|
118
|
+
# Initialize advanced tracker
|
|
119
|
+
self.tracker = None
|
|
120
|
+
|
|
121
|
+
# Initialize tracking state variables
|
|
122
|
+
self._total_frame_counter = 0
|
|
123
|
+
self._global_frame_offset = 0
|
|
124
|
+
|
|
125
|
+
# Track start time for "TOTAL SINCE" calculation
|
|
126
|
+
self._tracking_start_time = None
|
|
127
|
+
|
|
128
|
+
self._track_aliases: Dict[Any, Any] = {}
|
|
129
|
+
self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
|
|
130
|
+
self._track_merge_iou_threshold: float = 0.05
|
|
131
|
+
self._track_merge_time_window: float = 7.0
|
|
132
|
+
|
|
133
|
+
self._ascending_alert_list: List[int] = []
|
|
134
|
+
self.current_incident_end_timestamp: str = "N/A"
|
|
135
|
+
|
|
136
|
+
def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
|
|
137
|
+
stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
|
|
138
|
+
"""
|
|
139
|
+
Main entry point for litter post-processing.
|
|
140
|
+
Applies category mapping, smoothing, counting, alerting, and summary generation.
|
|
141
|
+
"""
|
|
142
|
+
start_time = time.time()
|
|
143
|
+
if not isinstance(config, LitterDetectionConfig):
|
|
144
|
+
return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
|
|
145
|
+
context=context)
|
|
146
|
+
if context is None:
|
|
147
|
+
context = ProcessingContext()
|
|
148
|
+
|
|
149
|
+
input_format = match_results_structure(data)
|
|
150
|
+
context.input_format = input_format
|
|
151
|
+
context.confidence_threshold = config.confidence_threshold
|
|
152
|
+
|
|
153
|
+
if config.confidence_threshold is not None:
|
|
154
|
+
processed_data = filter_by_confidence(data, config.confidence_threshold)
|
|
155
|
+
self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
|
|
156
|
+
else:
|
|
157
|
+
processed_data = data
|
|
158
|
+
self.logger.debug("Did not apply confidence filtering")
|
|
159
|
+
|
|
160
|
+
if config.index_to_category:
|
|
161
|
+
processed_data = apply_category_mapping(processed_data, config.index_to_category)
|
|
162
|
+
self.logger.debug("Applied category mapping")
|
|
163
|
+
|
|
164
|
+
if config.target_categories:
|
|
165
|
+
processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
|
|
166
|
+
self.logger.debug("Applied category filtering")
|
|
167
|
+
|
|
168
|
+
if config.enable_smoothing:
|
|
169
|
+
if self.smoothing_tracker is None:
|
|
170
|
+
smoothing_config = BBoxSmoothingConfig(
|
|
171
|
+
smoothing_algorithm=config.smoothing_algorithm,
|
|
172
|
+
window_size=config.smoothing_window_size,
|
|
173
|
+
cooldown_frames=config.smoothing_cooldown_frames,
|
|
174
|
+
confidence_threshold=config.confidence_threshold,
|
|
175
|
+
confidence_range_factor=config.smoothing_confidence_range_factor,
|
|
176
|
+
enable_smoothing=True
|
|
177
|
+
)
|
|
178
|
+
self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
|
|
179
|
+
processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
|
|
180
|
+
|
|
181
|
+
try:
|
|
182
|
+
from ..advanced_tracker import AdvancedTracker
|
|
183
|
+
from ..advanced_tracker.config import TrackerConfig
|
|
184
|
+
|
|
185
|
+
if self.tracker is None:
|
|
186
|
+
tracker_config = TrackerConfig()
|
|
187
|
+
self.tracker = AdvancedTracker(tracker_config)
|
|
188
|
+
self.logger.info("Initialized AdvancedTracker for Litter Monitoring")
|
|
189
|
+
|
|
190
|
+
processed_data = self.tracker.update(processed_data)
|
|
191
|
+
|
|
192
|
+
except Exception as e:
|
|
193
|
+
self.logger.warning(f"AdvancedTracker failed: {e}")
|
|
194
|
+
|
|
195
|
+
self._update_tracking_state(processed_data)
|
|
196
|
+
self._total_frame_counter += 1
|
|
197
|
+
|
|
198
|
+
frame_number = None
|
|
199
|
+
if stream_info:
|
|
200
|
+
input_settings = stream_info.get("input_settings", {})
|
|
201
|
+
start_frame = input_settings.get("start_frame")
|
|
202
|
+
end_frame = input_settings.get("end_frame")
|
|
203
|
+
if start_frame is not None and end_frame is not None and start_frame == end_frame:
|
|
204
|
+
frame_number = start_frame
|
|
205
|
+
|
|
206
|
+
general_counting_summary = calculate_counting_summary(data)
|
|
207
|
+
counting_summary = self._count_categories(processed_data, config)
|
|
208
|
+
total_counts = self.get_total_counts()
|
|
209
|
+
counting_summary['total_counts'] = total_counts
|
|
210
|
+
|
|
211
|
+
alerts = self._check_alerts(counting_summary, frame_number, config)
|
|
212
|
+
predictions = self._extract_predictions(processed_data)
|
|
213
|
+
|
|
214
|
+
incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
|
|
215
|
+
tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
|
|
216
|
+
business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
|
|
217
|
+
summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
|
|
218
|
+
|
|
219
|
+
incidents = incidents_list[0] if incidents_list else {}
|
|
220
|
+
tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
|
|
221
|
+
business_analytics = business_analytics_list[0] if business_analytics_list else {}
|
|
222
|
+
summary = summary_list[0] if summary_list else {}
|
|
223
|
+
agg_summary = {str(frame_number): {
|
|
224
|
+
"incidents": incidents,
|
|
225
|
+
"tracking_stats": tracking_stats,
|
|
226
|
+
"business_analytics": business_analytics,
|
|
227
|
+
"alerts": alerts,
|
|
228
|
+
"human_text": summary}
|
|
229
|
+
}
|
|
230
|
+
|
|
231
|
+
context.mark_completed()
|
|
232
|
+
|
|
233
|
+
result = self.create_result(
|
|
234
|
+
data={"agg_summary": agg_summary},
|
|
235
|
+
usecase=self.name,
|
|
236
|
+
category=self.category,
|
|
237
|
+
context=context
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
return result
|
|
241
|
+
|
|
242
|
+
def _check_alerts(self, summary: dict, frame_number: Any, config: LitterDetectionConfig) -> List[Dict]:
|
|
243
|
+
"""
|
|
244
|
+
Check if any alert thresholds are exceeded and return alert dicts.
|
|
245
|
+
"""
|
|
246
|
+
def get_trend(data, lookback=900, threshold=0.6):
|
|
247
|
+
window = data[-lookback:] if len(data) >= lookback else data
|
|
248
|
+
if len(window) < 2:
|
|
249
|
+
return True
|
|
250
|
+
increasing = 0
|
|
251
|
+
total = 0
|
|
252
|
+
for i in range(1, len(window)):
|
|
253
|
+
if window[i] >= window[i - 1]:
|
|
254
|
+
increasing += 1
|
|
255
|
+
total += 1
|
|
256
|
+
ratio = increasing / total
|
|
257
|
+
return ratio >= threshold
|
|
258
|
+
|
|
259
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
260
|
+
alerts = []
|
|
261
|
+
total_detections = summary.get("total_count", 0)
|
|
262
|
+
total_counts_dict = summary.get("total_counts", {})
|
|
263
|
+
per_category_count = summary.get("per_category_count", {})
|
|
264
|
+
|
|
265
|
+
if not config.alert_config:
|
|
266
|
+
return alerts
|
|
267
|
+
|
|
268
|
+
if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
|
|
269
|
+
for category, threshold in config.alert_config.count_thresholds.items():
|
|
270
|
+
if category == "all" and total_detections > threshold:
|
|
271
|
+
alerts.append({
|
|
272
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
273
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
274
|
+
"incident_category": self.CASE_TYPE,
|
|
275
|
+
"threshold_level": threshold,
|
|
276
|
+
"ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
|
|
277
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
278
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
279
|
+
})
|
|
280
|
+
elif category in per_category_count:
|
|
281
|
+
count = per_category_count[category]
|
|
282
|
+
if count > threshold:
|
|
283
|
+
alerts.append({
|
|
284
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
285
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
286
|
+
"incident_category": self.CASE_TYPE,
|
|
287
|
+
"threshold_level": threshold,
|
|
288
|
+
"ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
|
|
289
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
290
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
291
|
+
})
|
|
292
|
+
return alerts
|
|
293
|
+
|
|
294
|
+
def _generate_incidents(self, counting_summary: Dict, alerts: List, config: LitterDetectionConfig,
|
|
295
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
296
|
+
"""Generate structured incidents for the output format."""
|
|
297
|
+
incidents = []
|
|
298
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
299
|
+
current_timestamp = self._get_current_timestamp_str(stream_info)
|
|
300
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
301
|
+
|
|
302
|
+
self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
|
|
303
|
+
|
|
304
|
+
if total_detections > 0:
|
|
305
|
+
level = "low"
|
|
306
|
+
intensity = 5.0
|
|
307
|
+
start_timestamp = self._get_start_timestamp_str(stream_info)
|
|
308
|
+
if start_timestamp and self.current_incident_end_timestamp == 'N/A':
|
|
309
|
+
self.current_incident_end_timestamp = 'Incident still active'
|
|
310
|
+
elif start_timestamp and self.current_incident_end_timestamp == 'Incident still active':
|
|
311
|
+
if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
|
|
312
|
+
self.current_incident_end_timestamp = current_timestamp
|
|
313
|
+
elif self.current_incident_end_timestamp != 'Incident still active' and self.current_incident_end_timestamp != 'N/A':
|
|
314
|
+
self.current_incident_end_timestamp = 'N/A'
|
|
315
|
+
|
|
316
|
+
if config.alert_config and config.alert_config.count_thresholds:
|
|
317
|
+
threshold = config.alert_config.count_thresholds.get("all", 15)
|
|
318
|
+
intensity = min(10.0, (total_detections / threshold) * 10)
|
|
319
|
+
if intensity >= 9:
|
|
320
|
+
level = "critical"
|
|
321
|
+
self._ascending_alert_list.append(3)
|
|
322
|
+
elif intensity >= 7:
|
|
323
|
+
level = "significant"
|
|
324
|
+
self._ascending_alert_list.append(2)
|
|
325
|
+
elif intensity >= 5:
|
|
326
|
+
level = "medium"
|
|
327
|
+
self._ascending_alert_list.append(1)
|
|
328
|
+
else:
|
|
329
|
+
level = "low"
|
|
330
|
+
self._ascending_alert_list.append(0)
|
|
331
|
+
else:
|
|
332
|
+
if total_detections > 30:
|
|
333
|
+
level = "critical"
|
|
334
|
+
intensity = 10.0
|
|
335
|
+
self._ascending_alert_list.append(3)
|
|
336
|
+
elif total_detections > 25:
|
|
337
|
+
level = "significant"
|
|
338
|
+
intensity = 9.0
|
|
339
|
+
self._ascending_alert_list.append(2)
|
|
340
|
+
elif total_detections > 15:
|
|
341
|
+
level = "medium"
|
|
342
|
+
intensity = 7.0
|
|
343
|
+
self._ascending_alert_list.append(1)
|
|
344
|
+
else:
|
|
345
|
+
level = "low"
|
|
346
|
+
intensity = min(10.0, total_detections / 3.0)
|
|
347
|
+
self._ascending_alert_list.append(0)
|
|
348
|
+
|
|
349
|
+
human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
|
|
350
|
+
human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE, level)}")
|
|
351
|
+
human_text = "\n".join(human_text_lines)
|
|
352
|
+
|
|
353
|
+
alert_settings = []
|
|
354
|
+
if config.alert_config and hasattr(config.alert_config, 'alert_type'):
|
|
355
|
+
alert_settings.append({
|
|
356
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
357
|
+
"incident_category": self.CASE_TYPE,
|
|
358
|
+
"threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
|
|
359
|
+
"ascending": True,
|
|
360
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
361
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
362
|
+
})
|
|
363
|
+
|
|
364
|
+
event = self.create_incident(
|
|
365
|
+
incident_id=f"{self.CASE_TYPE}_{str(frame_number)}",
|
|
366
|
+
incident_type=self.CASE_TYPE,
|
|
367
|
+
severity_level=level,
|
|
368
|
+
human_text=human_text,
|
|
369
|
+
camera_info=camera_info,
|
|
370
|
+
alerts=alerts,
|
|
371
|
+
alert_settings=alert_settings,
|
|
372
|
+
start_time=start_timestamp,
|
|
373
|
+
end_time=self.current_incident_end_timestamp,
|
|
374
|
+
level_settings={"low": 1, "medium": 3, "significant": 4, "critical": 7}
|
|
375
|
+
)
|
|
376
|
+
incidents.append(event)
|
|
377
|
+
else:
|
|
378
|
+
self._ascending_alert_list.append(0)
|
|
379
|
+
incidents.append({})
|
|
380
|
+
|
|
381
|
+
return incidents
|
|
382
|
+
|
|
383
|
+
def _generate_tracking_stats(self, counting_summary: Dict, alerts: List, config: LitterDetectionConfig,
|
|
384
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
385
|
+
"""Generate structured tracking stats."""
|
|
386
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
387
|
+
tracking_stats = []
|
|
388
|
+
|
|
389
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
390
|
+
total_counts_dict = counting_summary.get("total_counts", {})
|
|
391
|
+
per_category_count = counting_summary.get("per_category_count", {})
|
|
392
|
+
|
|
393
|
+
current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
|
|
394
|
+
start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
|
|
395
|
+
high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
|
|
396
|
+
high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
|
|
397
|
+
|
|
398
|
+
total_counts = [{"category": cat, "count": count} for cat, count in total_counts_dict.items() if count > 0]
|
|
399
|
+
current_counts = [{"category": cat, "count": count} for cat, count in per_category_count.items() if count > 0 or total_detections > 0]
|
|
400
|
+
|
|
401
|
+
detections = []
|
|
402
|
+
for detection in counting_summary.get("detections", []):
|
|
403
|
+
bbox = detection.get("bounding_box", {})
|
|
404
|
+
category = detection.get("category", "unknown")
|
|
405
|
+
if detection.get("masks"):
|
|
406
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=detection.get("masks"))
|
|
407
|
+
elif detection.get("segmentation"):
|
|
408
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=detection.get("segmentation"))
|
|
409
|
+
elif detection.get("mask"):
|
|
410
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=detection.get("mask"))
|
|
411
|
+
else:
|
|
412
|
+
detection_obj = self.create_detection_object(category, bbox)
|
|
413
|
+
detections.append(detection_obj)
|
|
414
|
+
|
|
415
|
+
alert_settings = []
|
|
416
|
+
if config.alert_config and hasattr(config.alert_config, 'alert_type'):
|
|
417
|
+
alert_settings.append({
|
|
418
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
419
|
+
"incident_category": self.CASE_TYPE,
|
|
420
|
+
"threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
|
|
421
|
+
"ascending": True,
|
|
422
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
423
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
424
|
+
})
|
|
425
|
+
|
|
426
|
+
human_text_lines = [f"Tracking Statistics:"]
|
|
427
|
+
human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
|
|
428
|
+
for cat, count in per_category_count.items():
|
|
429
|
+
human_text_lines.append(f"\t{cat}: {count}")
|
|
430
|
+
human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
|
|
431
|
+
for cat, count in total_counts_dict.items():
|
|
432
|
+
if count > 0:
|
|
433
|
+
human_text_lines.append(f"\t{cat}: {count}")
|
|
434
|
+
if alerts:
|
|
435
|
+
for alert in alerts:
|
|
436
|
+
human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
|
|
437
|
+
else:
|
|
438
|
+
human_text_lines.append("Alerts: None")
|
|
439
|
+
human_text = "\n".join(human_text_lines)
|
|
440
|
+
|
|
441
|
+
reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
|
|
442
|
+
|
|
443
|
+
tracking_stat = self.create_tracking_stats(
|
|
444
|
+
total_counts=total_counts,
|
|
445
|
+
current_counts=current_counts,
|
|
446
|
+
detections=detections,
|
|
447
|
+
human_text=human_text,
|
|
448
|
+
camera_info=camera_info,
|
|
449
|
+
alerts=alerts,
|
|
450
|
+
alert_settings=alert_settings,
|
|
451
|
+
reset_settings=reset_settings,
|
|
452
|
+
start_time=high_precision_start_timestamp,
|
|
453
|
+
reset_time=high_precision_reset_timestamp
|
|
454
|
+
)
|
|
455
|
+
tracking_stats.append(tracking_stat)
|
|
456
|
+
return tracking_stats
|
|
457
|
+
|
|
458
|
+
def _generate_business_analytics(self, counting_summary: Dict, alerts: Any, config: LitterDetectionConfig,
|
|
459
|
+
stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
|
|
460
|
+
"""Generate standardized business analytics."""
|
|
461
|
+
if is_empty:
|
|
462
|
+
return []
|
|
463
|
+
# Implement business analytics if needed
|
|
464
|
+
return []
|
|
465
|
+
|
|
466
|
+
def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
|
|
467
|
+
"""Generate a human_text string for the summary."""
|
|
468
|
+
lines = {}
|
|
469
|
+
lines["Application Name"] = self.CASE_TYPE
|
|
470
|
+
lines["Application Version"] = self.CASE_VERSION
|
|
471
|
+
if len(incidents) > 0:
|
|
472
|
+
lines["Incidents:"] = f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
|
|
473
|
+
if len(tracking_stats) > 0:
|
|
474
|
+
lines["Tracking Statistics:"] = f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
|
|
475
|
+
if len(business_analytics) > 0:
|
|
476
|
+
lines["Business Analytics:"] = f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
|
|
477
|
+
if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
|
|
478
|
+
lines["Summary"] = "No Summary Data"
|
|
479
|
+
return [lines]
|
|
480
|
+
|
|
481
|
+
def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
|
|
482
|
+
"""Get detailed information about track IDs."""
|
|
483
|
+
frame_track_ids = set()
|
|
484
|
+
for det in detections:
|
|
485
|
+
tid = det.get('track_id')
|
|
486
|
+
if tid is not None:
|
|
487
|
+
frame_track_ids.add(tid)
|
|
488
|
+
total_track_ids = set()
|
|
489
|
+
for s in getattr(self, '_per_category_total_track_ids', {}).values():
|
|
490
|
+
total_track_ids.update(s)
|
|
491
|
+
return {
|
|
492
|
+
"total_count": len(total_track_ids),
|
|
493
|
+
"current_frame_count": len(frame_track_ids),
|
|
494
|
+
"total_unique_track_ids": len(total_track_ids),
|
|
495
|
+
"current_frame_track_ids": list(frame_track_ids),
|
|
496
|
+
"last_update_time": time.time(),
|
|
497
|
+
"total_frames_processed": getattr(self, '_total_frame_counter', 0)
|
|
498
|
+
}
|
|
499
|
+
|
|
500
|
+
def _update_tracking_state(self, detections: list):
|
|
501
|
+
"""Track unique categories track_ids per category."""
|
|
502
|
+
if not hasattr(self, "_per_category_total_track_ids"):
|
|
503
|
+
self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
|
|
504
|
+
self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
|
|
505
|
+
|
|
506
|
+
for det in detections:
|
|
507
|
+
cat = det.get("category")
|
|
508
|
+
raw_track_id = det.get("track_id")
|
|
509
|
+
if cat not in self.target_categories or raw_track_id is None:
|
|
510
|
+
continue
|
|
511
|
+
bbox = det.get("bounding_box", det.get("bbox"))
|
|
512
|
+
canonical_id = self._merge_or_register_track(raw_track_id, bbox)
|
|
513
|
+
det["track_id"] = canonical_id
|
|
514
|
+
self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
|
|
515
|
+
self._current_frame_track_ids[cat].add(canonical_id)
|
|
516
|
+
|
|
517
|
+
def get_total_counts(self):
|
|
518
|
+
"""Return total unique track_id count for each category."""
|
|
519
|
+
return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
|
|
520
|
+
|
|
521
|
+
def _format_timestamp_for_stream(self, timestamp: float) -> str:
|
|
522
|
+
"""Format timestamp for streams."""
|
|
523
|
+
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
|
524
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
525
|
+
|
|
526
|
+
def _format_timestamp_for_video(self, timestamp: float) -> str:
|
|
527
|
+
"""Format timestamp for video chunks."""
|
|
528
|
+
hours = int(timestamp // 3600)
|
|
529
|
+
minutes = int((timestamp % 3600) // 60)
|
|
530
|
+
seconds = round(float(timestamp % 60), 2)
|
|
531
|
+
return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
|
|
532
|
+
|
|
533
|
+
def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
|
|
534
|
+
"""Get formatted current timestamp."""
|
|
535
|
+
if not stream_info:
|
|
536
|
+
return "00:00:00.00"
|
|
537
|
+
if precision:
|
|
538
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
539
|
+
if frame_id:
|
|
540
|
+
start_time = int(frame_id) / stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
541
|
+
else:
|
|
542
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30) / stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
543
|
+
return self._format_timestamp_for_video(start_time)
|
|
544
|
+
else:
|
|
545
|
+
return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
546
|
+
|
|
547
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
548
|
+
if frame_id:
|
|
549
|
+
start_time = int(frame_id) / stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
550
|
+
else:
|
|
551
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30) / stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
552
|
+
return self._format_timestamp_for_video(start_time)
|
|
553
|
+
else:
|
|
554
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
555
|
+
if stream_time_str:
|
|
556
|
+
try:
|
|
557
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
558
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
559
|
+
timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
560
|
+
return self._format_timestamp_for_stream(timestamp)
|
|
561
|
+
except:
|
|
562
|
+
return self._format_timestamp_for_stream(time.time())
|
|
563
|
+
else:
|
|
564
|
+
return self._format_timestamp_for_stream(time.time())
|
|
565
|
+
|
|
566
|
+
def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
|
|
567
|
+
"""Get formatted start timestamp."""
|
|
568
|
+
if not stream_info:
|
|
569
|
+
return "00:00:00"
|
|
570
|
+
if precision:
|
|
571
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
572
|
+
return "00:00:00"
|
|
573
|
+
else:
|
|
574
|
+
return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
575
|
+
|
|
576
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
577
|
+
return "00:00:00"
|
|
578
|
+
else:
|
|
579
|
+
if self._tracking_start_time is None:
|
|
580
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
581
|
+
if stream_time_str:
|
|
582
|
+
try:
|
|
583
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
584
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
585
|
+
self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
586
|
+
except:
|
|
587
|
+
self._tracking_start_time = time.time()
|
|
588
|
+
else:
|
|
589
|
+
self._tracking_start_time = time.time()
|
|
590
|
+
|
|
591
|
+
dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
|
|
592
|
+
dt = dt.replace(minute=0, second=0, microsecond=0)
|
|
593
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
594
|
+
|
|
595
|
+
def _count_categories(self, detections: list, config: LitterDetectionConfig) -> dict:
|
|
596
|
+
"""Count detections per category."""
|
|
597
|
+
counts = {}
|
|
598
|
+
for det in detections:
|
|
599
|
+
cat = det.get('category', 'unknown')
|
|
600
|
+
counts[cat] = counts.get(cat, 0) + 1
|
|
601
|
+
return {
|
|
602
|
+
"total_count": sum(counts.values()),
|
|
603
|
+
"per_category_count": counts,
|
|
604
|
+
"detections": [
|
|
605
|
+
{
|
|
606
|
+
"bounding_box": det.get("bounding_box"),
|
|
607
|
+
"category": det.get("category"),
|
|
608
|
+
"confidence": det.get("confidence"),
|
|
609
|
+
"track_id": det.get("track_id"),
|
|
610
|
+
"frame_id": det.get("frame_id")
|
|
611
|
+
}
|
|
612
|
+
for det in detections
|
|
613
|
+
]
|
|
614
|
+
}
|
|
615
|
+
|
|
616
|
+
def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
|
|
617
|
+
"""Extract prediction details."""
|
|
618
|
+
return [
|
|
619
|
+
{
|
|
620
|
+
"category": det.get("category", "unknown"),
|
|
621
|
+
"confidence": det.get("confidence", 0.0),
|
|
622
|
+
"bounding_box": det.get("bounding_box", {})
|
|
623
|
+
}
|
|
624
|
+
for det in detections
|
|
625
|
+
]
|
|
626
|
+
|
|
627
|
+
def _compute_iou(self, box1: Any, box2: Any) -> float:
|
|
628
|
+
"""Compute IoU between two bounding boxes."""
|
|
629
|
+
def _bbox_to_list(bbox):
|
|
630
|
+
if bbox is None:
|
|
631
|
+
return []
|
|
632
|
+
if isinstance(bbox, list):
|
|
633
|
+
return bbox[:4] if len(bbox) >= 4 else []
|
|
634
|
+
if isinstance(bbox, dict):
|
|
635
|
+
if "xmin" in bbox:
|
|
636
|
+
return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
|
|
637
|
+
if "x1" in bbox:
|
|
638
|
+
return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
|
|
639
|
+
values = [v for v in bbox.values() if isinstance(v, (int, float))]
|
|
640
|
+
return values[:4] if len(values) >= 4 else []
|
|
641
|
+
return []
|
|
642
|
+
|
|
643
|
+
l1 = _bbox_to_list(box1)
|
|
644
|
+
l2 = _bbox_to_list(box2)
|
|
645
|
+
if len(l1) < 4 or len(l2) < 4:
|
|
646
|
+
return 0.0
|
|
647
|
+
x1_min, y1_min, x1_max, y1_max = l1
|
|
648
|
+
x2_min, y2_min, x2_max, y2_max = l2
|
|
649
|
+
|
|
650
|
+
x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
|
|
651
|
+
y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
|
|
652
|
+
x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
|
|
653
|
+
y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
|
|
654
|
+
|
|
655
|
+
inter_x_min = max(x1_min, x2_min)
|
|
656
|
+
inter_y_min = max(y1_min, y2_min)
|
|
657
|
+
inter_x_max = min(x1_max, x2_max)
|
|
658
|
+
inter_y_max = min(y1_max, y2_max)
|
|
659
|
+
|
|
660
|
+
inter_w = max(0.0, inter_x_max - inter_x_min)
|
|
661
|
+
inter_h = max(0.0, inter_y_max - inter_y_min)
|
|
662
|
+
inter_area = inter_w * inter_h
|
|
663
|
+
|
|
664
|
+
area1 = (x1_max - x1_min) * (y1_max - y1_min)
|
|
665
|
+
area2 = (x2_max - x2_min) * (y2_max - y2_min)
|
|
666
|
+
union_area = area1 + area2 - inter_area
|
|
667
|
+
|
|
668
|
+
return (inter_area / union_area) if union_area > 0 else 0.0
|
|
669
|
+
|
|
670
|
+
def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
|
|
671
|
+
"""Return a stable canonical ID for a raw tracker ID."""
|
|
672
|
+
if raw_id is None or bbox is None:
|
|
673
|
+
return raw_id
|
|
674
|
+
|
|
675
|
+
now = time.time()
|
|
676
|
+
if raw_id in self._track_aliases:
|
|
677
|
+
canonical_id = self._track_aliases[raw_id]
|
|
678
|
+
track_info = self._canonical_tracks.get(canonical_id)
|
|
679
|
+
if track_info is not None:
|
|
680
|
+
track_info["last_bbox"] = bbox
|
|
681
|
+
track_info["last_update"] = now
|
|
682
|
+
track_info["raw_ids"].add(raw_id)
|
|
683
|
+
return canonical_id
|
|
684
|
+
|
|
685
|
+
for canonical_id, info in self._canonical_tracks.items():
|
|
686
|
+
if now - info["last_update"] > self._track_merge_time_window:
|
|
687
|
+
continue
|
|
688
|
+
iou = self._compute_iou(bbox, info["last_bbox"])
|
|
689
|
+
if iou >= self._track_merge_iou_threshold:
|
|
690
|
+
self._track_aliases[raw_id] = canonical_id
|
|
691
|
+
info["last_bbox"] = bbox
|
|
692
|
+
info["last_update"] = now
|
|
693
|
+
info["raw_ids"].add(raw_id)
|
|
694
|
+
return canonical_id
|
|
695
|
+
|
|
696
|
+
canonical_id = raw_id
|
|
697
|
+
self._track_aliases[raw_id] = canonical_id
|
|
698
|
+
self._canonical_tracks[canonical_id] = {
|
|
699
|
+
"last_bbox": bbox,
|
|
700
|
+
"last_update": now,
|
|
701
|
+
"raw_ids": {raw_id},
|
|
702
|
+
}
|
|
703
|
+
return canonical_id
|
|
704
|
+
|
|
705
|
+
def _format_timestamp(self, timestamp: float) -> str:
|
|
706
|
+
"""Format a timestamp for human-readable output."""
|
|
707
|
+
return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
|
|
708
|
+
|
|
709
|
+
def _get_tracking_start_time(self) -> str:
|
|
710
|
+
"""Get the tracking start time."""
|
|
711
|
+
if self._tracking_start_time is None:
|
|
712
|
+
return "N/A"
|
|
713
|
+
return self._format_timestamp(self._tracking_start_time)
|
|
714
|
+
|
|
715
|
+
def _set_tracking_start_time(self) -> None:
|
|
716
|
+
"""Set the tracking start time."""
|
|
717
|
+
self._tracking_start_time = time.time()
|