matrice-analytics 0.1.60__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- matrice_analytics/__init__.py +28 -0
- matrice_analytics/boundary_drawing_internal/README.md +305 -0
- matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
- matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
- matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
- matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
- matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
- matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
- matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
- matrice_analytics/post_processing/README.md +455 -0
- matrice_analytics/post_processing/__init__.py +732 -0
- matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
- matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
- matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
- matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
- matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
- matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
- matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
- matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
- matrice_analytics/post_processing/config.py +146 -0
- matrice_analytics/post_processing/core/__init__.py +63 -0
- matrice_analytics/post_processing/core/base.py +704 -0
- matrice_analytics/post_processing/core/config.py +3291 -0
- matrice_analytics/post_processing/core/config_utils.py +925 -0
- matrice_analytics/post_processing/face_reg/__init__.py +43 -0
- matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
- matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
- matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
- matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
- matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
- matrice_analytics/post_processing/ocr/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
- matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
- matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
- matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
- matrice_analytics/post_processing/post_processor.py +1175 -0
- matrice_analytics/post_processing/test_cases/__init__.py +1 -0
- matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
- matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
- matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
- matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
- matrice_analytics/post_processing/test_cases/test_config.py +852 -0
- matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
- matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
- matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
- matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
- matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
- matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
- matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
- matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
- matrice_analytics/post_processing/usecases/__init__.py +267 -0
- matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
- matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
- matrice_analytics/post_processing/usecases/age_detection.py +842 -0
- matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
- matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
- matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
- matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
- matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
- matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
- matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
- matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
- matrice_analytics/post_processing/usecases/car_service.py +1601 -0
- matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
- matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
- matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
- matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
- matrice_analytics/post_processing/usecases/color/clip.py +660 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
- matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
- matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
- matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
- matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
- matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
- matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
- matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
- matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
- matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
- matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
- matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
- matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
- matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
- matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
- matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
- matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
- matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
- matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
- matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
- matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
- matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
- matrice_analytics/post_processing/usecases/leaf.py +821 -0
- matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
- matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
- matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
- matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
- matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
- matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
- matrice_analytics/post_processing/usecases/parking.py +787 -0
- matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
- matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
- matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
- matrice_analytics/post_processing/usecases/people_counting.py +706 -0
- matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
- matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
- matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
- matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
- matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
- matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
- matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
- matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
- matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
- matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
- matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
- matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
- matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
- matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
- matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
- matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
- matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
- matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
- matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
- matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
- matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
- matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
- matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
- matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
- matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
- matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
- matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
- matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
- matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
- matrice_analytics/post_processing/utils/__init__.py +150 -0
- matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
- matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
- matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
- matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
- matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
- matrice_analytics/post_processing/utils/color_utils.py +592 -0
- matrice_analytics/post_processing/utils/counting_utils.py +182 -0
- matrice_analytics/post_processing/utils/filter_utils.py +261 -0
- matrice_analytics/post_processing/utils/format_utils.py +293 -0
- matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
- matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
- matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
- matrice_analytics/py.typed +0 -0
- matrice_analytics-0.1.60.dist-info/METADATA +481 -0
- matrice_analytics-0.1.60.dist-info/RECORD +196 -0
- matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
- matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
- matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,583 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Test data generators for post-processing tests.
|
|
3
|
+
|
|
4
|
+
This module provides functions to generate realistic test data for all
|
|
5
|
+
post-processing use cases including detection results, tracking data,
|
|
6
|
+
zone configurations, and various edge cases.
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import random
|
|
10
|
+
import time
|
|
11
|
+
import math
|
|
12
|
+
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
13
|
+
|
|
14
|
+
# Fix imports for proper module resolution
|
|
15
|
+
import sys
|
|
16
|
+
import os
|
|
17
|
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../../src'))
|
|
18
|
+
|
|
19
|
+
from src.matrice_analytics.post_processing import (
|
|
20
|
+
PeopleCountingConfig, CustomerServiceConfig, ZoneConfig, AlertConfig, TrackingConfig
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def create_detection_results(
|
|
25
|
+
num_detections: int = 10,
|
|
26
|
+
categories: List[str] = None,
|
|
27
|
+
confidence_range: Tuple[float, float] = (0.5, 0.95),
|
|
28
|
+
bbox_size_range: Tuple[int, int] = (20, 100),
|
|
29
|
+
image_size: Tuple[int, int] = (640, 480),
|
|
30
|
+
include_metadata: bool = True
|
|
31
|
+
) -> List[Dict[str, Any]]:
|
|
32
|
+
"""Create realistic detection results."""
|
|
33
|
+
if categories is None:
|
|
34
|
+
categories = ["person", "car", "bike", "truck", "bus"]
|
|
35
|
+
|
|
36
|
+
detections = []
|
|
37
|
+
|
|
38
|
+
for i in range(num_detections):
|
|
39
|
+
# Generate random bbox
|
|
40
|
+
width = random.randint(*bbox_size_range)
|
|
41
|
+
height = random.randint(*bbox_size_range)
|
|
42
|
+
x1 = random.randint(0, image_size[0] - width)
|
|
43
|
+
y1 = random.randint(0, image_size[1] - height)
|
|
44
|
+
x2 = x1 + width
|
|
45
|
+
y2 = y1 + height
|
|
46
|
+
|
|
47
|
+
detection = {
|
|
48
|
+
"bbox": [x1, y1, x2, y2],
|
|
49
|
+
"confidence": random.uniform(*confidence_range),
|
|
50
|
+
"category": random.choice(categories)
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
if include_metadata:
|
|
54
|
+
detection.update({
|
|
55
|
+
"detection_id": i,
|
|
56
|
+
"area": width * height,
|
|
57
|
+
"aspect_ratio": width / height,
|
|
58
|
+
"center": [(x1 + x2) / 2, (y1 + y2) / 2]
|
|
59
|
+
})
|
|
60
|
+
|
|
61
|
+
detections.append(detection)
|
|
62
|
+
|
|
63
|
+
return detections
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def create_tracking_results(
|
|
67
|
+
num_tracks: int = 8,
|
|
68
|
+
categories: List[str] = None,
|
|
69
|
+
frames: int = 10,
|
|
70
|
+
confidence_range: Tuple[float, float] = (0.6, 0.9),
|
|
71
|
+
bbox_size_range: Tuple[int, int] = (30, 80),
|
|
72
|
+
image_size: Tuple[int, int] = (640, 480),
|
|
73
|
+
include_trajectory: bool = True
|
|
74
|
+
) -> List[Dict[str, Any]]:
|
|
75
|
+
"""Create realistic tracking results."""
|
|
76
|
+
if categories is None:
|
|
77
|
+
categories = ["person", "car", "bike"]
|
|
78
|
+
|
|
79
|
+
tracks = []
|
|
80
|
+
|
|
81
|
+
for track_id in range(1, num_tracks + 1):
|
|
82
|
+
category = random.choice(categories)
|
|
83
|
+
|
|
84
|
+
# Generate initial position and movement pattern
|
|
85
|
+
initial_x = random.randint(50, image_size[0] - 150)
|
|
86
|
+
initial_y = random.randint(50, image_size[1] - 150)
|
|
87
|
+
|
|
88
|
+
# Movement pattern
|
|
89
|
+
velocity_x = random.uniform(-2, 2)
|
|
90
|
+
velocity_y = random.uniform(-2, 2)
|
|
91
|
+
|
|
92
|
+
# Size variation
|
|
93
|
+
base_width = random.randint(*bbox_size_range)
|
|
94
|
+
base_height = random.randint(*bbox_size_range)
|
|
95
|
+
|
|
96
|
+
for frame in range(1, frames + 1):
|
|
97
|
+
# Calculate position with some noise
|
|
98
|
+
x = initial_x + velocity_x * frame + random.uniform(-5, 5)
|
|
99
|
+
y = initial_y + velocity_y * frame + random.uniform(-5, 5)
|
|
100
|
+
|
|
101
|
+
# Ensure bbox stays within image
|
|
102
|
+
x = max(0, min(x, image_size[0] - base_width))
|
|
103
|
+
y = max(0, min(y, image_size[1] - base_height))
|
|
104
|
+
|
|
105
|
+
# Size variation
|
|
106
|
+
width = base_width + random.randint(-5, 5)
|
|
107
|
+
height = base_height + random.randint(-5, 5)
|
|
108
|
+
|
|
109
|
+
track = {
|
|
110
|
+
"track_id": track_id,
|
|
111
|
+
"bbox": [int(x), int(y), int(x + width), int(y + height)],
|
|
112
|
+
"confidence": random.uniform(*confidence_range),
|
|
113
|
+
"category": category,
|
|
114
|
+
"frame": frame,
|
|
115
|
+
"timestamp": time.time() + frame * 0.033 # ~30 FPS
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
if include_trajectory:
|
|
119
|
+
track.update({
|
|
120
|
+
"velocity": [velocity_x, velocity_y],
|
|
121
|
+
"age": frame,
|
|
122
|
+
"hits": frame,
|
|
123
|
+
"time_since_update": 0
|
|
124
|
+
})
|
|
125
|
+
|
|
126
|
+
tracks.append(track)
|
|
127
|
+
|
|
128
|
+
return tracks
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def create_zone_polygons(
|
|
132
|
+
zone_names: List[str],
|
|
133
|
+
image_size: Tuple[int, int] = (640, 480),
|
|
134
|
+
zone_types: List[str] = None
|
|
135
|
+
) -> Dict[str, List[List[int]]]:
|
|
136
|
+
"""Create zone polygon configurations."""
|
|
137
|
+
if zone_types is None:
|
|
138
|
+
zone_types = ["rectangular", "triangular", "complex"]
|
|
139
|
+
|
|
140
|
+
zones = {}
|
|
141
|
+
|
|
142
|
+
for i, zone_name in enumerate(zone_names):
|
|
143
|
+
zone_type = random.choice(zone_types)
|
|
144
|
+
|
|
145
|
+
if zone_type == "rectangular":
|
|
146
|
+
# Create rectangular zone
|
|
147
|
+
x1 = random.randint(0, image_size[0] // 2)
|
|
148
|
+
y1 = random.randint(0, image_size[1] // 2)
|
|
149
|
+
width = random.randint(100, image_size[0] // 2)
|
|
150
|
+
height = random.randint(100, image_size[1] // 2)
|
|
151
|
+
x2 = min(x1 + width, image_size[0])
|
|
152
|
+
y2 = min(y1 + height, image_size[1])
|
|
153
|
+
|
|
154
|
+
polygon = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
|
|
155
|
+
|
|
156
|
+
elif zone_type == "triangular":
|
|
157
|
+
# Create triangular zone
|
|
158
|
+
center_x = random.randint(100, image_size[0] - 100)
|
|
159
|
+
center_y = random.randint(100, image_size[1] - 100)
|
|
160
|
+
radius = random.randint(50, 100)
|
|
161
|
+
|
|
162
|
+
polygon = [
|
|
163
|
+
[center_x, center_y - radius],
|
|
164
|
+
[center_x + int(radius * 0.866), center_y + radius // 2],
|
|
165
|
+
[center_x - int(radius * 0.866), center_y + radius // 2]
|
|
166
|
+
]
|
|
167
|
+
|
|
168
|
+
else: # complex
|
|
169
|
+
# Create complex polygon
|
|
170
|
+
center_x = random.randint(150, image_size[0] - 150)
|
|
171
|
+
center_y = random.randint(150, image_size[1] - 150)
|
|
172
|
+
|
|
173
|
+
num_points = random.randint(5, 8)
|
|
174
|
+
polygon = []
|
|
175
|
+
|
|
176
|
+
for j in range(num_points):
|
|
177
|
+
angle = (2 * math.pi * j) / num_points
|
|
178
|
+
radius = random.randint(50, 100)
|
|
179
|
+
x = center_x + int(radius * math.cos(angle))
|
|
180
|
+
y = center_y + int(radius * math.sin(angle))
|
|
181
|
+
polygon.append([x, y])
|
|
182
|
+
|
|
183
|
+
zones[zone_name] = polygon
|
|
184
|
+
|
|
185
|
+
return zones
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def create_customer_service_areas() -> Dict[str, Dict[str, List[List[int]]]]:
|
|
189
|
+
"""Create customer service area configurations."""
|
|
190
|
+
return {
|
|
191
|
+
"customer_areas": {
|
|
192
|
+
"entrance": [[0, 0], [200, 0], [200, 150], [0, 150]],
|
|
193
|
+
"lobby": [[50, 150], [350, 150], [350, 300], [50, 300]],
|
|
194
|
+
"waiting_area": [[100, 300], [300, 300], [300, 400], [100, 400]],
|
|
195
|
+
"queue": [[200, 400], [250, 400], [250, 500], [200, 500]]
|
|
196
|
+
},
|
|
197
|
+
"staff_areas": {
|
|
198
|
+
"counter": [[350, 200], [500, 200], [500, 350], [350, 350]],
|
|
199
|
+
"office": [[500, 100], [600, 100], [600, 200], [500, 200]],
|
|
200
|
+
"break_room": [[500, 350], [600, 350], [600, 450], [500, 450]]
|
|
201
|
+
},
|
|
202
|
+
"service_areas": {
|
|
203
|
+
"service_desk_1": [[300, 200], [350, 200], [350, 250], [300, 250]],
|
|
204
|
+
"service_desk_2": [[300, 250], [350, 250], [350, 300], [300, 300]],
|
|
205
|
+
"consultation": [[400, 300], [500, 300], [500, 400], [400, 400]]
|
|
206
|
+
}
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
def create_line_crossing_data(
|
|
211
|
+
lines: Dict[str, List[List[int]]],
|
|
212
|
+
num_tracks: int = 5,
|
|
213
|
+
frames: int = 20
|
|
214
|
+
) -> List[Dict[str, Any]]:
|
|
215
|
+
"""Create tracking data that crosses specified lines."""
|
|
216
|
+
tracks = []
|
|
217
|
+
|
|
218
|
+
for track_id in range(1, num_tracks + 1):
|
|
219
|
+
# Pick a random line to cross
|
|
220
|
+
line_name = random.choice(list(lines.keys()))
|
|
221
|
+
line_points = lines[line_name]
|
|
222
|
+
|
|
223
|
+
# Start on one side of the line, end on the other
|
|
224
|
+
start_x = line_points[0][0] - 50
|
|
225
|
+
start_y = line_points[0][1] + random.randint(-20, 20)
|
|
226
|
+
end_x = line_points[1][0] + 50
|
|
227
|
+
end_y = line_points[1][1] + random.randint(-20, 20)
|
|
228
|
+
|
|
229
|
+
for frame in range(1, frames + 1):
|
|
230
|
+
# Linear interpolation
|
|
231
|
+
progress = frame / frames
|
|
232
|
+
x = start_x + (end_x - start_x) * progress
|
|
233
|
+
y = start_y + (end_y - start_y) * progress
|
|
234
|
+
|
|
235
|
+
track = {
|
|
236
|
+
"track_id": track_id,
|
|
237
|
+
"bbox": [int(x), int(y), int(x + 40), int(y + 60)],
|
|
238
|
+
"confidence": random.uniform(0.7, 0.9),
|
|
239
|
+
"category": "person",
|
|
240
|
+
"frame": frame,
|
|
241
|
+
"timestamp": time.time() + frame * 0.033
|
|
242
|
+
}
|
|
243
|
+
|
|
244
|
+
tracks.append(track)
|
|
245
|
+
|
|
246
|
+
return tracks
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
def create_people_counting_scenarios() -> List[Dict[str, Any]]:
|
|
250
|
+
"""Create various people counting test scenarios."""
|
|
251
|
+
scenarios = []
|
|
252
|
+
|
|
253
|
+
# Scenario 1: Basic counting
|
|
254
|
+
scenarios.append({
|
|
255
|
+
"name": "basic_counting",
|
|
256
|
+
"description": "Basic people counting with simple detections",
|
|
257
|
+
"data": create_detection_results(
|
|
258
|
+
num_detections=15,
|
|
259
|
+
categories=["person"],
|
|
260
|
+
confidence_range=(0.6, 0.95)
|
|
261
|
+
),
|
|
262
|
+
"config": {
|
|
263
|
+
"confidence_threshold": 0.5,
|
|
264
|
+
"person_categories": ["person"]
|
|
265
|
+
}
|
|
266
|
+
})
|
|
267
|
+
|
|
268
|
+
# Scenario 2: Zone-based counting
|
|
269
|
+
zones = create_zone_polygons(["entrance", "lobby", "exit"])
|
|
270
|
+
scenarios.append({
|
|
271
|
+
"name": "zone_counting",
|
|
272
|
+
"description": "People counting with zone analysis",
|
|
273
|
+
"data": create_detection_results(num_detections=20),
|
|
274
|
+
"config": {
|
|
275
|
+
"confidence_threshold": 0.6,
|
|
276
|
+
"zone_config": {"zones": zones}
|
|
277
|
+
}
|
|
278
|
+
})
|
|
279
|
+
|
|
280
|
+
# Scenario 3: Tracking-based unique counting
|
|
281
|
+
scenarios.append({
|
|
282
|
+
"name": "unique_counting",
|
|
283
|
+
"description": "Unique people counting with tracking",
|
|
284
|
+
"data": create_tracking_results(num_tracks=8, frames=15),
|
|
285
|
+
"config": {
|
|
286
|
+
"confidence_threshold": 0.5,
|
|
287
|
+
"enable_tracking": True,
|
|
288
|
+
"enable_unique_counting": True
|
|
289
|
+
}
|
|
290
|
+
})
|
|
291
|
+
|
|
292
|
+
return scenarios
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
def create_customer_service_scenarios() -> List[Dict[str, Any]]:
|
|
296
|
+
"""Create customer service analysis test scenarios."""
|
|
297
|
+
scenarios = []
|
|
298
|
+
areas = create_customer_service_areas()
|
|
299
|
+
|
|
300
|
+
# Scenario 1: Basic customer service
|
|
301
|
+
scenarios.append({
|
|
302
|
+
"name": "basic_service",
|
|
303
|
+
"description": "Basic customer service analysis",
|
|
304
|
+
"data": create_detection_results(
|
|
305
|
+
num_detections=25,
|
|
306
|
+
categories=["person", "staff"]
|
|
307
|
+
),
|
|
308
|
+
"config": {
|
|
309
|
+
"confidence_threshold": 0.6,
|
|
310
|
+
"customer_areas": areas["customer_areas"],
|
|
311
|
+
"staff_areas": areas["staff_areas"],
|
|
312
|
+
"service_areas": areas["service_areas"],
|
|
313
|
+
"staff_categories": ["staff"],
|
|
314
|
+
"customer_categories": ["person"]
|
|
315
|
+
}
|
|
316
|
+
})
|
|
317
|
+
|
|
318
|
+
# Scenario 2: Queue analysis
|
|
319
|
+
scenarios.append({
|
|
320
|
+
"name": "queue_analysis",
|
|
321
|
+
"description": "Customer queue analysis with wait times",
|
|
322
|
+
"data": create_tracking_results(
|
|
323
|
+
num_tracks=12,
|
|
324
|
+
frames=30,
|
|
325
|
+
categories=["person", "staff"]
|
|
326
|
+
),
|
|
327
|
+
"config": {
|
|
328
|
+
"confidence_threshold": 0.5,
|
|
329
|
+
"enable_tracking": True,
|
|
330
|
+
"customer_areas": areas["customer_areas"],
|
|
331
|
+
"service_areas": areas["service_areas"],
|
|
332
|
+
"max_service_time": 300.0
|
|
333
|
+
}
|
|
334
|
+
})
|
|
335
|
+
|
|
336
|
+
return scenarios
|
|
337
|
+
|
|
338
|
+
|
|
339
|
+
def create_basic_counting_tracking_scenarios() -> List[Dict[str, Any]]:
|
|
340
|
+
"""Create basic counting and tracking test scenarios."""
|
|
341
|
+
scenarios = []
|
|
342
|
+
|
|
343
|
+
# Scenario 1: Line crossing detection
|
|
344
|
+
lines = {
|
|
345
|
+
"entrance_line": [[100, 200], [200, 200]],
|
|
346
|
+
"exit_line": [[400, 200], [500, 200]]
|
|
347
|
+
}
|
|
348
|
+
|
|
349
|
+
scenarios.append({
|
|
350
|
+
"name": "line_crossing",
|
|
351
|
+
"description": "Line crossing detection and counting",
|
|
352
|
+
"data": create_line_crossing_data(lines, num_tracks=6, frames=25),
|
|
353
|
+
"config": {
|
|
354
|
+
"confidence_threshold": 0.6,
|
|
355
|
+
"enable_tracking": True,
|
|
356
|
+
"lines": lines
|
|
357
|
+
}
|
|
358
|
+
})
|
|
359
|
+
|
|
360
|
+
# Scenario 2: Zone tracking
|
|
361
|
+
zones = create_zone_polygons(["zone_a", "zone_b", "zone_c"])
|
|
362
|
+
scenarios.append({
|
|
363
|
+
"name": "zone_tracking",
|
|
364
|
+
"description": "Object tracking within zones",
|
|
365
|
+
"data": create_tracking_results(num_tracks=10, frames=20),
|
|
366
|
+
"config": {
|
|
367
|
+
"confidence_threshold": 0.5,
|
|
368
|
+
"enable_tracking": True,
|
|
369
|
+
"zones": zones
|
|
370
|
+
}
|
|
371
|
+
})
|
|
372
|
+
|
|
373
|
+
return scenarios
|
|
374
|
+
|
|
375
|
+
|
|
376
|
+
def create_edge_case_data() -> Dict[str, List[Dict[str, Any]]]:
|
|
377
|
+
"""Create edge case test data."""
|
|
378
|
+
return {
|
|
379
|
+
"empty_results": [],
|
|
380
|
+
"single_detection": create_detection_results(num_detections=1),
|
|
381
|
+
"low_confidence": create_detection_results(
|
|
382
|
+
num_detections=5,
|
|
383
|
+
confidence_range=(0.1, 0.4)
|
|
384
|
+
),
|
|
385
|
+
"high_confidence": create_detection_results(
|
|
386
|
+
num_detections=5,
|
|
387
|
+
confidence_range=(0.95, 1.0)
|
|
388
|
+
),
|
|
389
|
+
"overlapping_bboxes": [
|
|
390
|
+
{"bbox": [100, 100, 200, 200], "confidence": 0.8, "category": "person"},
|
|
391
|
+
{"bbox": [150, 150, 250, 250], "confidence": 0.7, "category": "person"},
|
|
392
|
+
{"bbox": [120, 120, 220, 220], "confidence": 0.9, "category": "person"}
|
|
393
|
+
],
|
|
394
|
+
"boundary_bboxes": [
|
|
395
|
+
{"bbox": [0, 0, 50, 50], "confidence": 0.8, "category": "person"},
|
|
396
|
+
{"bbox": [590, 430, 640, 480], "confidence": 0.7, "category": "person"}
|
|
397
|
+
],
|
|
398
|
+
"malformed_data": [
|
|
399
|
+
{"bbox": [100, 100], "confidence": 0.8}, # Missing coordinates
|
|
400
|
+
{"confidence": 0.7, "category": "person"}, # Missing bbox
|
|
401
|
+
{"bbox": [100, 100, 200, 200]}, # Missing confidence
|
|
402
|
+
]
|
|
403
|
+
}
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
def create_performance_test_data(scale: str = "medium") -> Dict[str, Any]:
|
|
407
|
+
"""Create performance test data at different scales."""
|
|
408
|
+
scales = {
|
|
409
|
+
"small": {"detections": 50, "tracks": 10, "frames": 10},
|
|
410
|
+
"medium": {"detections": 500, "tracks": 50, "frames": 30},
|
|
411
|
+
"large": {"detections": 2000, "tracks": 200, "frames": 100},
|
|
412
|
+
"huge": {"detections": 10000, "tracks": 1000, "frames": 500}
|
|
413
|
+
}
|
|
414
|
+
|
|
415
|
+
if scale not in scales:
|
|
416
|
+
scale = "medium"
|
|
417
|
+
|
|
418
|
+
params = scales[scale]
|
|
419
|
+
|
|
420
|
+
return {
|
|
421
|
+
"detection_data": create_detection_results(
|
|
422
|
+
num_detections=params["detections"]
|
|
423
|
+
),
|
|
424
|
+
"tracking_data": create_tracking_results(
|
|
425
|
+
num_tracks=params["tracks"],
|
|
426
|
+
frames=params["frames"]
|
|
427
|
+
),
|
|
428
|
+
"zones": create_zone_polygons([f"zone_{i}" for i in range(10)]),
|
|
429
|
+
"scale_info": {
|
|
430
|
+
"scale": scale,
|
|
431
|
+
"expected_detections": params["detections"],
|
|
432
|
+
"expected_tracks": params["tracks"],
|
|
433
|
+
"expected_frames": params["frames"]
|
|
434
|
+
}
|
|
435
|
+
}
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
def create_multi_camera_data(num_cameras: int = 3) -> Dict[str, Any]:
|
|
439
|
+
"""Create multi-camera test data."""
|
|
440
|
+
cameras = {}
|
|
441
|
+
|
|
442
|
+
for camera_id in range(1, num_cameras + 1):
|
|
443
|
+
cameras[f"camera_{camera_id}"] = {
|
|
444
|
+
"detection_data": create_detection_results(
|
|
445
|
+
num_detections=random.randint(10, 30),
|
|
446
|
+
image_size=(1920, 1080) if camera_id == 1 else (640, 480)
|
|
447
|
+
),
|
|
448
|
+
"tracking_data": create_tracking_results(
|
|
449
|
+
num_tracks=random.randint(5, 15),
|
|
450
|
+
frames=random.randint(10, 25)
|
|
451
|
+
),
|
|
452
|
+
"zones": create_zone_polygons([f"cam{camera_id}_zone_{i}" for i in range(3)]),
|
|
453
|
+
"metadata": {
|
|
454
|
+
"camera_id": camera_id,
|
|
455
|
+
"location": f"Location_{camera_id}",
|
|
456
|
+
"resolution": (1920, 1080) if camera_id == 1 else (640, 480)
|
|
457
|
+
}
|
|
458
|
+
}
|
|
459
|
+
|
|
460
|
+
return cameras
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
def create_temporal_data_series(duration_minutes: int = 60) -> List[Dict[str, Any]]:
|
|
464
|
+
"""Create temporal data series for time-based analysis."""
|
|
465
|
+
data_series = []
|
|
466
|
+
frames_per_minute = 30 # Assuming 0.5 FPS for analysis
|
|
467
|
+
total_frames = duration_minutes * frames_per_minute
|
|
468
|
+
|
|
469
|
+
base_time = time.time()
|
|
470
|
+
|
|
471
|
+
for frame in range(total_frames):
|
|
472
|
+
timestamp = base_time + frame * 2 # 2 seconds per frame
|
|
473
|
+
|
|
474
|
+
# Simulate varying activity levels
|
|
475
|
+
hour = (frame // frames_per_minute) % 24
|
|
476
|
+
if 9 <= hour <= 17: # Business hours
|
|
477
|
+
activity_level = random.uniform(0.7, 1.0)
|
|
478
|
+
elif 6 <= hour <= 9 or 17 <= hour <= 20: # Rush hours
|
|
479
|
+
activity_level = random.uniform(0.5, 0.8)
|
|
480
|
+
else: # Off hours
|
|
481
|
+
activity_level = random.uniform(0.1, 0.4)
|
|
482
|
+
|
|
483
|
+
num_detections = int(20 * activity_level)
|
|
484
|
+
|
|
485
|
+
frame_data = {
|
|
486
|
+
"timestamp": timestamp,
|
|
487
|
+
"frame": frame,
|
|
488
|
+
"hour": hour,
|
|
489
|
+
"activity_level": activity_level,
|
|
490
|
+
"detections": create_detection_results(
|
|
491
|
+
num_detections=num_detections,
|
|
492
|
+
categories=["person", "vehicle"]
|
|
493
|
+
)
|
|
494
|
+
}
|
|
495
|
+
|
|
496
|
+
data_series.append(frame_data)
|
|
497
|
+
|
|
498
|
+
return data_series
|
|
499
|
+
|
|
500
|
+
|
|
501
|
+
def create_configuration_variants() -> Dict[str, Dict[str, Any]]:
|
|
502
|
+
"""Create various configuration variants for testing."""
|
|
503
|
+
return {
|
|
504
|
+
"minimal_config": {
|
|
505
|
+
"confidence_threshold": 0.5
|
|
506
|
+
},
|
|
507
|
+
"full_people_counting": {
|
|
508
|
+
"confidence_threshold": 0.6,
|
|
509
|
+
"enable_tracking": True,
|
|
510
|
+
"enable_unique_counting": True,
|
|
511
|
+
"time_window_minutes": 30,
|
|
512
|
+
"person_categories": ["person", "people"],
|
|
513
|
+
"zone_config": {
|
|
514
|
+
"zones": create_zone_polygons(["entrance", "lobby", "exit"])
|
|
515
|
+
},
|
|
516
|
+
"alert_config": {
|
|
517
|
+
"count_thresholds": {"person": 50},
|
|
518
|
+
"occupancy_thresholds": {"lobby": 20}
|
|
519
|
+
}
|
|
520
|
+
},
|
|
521
|
+
"customer_service_config": {
|
|
522
|
+
"confidence_threshold": 0.7,
|
|
523
|
+
"enable_tracking": True,
|
|
524
|
+
"customer_categories": ["customer", "person"],
|
|
525
|
+
"staff_categories": ["staff", "employee"],
|
|
526
|
+
"service_proximity_threshold": 150.0,
|
|
527
|
+
"max_service_time": 600.0,
|
|
528
|
+
**create_customer_service_areas()
|
|
529
|
+
},
|
|
530
|
+
"high_performance_config": {
|
|
531
|
+
"confidence_threshold": 0.8,
|
|
532
|
+
"batch_size": 100,
|
|
533
|
+
"max_objects": 500,
|
|
534
|
+
"enable_analytics": False # Disable for performance
|
|
535
|
+
}
|
|
536
|
+
}
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
def create_result_format_variants() -> Dict[str, Dict[str, Any]]:
|
|
540
|
+
"""Create test data in different result formats."""
|
|
541
|
+
base_detections = create_detection_results(10)
|
|
542
|
+
base_tracks = create_tracking_results(5, frames=8)
|
|
543
|
+
|
|
544
|
+
return {
|
|
545
|
+
"coco_format": {
|
|
546
|
+
"images": [{"id": 1, "width": 640, "height": 480, "file_name": "test.jpg"}],
|
|
547
|
+
"annotations": [
|
|
548
|
+
{
|
|
549
|
+
"id": i,
|
|
550
|
+
"image_id": 1,
|
|
551
|
+
"category_id": 1,
|
|
552
|
+
"bbox": det["bbox"],
|
|
553
|
+
"area": (det["bbox"][2] - det["bbox"][0]) * (det["bbox"][3] - det["bbox"][1]),
|
|
554
|
+
"iscrowd": 0,
|
|
555
|
+
"score": det["confidence"]
|
|
556
|
+
}
|
|
557
|
+
for i, det in enumerate(base_detections)
|
|
558
|
+
],
|
|
559
|
+
"categories": [{"id": 1, "name": "person"}]
|
|
560
|
+
},
|
|
561
|
+
"yolo_format": [
|
|
562
|
+
{
|
|
563
|
+
"class": 0,
|
|
564
|
+
"confidence": det["confidence"],
|
|
565
|
+
"bbox": [
|
|
566
|
+
(det["bbox"][0] + det["bbox"][2]) / 2 / 640, # center_x normalized
|
|
567
|
+
(det["bbox"][1] + det["bbox"][3]) / 2 / 480, # center_y normalized
|
|
568
|
+
(det["bbox"][2] - det["bbox"][0]) / 640, # width normalized
|
|
569
|
+
(det["bbox"][3] - det["bbox"][1]) / 480 # height normalized
|
|
570
|
+
]
|
|
571
|
+
}
|
|
572
|
+
for det in base_detections
|
|
573
|
+
],
|
|
574
|
+
"tracking_format": base_tracks,
|
|
575
|
+
"custom_format": {
|
|
576
|
+
"detections": base_detections,
|
|
577
|
+
"metadata": {
|
|
578
|
+
"timestamp": time.time(),
|
|
579
|
+
"source": "test_camera",
|
|
580
|
+
"resolution": [640, 480]
|
|
581
|
+
}
|
|
582
|
+
}
|
|
583
|
+
}
|