matrice-analytics 0.1.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +146 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3291 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +950 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +2234 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +606 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +321 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +250 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  42. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  43. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  44. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  45. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  46. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  47. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  48. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  49. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  50. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  51. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  52. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  53. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  54. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  55. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  56. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  57. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  58. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  59. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  60. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  61. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  62. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  63. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  64. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  65. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  66. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  67. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  68. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  69. matrice_analytics/post_processing/ocr/postprocessing.py +270 -0
  70. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  71. matrice_analytics/post_processing/post_processor.py +1175 -0
  72. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  73. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  74. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  75. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  76. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  77. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  78. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  79. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  80. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  81. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  82. matrice_analytics/post_processing/test_cases/test_usecases.py +165 -0
  83. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  84. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  85. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  86. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  87. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  88. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  89. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  90. matrice_analytics/post_processing/usecases/age_gender_detection.py +1085 -0
  91. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  92. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  93. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  94. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  95. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  96. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  97. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  98. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  99. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  100. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  101. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  102. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  103. matrice_analytics/post_processing/usecases/color/clip.py +660 -0
  104. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  105. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  106. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  107. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  108. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  109. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  110. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  111. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  112. matrice_analytics/post_processing/usecases/color_detection.py +1936 -0
  113. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  114. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  115. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  116. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  117. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  118. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  119. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +585 -0
  120. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  121. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  122. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  123. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  124. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  125. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  126. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  127. matrice_analytics/post_processing/usecases/fire_detection.py +1146 -0
  128. matrice_analytics/post_processing/usecases/flare_analysis.py +836 -0
  129. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  130. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  131. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  132. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  133. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  134. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  135. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  136. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  137. matrice_analytics/post_processing/usecases/license_plate_detection.py +1188 -0
  138. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1781 -0
  139. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  140. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  141. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  142. matrice_analytics/post_processing/usecases/parking.py +787 -0
  143. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  144. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  145. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  146. matrice_analytics/post_processing/usecases/people_counting.py +706 -0
  147. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  148. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  149. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  150. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  151. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  152. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  153. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  154. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  155. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  156. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  157. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  158. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  159. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  160. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  161. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  162. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  163. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  164. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  165. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  166. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  167. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  168. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  169. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  170. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +1029 -0
  171. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  172. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  173. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  174. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  175. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  176. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  177. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  178. matrice_analytics/post_processing/utils/__init__.py +150 -0
  179. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  180. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  181. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  182. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  183. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  184. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  185. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  186. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  187. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  188. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  189. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  190. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  191. matrice_analytics/py.typed +0 -0
  192. matrice_analytics-0.1.60.dist-info/METADATA +481 -0
  193. matrice_analytics-0.1.60.dist-info/RECORD +196 -0
  194. matrice_analytics-0.1.60.dist-info/WHEEL +5 -0
  195. matrice_analytics-0.1.60.dist-info/licenses/LICENSE.txt +21 -0
  196. matrice_analytics-0.1.60.dist-info/top_level.txt +1 -0
@@ -0,0 +1,841 @@
1
+ """
2
+ Assembly Line Detection Use Case
3
+
4
+ This module provides functionality for detecting assembly lines in images or video streams.
5
+
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+ from dataclasses import asdict
10
+ import time
11
+ from datetime import datetime, timezone
12
+
13
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
14
+ from ..utils import (
15
+ filter_by_confidence,
16
+ filter_by_categories,
17
+ apply_category_mapping,
18
+ count_objects_by_category,
19
+ count_objects_in_zones,
20
+ calculate_counting_summary,
21
+ match_results_structure,
22
+ bbox_smoothing,
23
+ BBoxSmoothingConfig,
24
+ BBoxSmoothingTracker
25
+ )
26
+ from dataclasses import dataclass, field
27
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
28
+
29
+
30
+ @dataclass
31
+ class AssemblyLineConfig(BaseConfig):
32
+ """Configuration for assembly line detection use case."""
33
+ # Smoothing configuration
34
+ enable_smoothing: bool = True
35
+ smoothing_algorithm: str = "observability" # "window" or "observability"
36
+ smoothing_window_size: int = 20
37
+ smoothing_cooldown_frames: int = 5
38
+ smoothing_confidence_range_factor: float = 0.5
39
+
40
+ #confidence thresholds
41
+ confidence_threshold: float = 0.6
42
+
43
+ usecase_categories: List[str] = field(
44
+ default_factory=lambda: ['metal-plate', 'robot-arms-2',
45
+ 'metal-plate-empty', 'robot-arms', 'robot-arms-3']
46
+ )
47
+
48
+ target_categories: List[str] = field(
49
+ default_factory=lambda: ['metal-plate', 'robot-arms-2',
50
+ 'metal-plate-empty', 'robot-arms', 'robot-arms-3']
51
+ )
52
+
53
+ alert_config: Optional[AlertConfig] = None
54
+
55
+ index_to_category: Optional[Dict[int, str]] = field(
56
+ default_factory=lambda: {
57
+ 0: 'metal-plate',
58
+ 1: 'robot-arms-2',
59
+ 2: 'metal-plate-empty',
60
+ 3: 'robot-arms',
61
+ 4: 'robot-arms-3'
62
+ }
63
+ )
64
+
65
+
66
+ class AssemblyLineUseCase(BaseProcessor):
67
+ # Human-friendly display names for categories
68
+ CATEGORY_DISPLAY = {
69
+ "metal-plate": "Metal Plate",
70
+ "robot-arms-2": "robot-arms-2",
71
+ "metal-plate-empty": "Empty Metal Plate",
72
+ "robot-arms" : "robot-arms",
73
+ "robot-arms-3" : "robot-arms-3"
74
+ }
75
+ def __init__(self):
76
+ super().__init__("assembly_line_detection")
77
+ self.category = "manufacturing"
78
+
79
+ self.CASE_TYPE: Optional[str] = 'assembly_line_detection'
80
+ self.CASE_VERSION: Optional[str] = '1.2'
81
+
82
+ # List of categories to track
83
+ self.target_categories = ['metal-plate', 'robot-arms-2',
84
+ 'metal-plate-empty', 'robot-arms', 'robot-arms-3']
85
+
86
+
87
+ # Initialize smoothing tracker
88
+ self.smoothing_tracker = None
89
+
90
+ # Initialize advanced tracker (will be created on first use)
91
+ self.tracker = None
92
+
93
+ # Initialize tracking state variables
94
+ self._total_frame_counter = 0
95
+ self._global_frame_offset = 0
96
+
97
+ # Track start time for "TOTAL SINCE" calculation
98
+ self._tracking_start_time = None
99
+
100
+ self._track_aliases: Dict[Any, Any] = {}
101
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
102
+ # Tunable parameters – adjust if necessary for specific scenarios
103
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
104
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
105
+
106
+ self._ascending_alert_list: List[int] = []
107
+ self.current_incident_end_timestamp: str = "N/A"
108
+
109
+
110
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
111
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
112
+ """
113
+ Main entry point for post-processing.
114
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
115
+ Returns a ProcessingResult with all relevant outputs.
116
+ """
117
+ start_time = time.time()
118
+ # Ensure config is correct type
119
+ if not isinstance(config, AssemblyLineConfig):
120
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
121
+ context=context)
122
+ if context is None:
123
+ context = ProcessingContext()
124
+
125
+ # Detect input format and store in context
126
+ input_format = match_results_structure(data)
127
+ context.input_format = input_format
128
+ context.confidence_threshold = config.confidence_threshold
129
+
130
+ if config.confidence_threshold is not None:
131
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
132
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
133
+ else:
134
+ processed_data = data
135
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
136
+
137
+ # Step 2: Apply category mapping if provided
138
+ if config.index_to_category:
139
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
140
+ self.logger.debug("Applied category mapping")
141
+
142
+ if config.target_categories:
143
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
144
+ self.logger.debug(f"Applied category filtering")
145
+
146
+ # Apply bbox smoothing if enabled
147
+ if config.enable_smoothing:
148
+ if self.smoothing_tracker is None:
149
+ smoothing_config = BBoxSmoothingConfig(
150
+ smoothing_algorithm=config.smoothing_algorithm,
151
+ window_size=config.smoothing_window_size,
152
+ cooldown_frames=config.smoothing_cooldown_frames,
153
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
154
+ confidence_range_factor=config.smoothing_confidence_range_factor,
155
+ enable_smoothing=True
156
+ )
157
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
158
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
159
+
160
+
161
+ # Advanced tracking (BYTETracker-like)
162
+ try:
163
+ from ..advanced_tracker import AdvancedTracker
164
+ from ..advanced_tracker.config import TrackerConfig
165
+
166
+ # Create tracker instance if it doesn't exist (preserves state across frames)
167
+
168
+ if self.tracker is None:
169
+ if config.confidence_threshold is not None:
170
+ tracker_config = TrackerConfig(
171
+ track_high_thresh=float(config.confidence_threshold),
172
+ # Allow even lower detections to participate in secondary association
173
+ track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
174
+ new_track_thresh=float(config.confidence_threshold)
175
+ )
176
+ else:
177
+ tracker_config = TrackerConfig()
178
+ self.tracker = AdvancedTracker(tracker_config)
179
+ self.logger.info(
180
+ "Initialized AdvancedTracker for Monitoring and tracking with thresholds: "
181
+ f"high={tracker_config.track_high_thresh}, "
182
+ f"low={tracker_config.track_low_thresh}, "
183
+ f"new={tracker_config.new_track_thresh}"
184
+ )
185
+ # The tracker expects the data in the same format as input
186
+ # It will add track_id and frame_id to each detection
187
+ processed_data = self.tracker.update(processed_data)
188
+
189
+ except Exception as e:
190
+ # If advanced tracker fails, fallback to unsmoothed detections
191
+ self.logger.warning(f"AdvancedTracker failed: {e}")
192
+
193
+ # Update tracking state for total count per label
194
+ self._update_tracking_state(processed_data)
195
+
196
+ # Update frame counter
197
+ self._total_frame_counter += 1
198
+
199
+ # Extract frame information from stream_info
200
+ frame_number = None
201
+ if stream_info:
202
+ input_settings = stream_info.get("input_settings", {})
203
+ start_frame = input_settings.get("start_frame")
204
+ end_frame = input_settings.get("end_frame")
205
+ # If start and end frame are the same, it's a single frame
206
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
207
+ frame_number = start_frame
208
+
209
+ # Compute summaries and alerts
210
+ general_counting_summary = calculate_counting_summary(data)
211
+ counting_summary = self._count_categories(processed_data, config)
212
+ # Add total unique counts after tracking using only local state
213
+ total_counts = self.get_total_counts()
214
+ counting_summary['total_counts'] = total_counts
215
+
216
+ alerts = self._check_alerts(counting_summary, frame_number, config)
217
+ predictions = self._extract_predictions(processed_data)
218
+
219
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
220
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
221
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
222
+ business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
223
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
224
+
225
+ # Extract frame-based dictionaries from the lists
226
+ incidents = incidents_list[0] if incidents_list else {}
227
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
228
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
229
+ summary = summary_list[0] if summary_list else {}
230
+ agg_summary = {str(frame_number): {
231
+ "incidents": incidents,
232
+ "tracking_stats": tracking_stats,
233
+ "business_analytics": business_analytics,
234
+ "alerts": alerts,
235
+ "human_text": summary}
236
+ }
237
+
238
+
239
+ context.mark_completed()
240
+
241
+ # Build result object following the new pattern
242
+
243
+ result = self.create_result(
244
+ data={"agg_summary": agg_summary},
245
+ usecase=self.name,
246
+ category=self.category,
247
+ context=context
248
+ )
249
+
250
+ return result
251
+
252
+ def _check_alerts(self, summary: dict, frame_number:Any, config: AssemblyLineConfig) -> List[Dict]:
253
+ """
254
+ Check if any alert thresholds are exceeded and return alert dicts.
255
+ """
256
+ def get_trend(data, lookback=900, threshold=0.6):
257
+ '''
258
+ Determine if the trend is ascending or descending based on actual value progression.
259
+ Now works with values 0,1,2,3 (not just binary).
260
+ '''
261
+ window = data[-lookback:] if len(data) >= lookback else data
262
+ if len(window) < 2:
263
+ return True # not enough data to determine trend
264
+ increasing = 0
265
+ total = 0
266
+ for i in range(1, len(window)):
267
+ if window[i] >= window[i - 1]:
268
+ increasing += 1
269
+ total += 1
270
+ ratio = increasing / total
271
+ if ratio >= threshold:
272
+ return True
273
+ elif ratio <= (1 - threshold):
274
+ return False
275
+
276
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
277
+ alerts = []
278
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
279
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
280
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
281
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
282
+
283
+ if not config.alert_config:
284
+ return alerts
285
+
286
+ total = summary.get("total_count", 0)
287
+ #self._ascending_alert_list
288
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
289
+
290
+ for category, threshold in config.alert_config.count_thresholds.items():
291
+ if category == "all" and total > threshold:
292
+
293
+ alerts.append({
294
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
295
+ "alert_id": "alert_"+category+'_'+frame_key,
296
+ "incident_category": self.CASE_TYPE,
297
+ "threshold_level": threshold,
298
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
299
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
300
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
301
+ }
302
+ })
303
+ elif category in summary.get("per_category_count", {}):
304
+ count = summary.get("per_category_count", {})[category]
305
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
306
+ alerts.append({
307
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
308
+ "alert_id": "alert_"+category+'_'+frame_key,
309
+ "incident_category": self.CASE_TYPE,
310
+ "threshold_level": threshold,
311
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
312
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
313
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
314
+ }
315
+ })
316
+ else:
317
+ pass
318
+ return alerts
319
+
320
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: AssemblyLineConfig,
321
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
322
+ Dict]:
323
+ """Generate structured incidents for the output format with frame-based keys."""
324
+
325
+ incidents = []
326
+ total_detections = counting_summary.get("total_count", 0)
327
+ current_timestamp = self._get_current_timestamp_str(stream_info)
328
+ camera_info = self.get_camera_info_from_stream(stream_info)
329
+
330
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
331
+
332
+ if total_detections > 0:
333
+ # Determine event level based on thresholds
334
+ level = "low"
335
+ intensity = 5.0
336
+ start_timestamp = self._get_start_timestamp_str(stream_info)
337
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
338
+ self.current_incident_end_timestamp = 'Incident still active'
339
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
340
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
341
+ self.current_incident_end_timestamp = current_timestamp
342
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
343
+ self.current_incident_end_timestamp = 'N/A'
344
+
345
+ if config.alert_config and config.alert_config.count_thresholds:
346
+ threshold = config.alert_config.count_thresholds.get("all", 15)
347
+ intensity = min(10.0, (total_detections / threshold) * 10)
348
+
349
+ if intensity >= 9:
350
+ level = "critical"
351
+ self._ascending_alert_list.append(3)
352
+ elif intensity >= 7:
353
+ level = "significant"
354
+ self._ascending_alert_list.append(2)
355
+ elif intensity >= 5:
356
+ level = "medium"
357
+ self._ascending_alert_list.append(1)
358
+ else:
359
+ level = "low"
360
+ self._ascending_alert_list.append(0)
361
+ else:
362
+ if total_detections > 30:
363
+ level = "critical"
364
+ intensity = 10.0
365
+ self._ascending_alert_list.append(3)
366
+ elif total_detections > 25:
367
+ level = "significant"
368
+ intensity = 9.0
369
+ self._ascending_alert_list.append(2)
370
+ elif total_detections > 15:
371
+ level = "medium"
372
+ intensity = 7.0
373
+ self._ascending_alert_list.append(1)
374
+ else:
375
+ level = "low"
376
+ intensity = min(10.0, total_detections / 3.0)
377
+ self._ascending_alert_list.append(0)
378
+
379
+ # Generate human text in new format
380
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
381
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
382
+ human_text = "\n".join(human_text_lines)
383
+
384
+ alert_settings=[]
385
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
386
+ alert_settings.append({
387
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
388
+ "incident_category": self.CASE_TYPE,
389
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
390
+ "ascending": True,
391
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
392
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
393
+ }
394
+ })
395
+
396
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
397
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
398
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
399
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
400
+ incidents.append(event)
401
+
402
+ else:
403
+ self._ascending_alert_list.append(0)
404
+ incidents.append({})
405
+
406
+ return incidents
407
+
408
+ def _generate_tracking_stats(
409
+ self,
410
+ counting_summary: Dict,
411
+ alerts: List,
412
+ config: AssemblyLineConfig,
413
+ frame_number: Optional[int] = None,
414
+ stream_info: Optional[Dict[str, Any]] = None
415
+ ) -> List[Dict]:
416
+ """Generate structured tracking stats matching eg.json format."""
417
+ camera_info = self.get_camera_info_from_stream(stream_info)
418
+
419
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
420
+ # tracking_stats = [{frame_key: []}]
421
+ # frame_tracking_stats = tracking_stats[0][frame_key]
422
+ tracking_stats = []
423
+
424
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
425
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
426
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
427
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
428
+
429
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
430
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
431
+
432
+ # Create high precision timestamps for input_timestamp and reset_timestamp
433
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
434
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
435
+
436
+
437
+ # Build total_counts array in expected format
438
+ total_counts = []
439
+ for cat, count in total_counts_dict.items():
440
+ if count > 0:
441
+ total_counts.append({
442
+ "category": cat,
443
+ "count": count
444
+ })
445
+
446
+ # Build current_counts array in expected format
447
+ current_counts = []
448
+ for cat, count in per_category_count.items():
449
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
450
+ current_counts.append({
451
+ "category": cat,
452
+ "count": count
453
+ })
454
+
455
+ # Prepare detections without confidence scores (as per eg.json)
456
+ detections = []
457
+
458
+ for detection in counting_summary.get("detections", []):
459
+ detection_data = {
460
+ "category": detection.get("category"),
461
+ "bounding_box": detection.get("bounding_box", {})
462
+ }
463
+ # Include segmentation if available (like in eg.json)
464
+ if detection.get("masks"):
465
+ detection_data["masks"] = detection.get("masks", [])
466
+ if detection.get("segmentation"):
467
+ detection_data["segmentation"] = detection.get("segmentation")
468
+ if detection.get("mask"):
469
+ detection_data["mask"] = detection.get("mask")
470
+ detections.append(detection_data)
471
+
472
+ # Build alert_settings array in expected format
473
+ alert_settings = []
474
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
475
+ alert_settings.append({
476
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
477
+ "incident_category": self.CASE_TYPE,
478
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
479
+ "ascending": True,
480
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
481
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
482
+ }
483
+ })
484
+
485
+ # Generate human_text in expected format
486
+ human_text_lines = [f"Tracking Statistics:"]
487
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
488
+
489
+ for cat, count in per_category_count.items():
490
+ human_text_lines.append(f"\t{cat}: {count}")
491
+
492
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
493
+ for cat, count in total_counts_dict.items():
494
+ if count > 0:
495
+ human_text_lines.append(f"\t{cat}: {count}")
496
+
497
+ if alerts:
498
+ for alert in alerts:
499
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
500
+ else:
501
+ human_text_lines.append("Alerts: None")
502
+
503
+ human_text = "\n".join(human_text_lines)
504
+ reset_settings=[
505
+ {
506
+ "interval_type": "daily",
507
+ "reset_time": {
508
+ "value": 9,
509
+ "time_unit": "hour"
510
+ }
511
+ }
512
+ ]
513
+
514
+ tracking_stat=self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
515
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
516
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
517
+ reset_time=high_precision_reset_timestamp)
518
+
519
+ tracking_stats.append(tracking_stat)
520
+ return tracking_stats
521
+
522
+ def _generate_business_analytics(self, counting_summary: Dict, alerts:Any, config: AssemblyLineConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
523
+ """Generate standardized business analytics for the agg_summary structure."""
524
+ if is_empty:
525
+ return []
526
+
527
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
528
+ #camera_info = self.get_camera_info_from_stream(stream_info)
529
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
530
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
531
+ # reset_settings)
532
+ # return business_analytics
533
+
534
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
535
+ """
536
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
537
+ """
538
+ lines = {}
539
+ lines["Application Name"] = self.CASE_TYPE
540
+ lines["Application Version"] = self.CASE_VERSION
541
+ if len(incidents) > 0:
542
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
543
+ if len(tracking_stats) > 0:
544
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
545
+ if len(business_analytics) > 0:
546
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
547
+
548
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
549
+ lines["Summary"] = "No Summary Data"
550
+
551
+ return [lines]
552
+
553
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
554
+ """
555
+ Get detailed information about track IDs (per frame).
556
+ """
557
+ # Collect all track_ids in this frame
558
+ frame_track_ids = set()
559
+ for det in detections:
560
+ tid = det.get('track_id')
561
+ if tid is not None:
562
+ frame_track_ids.add(tid)
563
+ # Use persistent total set for unique counting
564
+ total_track_ids = set()
565
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
566
+ total_track_ids.update(s)
567
+ return {
568
+ "total_count": len(total_track_ids),
569
+ "current_frame_count": len(frame_track_ids),
570
+ "total_unique_track_ids": len(total_track_ids),
571
+ "current_frame_track_ids": list(frame_track_ids),
572
+ "last_update_time": time.time(),
573
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
574
+ }
575
+
576
+ def _update_tracking_state(self, detections: list):
577
+ """
578
+ Track unique categories track_ids per category for total count after tracking.
579
+ Applies canonical ID merging to avoid duplicate counting when the underlying
580
+ tracker loses an object temporarily and assigns a new ID.
581
+ """
582
+ # Lazily initialise storage dicts
583
+ if not hasattr(self, "_per_category_total_track_ids"):
584
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
585
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
586
+
587
+ for det in detections:
588
+ cat = det.get("category")
589
+ raw_track_id = det.get("track_id")
590
+ if cat not in self.target_categories or raw_track_id is None:
591
+ continue
592
+ bbox = det.get("bounding_box", det.get("bbox"))
593
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
594
+ # Propagate canonical ID back to detection so downstream logic uses it
595
+ det["track_id"] = canonical_id
596
+
597
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
598
+ self._current_frame_track_ids[cat].add(canonical_id)
599
+
600
+ def get_total_counts(self):
601
+ """
602
+ Return total unique track_id count for each category.
603
+ """
604
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
605
+
606
+
607
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
608
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
609
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
610
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
611
+
612
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
613
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
614
+ hours = int(timestamp // 3600)
615
+ minutes = int((timestamp % 3600) // 60)
616
+ seconds = round(float(timestamp % 60),2)
617
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
618
+
619
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
620
+ """Get formatted current timestamp based on stream type."""
621
+ if not stream_info:
622
+ return "00:00:00.00"
623
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
624
+ if precision:
625
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
626
+ if frame_id:
627
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
628
+ else:
629
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
630
+ stream_time_str = self._format_timestamp_for_video(start_time)
631
+ return stream_time_str
632
+ else:
633
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
634
+
635
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
636
+ if frame_id:
637
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
638
+ else:
639
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
640
+ stream_time_str = self._format_timestamp_for_video(start_time)
641
+ return stream_time_str
642
+ else:
643
+ # For streams, use stream_time from stream_info
644
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
645
+ if stream_time_str:
646
+ # Parse the high precision timestamp string to get timestamp
647
+ try:
648
+ # Remove " UTC" suffix and parse
649
+ timestamp_str = stream_time_str.replace(" UTC", "")
650
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
651
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
652
+ return self._format_timestamp_for_stream(timestamp)
653
+ except:
654
+ # Fallback to current time if parsing fails
655
+ return self._format_timestamp_for_stream(time.time())
656
+ else:
657
+ return self._format_timestamp_for_stream(time.time())
658
+
659
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
660
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
661
+ if not stream_info:
662
+ return "00:00:00"
663
+ if precision:
664
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
665
+ return "00:00:00"
666
+ else:
667
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
668
+
669
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
670
+ # If video format, start from 00:00:00
671
+ return "00:00:00"
672
+ else:
673
+ # For streams, use tracking start time or current time with minutes/seconds reset
674
+ if self._tracking_start_time is None:
675
+ # Try to extract timestamp from stream_time string
676
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
677
+ if stream_time_str:
678
+ try:
679
+ # Remove " UTC" suffix and parse
680
+ timestamp_str = stream_time_str.replace(" UTC", "")
681
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
682
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
683
+ except:
684
+ # Fallback to current time if parsing fails
685
+ self._tracking_start_time = time.time()
686
+ else:
687
+ self._tracking_start_time = time.time()
688
+
689
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
690
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
691
+ dt = dt.replace(minute=0, second=0, microsecond=0)
692
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
693
+
694
+ def _count_categories(self, detections: list, config: AssemblyLineConfig) -> dict:
695
+ """
696
+ Count the number of detections per category and return a summary dict.
697
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
698
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
699
+ """
700
+ counts = {}
701
+ for det in detections:
702
+ cat = det.get('category', 'unknown')
703
+ counts[cat] = counts.get(cat, 0) + 1
704
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
705
+ return {
706
+ "total_count": sum(counts.values()),
707
+ "per_category_count": counts,
708
+ "detections": [
709
+ {
710
+ "bounding_box": det.get("bounding_box"),
711
+ "category": det.get("category"),
712
+ "confidence": det.get("confidence"),
713
+ "track_id": det.get("track_id"),
714
+ "frame_id": det.get("frame_id")
715
+ }
716
+ for det in detections
717
+ ]
718
+ }
719
+
720
+
721
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
722
+ """
723
+ Extract prediction details for output (category, confidence, bounding box).
724
+ """
725
+ return [
726
+ {
727
+ "category": det.get("category", "unknown"),
728
+ "confidence": det.get("confidence", 0.0),
729
+ "bounding_box": det.get("bounding_box", {})
730
+ }
731
+ for det in detections
732
+ ]
733
+
734
+ # ------------------------------------------------------------------ #
735
+ # Canonical ID helpers #
736
+ # ------------------------------------------------------------------ #
737
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
738
+ """Compute IoU between two bounding boxes which may be dicts or lists.
739
+ Falls back to 0 when insufficient data is available."""
740
+
741
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
742
+ def _bbox_to_list(bbox):
743
+ if bbox is None:
744
+ return []
745
+ if isinstance(bbox, list):
746
+ return bbox[:4] if len(bbox) >= 4 else []
747
+ if isinstance(bbox, dict):
748
+ if "xmin" in bbox:
749
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
750
+ if "x1" in bbox:
751
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
752
+ # Fallback: first four numeric values
753
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
754
+ return values[:4] if len(values) >= 4 else []
755
+ return []
756
+
757
+ l1 = _bbox_to_list(box1)
758
+ l2 = _bbox_to_list(box2)
759
+ if len(l1) < 4 or len(l2) < 4:
760
+ return 0.0
761
+ x1_min, y1_min, x1_max, y1_max = l1
762
+ x2_min, y2_min, x2_max, y2_max = l2
763
+
764
+ # Ensure correct order
765
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
766
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
767
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
768
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
769
+
770
+ inter_x_min = max(x1_min, x2_min)
771
+ inter_y_min = max(y1_min, y2_min)
772
+ inter_x_max = min(x1_max, x2_max)
773
+ inter_y_max = min(y1_max, y2_max)
774
+
775
+ inter_w = max(0.0, inter_x_max - inter_x_min)
776
+ inter_h = max(0.0, inter_y_max - inter_y_min)
777
+ inter_area = inter_w * inter_h
778
+
779
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
780
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
781
+ union_area = area1 + area2 - inter_area
782
+
783
+ return (inter_area / union_area) if union_area > 0 else 0.0
784
+
785
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
786
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
787
+ tracks when IoU and temporal constraints indicate they represent the
788
+ same physical."""
789
+ if raw_id is None or bbox is None:
790
+ # Nothing to merge
791
+ return raw_id
792
+
793
+ now = time.time()
794
+
795
+ # Fast path – raw_id already mapped
796
+ if raw_id in self._track_aliases:
797
+ canonical_id = self._track_aliases[raw_id]
798
+ track_info = self._canonical_tracks.get(canonical_id)
799
+ if track_info is not None:
800
+ track_info["last_bbox"] = bbox
801
+ track_info["last_update"] = now
802
+ track_info["raw_ids"].add(raw_id)
803
+ return canonical_id
804
+
805
+ # Attempt to merge with an existing canonical track
806
+ for canonical_id, info in self._canonical_tracks.items():
807
+ # Only consider recently updated tracks
808
+ if now - info["last_update"] > self._track_merge_time_window:
809
+ continue
810
+ iou = self._compute_iou(bbox, info["last_bbox"])
811
+ if iou >= self._track_merge_iou_threshold:
812
+ # Merge
813
+ self._track_aliases[raw_id] = canonical_id
814
+ info["last_bbox"] = bbox
815
+ info["last_update"] = now
816
+ info["raw_ids"].add(raw_id)
817
+ return canonical_id
818
+
819
+ # No match – register new canonical track
820
+ canonical_id = raw_id
821
+ self._track_aliases[raw_id] = canonical_id
822
+ self._canonical_tracks[canonical_id] = {
823
+ "last_bbox": bbox,
824
+ "last_update": now,
825
+ "raw_ids": {raw_id},
826
+ }
827
+ return canonical_id
828
+
829
+ def _format_timestamp(self, timestamp: float) -> str:
830
+ """Format a timestamp for human-readable output."""
831
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
832
+
833
+ def _get_tracking_start_time(self) -> str:
834
+ """Get the tracking start time, formatted as a string."""
835
+ if self._tracking_start_time is None:
836
+ return "N/A"
837
+ return self._format_timestamp(self._tracking_start_time)
838
+
839
+ def _set_tracking_start_time(self) -> None:
840
+ """Set the tracking start time to the current time."""
841
+ self._tracking_start_time = time.time()